ifdef::env-gitlab[] include::Manual.attributes[] include::env-gitlab.attributes[] {link_home} toc::[] endif::[] [[chp.conventions]] == Conventions [[sec.conventions.units]] === Physical Units Throughout the computations, _OPAL_ internally uses international units, as defined by SI (Système International), for all physical quantities (see <<tab_Physical_Units>>). However, some elements and field maps are defined in other units in the input file, as is specified in their corresponding description in the Manual. .Physical Units [[tab_Physical_Units,Table {counter:tab-cnt}]] [cols="<,<",options="header",] |======================================================================= |Quantity |Dimension |Length |latexmath:[\mathrm{m}] (meters) |Angle |latexmath:[\mathrm{rad}] (radians) |Quadrupole coefficient |latexmath:[\mathrm{Tm^{-1}}] |Multipole coefficient, 2n poles |latexmath:[\mathrm{Tm^{-n + 1}}] |Electric voltage |latexmath:[\mathrm{MV}] (Megavolts) |Electric field strength |latexmath:[\mathrm{MV m^{-1}}] |Frequency |latexmath:[\mathrm{MHz}] (Megahertz) |Particle energy |latexmath:[\mathrm{MeV}] or latexmath:[\mathrm{eV}] |Particle mass |latexmath:[\mathrm{MeV c^{-2}}] |Particle momentum |latexmath:[\mathrm{\beta\gamma}] or latexmath:[\mathrm{eV}] (see link:distribution#sec.distribution.unitsdistattributes[Units]) |Beam current |latexmath:[\mathrm{A}] (Amperes) |Particle charge |latexmath:[\mathrm{e}] (elementary charges) |Impedances |latexmath:[\mathrm{M \Omega}] (Megaohms) |Emittances (normalized and geometric |latexmath:[\mathrm{mrad}] |RF power |latexmath:[\mathrm{MW}] (Megawatts) |======================================================================= [[sec.conventions.symbols-used]] === Symbols used .List of Symbols used and their definition. [[tab_List_of_Symbols,Table {counter:tab-cnt}]] [cols="<1,<8",options="header",] |======================================================================= |Symbol |Definition |latexmath:[X] |Ellipse axis along the latexmath:[x] dimension [m]. latexmath:[X=R] for circular beams. |latexmath:[Y] |Ellipse axis along the latexmath:[y] dimension [m]. latexmath:[Y=R] for circular beams. |latexmath:[R] |Beam radius for circular beam [m]. |latexmath:[R^*] |Effective beam radius for elliptical beam: latexmath:[R^* = (X+Y)/2] [m]. |latexmath:[\sigma_x] |Rms beam size in latexmath:[x]: latexmath:[\sigma_x = \langle x^2\rangle^{1/2}] [m]. latexmath:[\sigma_x = X/2] for elliptical or circular beams (X=Y=R). |latexmath:[\sigma_y] |Rms beam size in latexmath:[y]: latexmath:[\sigma_y = \langle y^2\rangle^{1/2}] [m]. latexmath:[\sigma_y = Y/2] for elliptical or circular beams (X=Y=R). |latexmath:[\sigma_i] |Rms beam size in latexmath:[x] (i=1) or latexmath:[y] (i=2): latexmath:[\sigma=\langle x^2\rangle^{1/2}] or latexmath:[\langle y^2\rangle^{1/2}] [m]. |latexmath:[\sigma_L] |Rms beam size in the Larmor frame for cylindrical symmetric beam and external fields [m]: latexmath:[\sigma_L = \sigma_x = \sigma_y]. |latexmath:[\sigma_r] |Rms beam size in latexmath:[r] for a circular beam: latexmath:[\sigma_r =\langle r^2\rangle^{1/2} = R/\sqrt{2}] [m]. |latexmath:[\sigma^*] |Average rms size for elliptical beam: latexmath:[\sigma^* = (\sigma_x+\sigma_y)/2] [m]. |latexmath:[\theta_r] |Larmor angle [rad] |latexmath:[\dot\theta_r] |Time derivative of Larmor angle: latexmath:[\dot\theta_r = -eB_z/2m\gamma] [rad/sec]. |latexmath:[z_s] |Longitudinal position of a particular beam slice [m]. |latexmath:[z_h,z_t] |Position of the head & tail of a beam bunch [m]. |latexmath:[\zeta] |Used to label the position of a beam slice in the beam [m]. For bunched beams: latexmath:[\zeta = z_s-z_t]. |latexmath:[\xi] |Used to label the position of a slice image charge [m]. For bunched beams: latexmath:[\xi = z_h + z_t]. |latexmath:[K] |Focusing function of cylindrical symmetric external fields: latexmath:[K = -\frac{\partial F_r}{\partial r}] [N/m]. |latexmath:[K_i] |Focusing function in latexmath:[x_i] direction: latexmath:[K_i = -\frac{\partial F_{x_i}}{\partial x_i}] [N/m]. |latexmath:[I_0] |Alfven current: latexmath:[I_0= e/4\pi\epsilon_0mc^3] [A]. |latexmath:[I] |Beam current [A]. |latexmath:[I(\zeta)] |Slice beam current [A]. |latexmath:[k_p] |Beam perveance: latexmath:[k_p = I(\zeta)/2I_0] |latexmath:[g(\zeta)] |Form factor used in slice analysis of bunched beams. |======================================================================= [[sec.conventions.elegantconv]] === Elegant Multipole Conversion OPAL-t uses gradient in T/m so the conversion is dB_y/dx=0.29979/(E[GeV])*dBy/dx[T/m]) A Python code for conversion: def k1tog(k1, E = 45): """convert K1 to gradient, E in MeV""" g = 3.335E-3 * E * k1 return g // EOF