ParallelCyclotronTracker.cpp 176 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// ------------------------------------------------------------------------
// $RCSfile: ParallelCyclotronTracker.cpp,v $
// ------------------------------------------------------------------------
// $Revision: 1.1 $initialLocalNum_m
// ------------------------------------------------------------------------
// Copyright: see Copyright.readme
// ------------------------------------------------------------------------
//
// Class: ParallelCyclotronTracker
//   The class for tracking particles with 3D space charge in Cyclotrons and FFAG's
//
// ------------------------------------------------------------------------
//
// $Date: 2007/10/17 04:00:08 $
// $Author: adelmann, yang $
//
// ------------------------------------------------------------------------
#include <cfloat>
#include <iostream>
#include <fstream>
#include <vector>
22
#include "AbstractObjects/OpalData.h"
gsell's avatar
gsell committed
23 24 25 26 27
#include "Algorithms/ParallelCyclotronTracker.h"

#include "AbsBeamline/Collimator.h"
#include "AbsBeamline/Corrector.h"
#include "AbsBeamline/Cyclotron.h"
adelmann's avatar
adelmann committed
28
#include "AbsBeamline/Degrader.h"
gsell's avatar
gsell committed
29 30 31 32 33 34 35 36 37 38 39 40
#include "AbsBeamline/Diagnostic.h"
#include "AbsBeamline/Drift.h"
#include "AbsBeamline/ElementBase.h"
#include "AbsBeamline/Lambertson.h"
#include "AbsBeamline/Marker.h"
#include "AbsBeamline/Monitor.h"
#include "AbsBeamline/Multipole.h"
#include "AbsBeamline/Probe.h"
#include "AbsBeamline/RBend.h"
#include "AbsBeamline/RFCavity.h"
#include "AbsBeamline/RFQuadrupole.h"
#include "AbsBeamline/SBend.h"
41
#include "AbsBeamline/SBend3D.h"
gsell's avatar
gsell committed
42 43 44 45 46
#include "AbsBeamline/Separator.h"
#include "AbsBeamline/Septum.h"
#include "AbsBeamline/Solenoid.h"
#include "AbsBeamline/CyclotronValley.h"
#include "AbsBeamline/Stripper.h"
47 48

#include "Elements/OpalBeamline.h"
49
#include "Elements/OpalRing.h"
gsell's avatar
gsell committed
50 51 52

#include "BeamlineGeometry/Euclid3D.h"
#include "BeamlineGeometry/PlanarArcGeometry.h"
Jianjun Yang's avatar
Jianjun Yang committed
53
#include "BeamlineGeometry/RBendGeometry.h"
gsell's avatar
gsell committed
54 55 56 57 58 59 60 61 62 63 64 65
#include "Beamlines/Beamline.h"

#include "Fields/BMultipoleField.h"
#include "FixedAlgebra/FTps.h"
#include "FixedAlgebra/FTpsMath.h"
#include "FixedAlgebra/FVps.h"

#include "Physics/Physics.h"

#include "Utilities/NumToStr.h"
#include "Utilities/OpalException.h"

66
#include "Structure/BoundaryGeometry.h"
gsell's avatar
gsell committed
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#include "Ctunes.h"
#include "Ctunes.cc"
#include <cassert>

#include <hdf5.h>
#include "H5hut.h"

class Beamline;
class PartData;
using Physics::c;
using Physics::m_p; // GeV
using Physics::PMASS;
using Physics::PCHARGE;
using Physics::pi;
using Physics::q_e;

const double c_mmtns = c * 1.0e-6; // m/s --> mm/ns
const double mass_coeff = 1.0e18 * q_e / c / c; // from GeV/c^2 to basic unit: GV*C*s^2/m^2

#define PSdim 6

extern Inform *gmsg;

// typedef FVector<double, PSdim> Vector;

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param reference
 * @param revBeam
 * @param revTrack
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
        const PartData &reference,
        bool revBeam, bool revTrack):
    Tracker(beamline, reference, revBeam, revTrack),
105
    eta_m(0.01),
gsell's avatar
gsell committed
106 107
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(0),
108 109
    initialTotalNum_m(0),
    opalRing_m(NULL) {
gsell's avatar
gsell committed
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
}

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param bunch
 * @param ds
 * @param reference
 * @param revBeam
 * @param revTrack
 * @param maxSTEPS
 * @param timeIntegrator
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
                                                   PartBunch &bunch,
                                                   DataSink &ds,
                                                   const PartData &reference,
                                                   bool revBeam, bool revTrack,
                                                   int maxSTEPS, int timeIntegrator):
    Tracker(beamline, reference, revBeam, revTrack),
    maxSteps_m(maxSTEPS),
    timeIntegrator_m(timeIntegrator),
134
    eta_m(0.01),
gsell's avatar
gsell committed
135 136
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(bunch.getLocalNum()),
137 138
    initialTotalNum_m(bunch.getTotalNum()),
    opalRing_m(NULL) {
gsell's avatar
gsell committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
    itsBunch = &bunch;
    itsDataSink = &ds;
    //  scaleFactor_m = itsBunch->getdT() * c;
    scaleFactor_m = 1;
    multiBunchMode_m = 0;

    IntegrationTimer_m = IpplTimings::getTimer("Integration");
    TransformTimer_m   = IpplTimings::getTimer("Frametransform");
    DumpTimer_m        = IpplTimings::getTimer("Dump");
    BinRepartTimer_m   = IpplTimings::getTimer("Binaryrepart");
}

/**
 * Destructor ParallelCyclotronTracker
 *
 */
ParallelCyclotronTracker::~ParallelCyclotronTracker() {
    for(list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
        delete(*compindex);
    }
    for(beamline_list::iterator fdindex = FieldDimensions.begin(); fdindex != FieldDimensions.end(); fdindex++) {
        delete(*fdindex);
    }
    delete itsBeamline;
}

166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * AAA
 *
 * @param none
 */
void ParallelCyclotronTracker::initializeBoundaryGeometry() {
  for(list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
    bgf_m = dynamic_cast<ElementBase *>(*compindex)->getBoundaryGeometry();
    if(!bgf_m) 
      continue;
    else
      break;
  }
adelmann's avatar
adelmann committed
179 180 181 182 183
  if (bgf_m) {
    itsDataSink->writeGeomToVtk(*bgf_m, string("data/testGeometry-00000.vtk"));
    OpalData::getInstance()->setGlobalGeometry(bgf_m);
    *gmsg << "* Boundary geometry initialized " << endl;
  }
184 185 186 187 188 189 190 191 192 193 194
}
/**
 *
 *
 * @param fn Base file name
 */
void ParallelCyclotronTracker::bgf_main_collision_test() {
  if(!bgf_m) return;

  Inform msg("bgf_main_collision_test ");
  
195 196 197 198
  /**                                                                                                      
   *Here we check if a particles is outside the domain, flag it for deletion
   */

gsell's avatar
gsell committed
199
  Vector_t intecoords = 0.0;
200 201 202 203 204

  // This has to match the dT in the rk4 pusher! -DW
  //double dtime = 0.5 * itsBunch->getdT();  // Old
  double dtime = itsBunch->getdT() * getHarmonicNumber();  // New

205 206 207
  int triId = 0;     
  size_t Nimpact = 0;
  for(size_t i = 0; i < itsBunch->getLocalNum(); i++) {
208
    int res = bgf_m->PartInside(itsBunch->R[i]*1.0e-3, itsBunch->P[i], dtime, itsBunch->PType[i], itsBunch->Q[i], intecoords, triId);
209 210 211 212 213 214 215 216
    if(res >= 0) { 
      itsBunch->Bin[i] = -1;
      Nimpact++;
    }               
  }
}


gsell's avatar
gsell committed
217 218 219 220 221 222 223 224 225 226 227 228
/**
 *
 *
 * @param fn Base file name
 */
void ParallelCyclotronTracker::openFiles(string SfileName) {

    string  SfileName2 = SfileName + string("-Angle0.dat");

    outfTheta0_m.precision(8);
    outfTheta0_m.setf(ios::scientific, ios::floatfield);
    outfTheta0_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
229
    outfTheta0_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma" << endl;
gsell's avatar
gsell committed
230 231 232 233 234

    SfileName2 = SfileName + string("-Angle1.dat");
    outfTheta1_m.precision(8);
    outfTheta1_m.setf(ios::scientific, ios::floatfield);
    outfTheta1_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
235
    outfTheta1_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
236 237 238 239 240

    SfileName2 = SfileName + string("-Angle2.dat");
    outfTheta2_m.precision(8);
    outfTheta2_m.setf(ios::scientific, ios::floatfield);
    outfTheta2_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
241
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
242 243 244 245 246 247 248 249 250

    // for single Particle Mode, output after each turn, to define matched initial phase ellipse.

    SfileName2 = SfileName + string("-afterEachTurn.dat");

    outfThetaEachTurn_m.precision(8);
    outfThetaEachTurn_m.setf(ios::scientific, ios::floatfield);

    outfThetaEachTurn_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
251
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
}

/**
 * Close all files related to
 * special output in the Cyclotron
 * mode.
 */
void ParallelCyclotronTracker::closeFiles() {

    outfTheta0_m.close();
    outfTheta1_m.close();
    outfTheta2_m.close();
    outfThetaEachTurn_m.close();
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/** 
 *
 * @param ring
 */
void ParallelCyclotronTracker::visitOpalRing(const OpalRing &ring) {
    *gmsg << "Adding OpalRing" << endl;
    if (opalRing_m != NULL) {
        delete opalRing_m;
    }
    opalRing_m = dynamic_cast<OpalRing*>(ring.clone());
    myElements.push_back(opalRing_m);
    opalRing_m->initialise(itsBunch);

    referenceR = opalRing_m->getBeamRInit();
    referencePr = opalRing_m->getBeamPRInit();
    referenceTheta = opalRing_m->getBeamPhiInit();
    if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
        throw OpalException("Error in ParallelCyclotronTracker::visitOpalRing",
                            "PHIINIT is out of [-180, 180)!");
    }
    referencePz = 0.0;
    referencePtot =  itsReference.getGamma() * itsReference.getBeta();
    referencePt = sqrt(referencePtot * referencePtot
                     - referencePr * referencePr);
    if(referencePtot < 0.0)
        referencePt *= -1.0;
    sinRefTheta_m = sin(referenceTheta / 180.0 * pi);
    cosRefTheta_m = cos(referenceTheta / 180.0 * pi);
gsell's avatar
gsell committed
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    double BcParameter[8];
    for(int i = 0; i < 8; i++) BcParameter[i] = 0.0;
    buildupFieldList(BcParameter, "OPALRING", opalRing_m);

    // Finally print some diagnostic
    *gmsg << "* Initial beam radius = " << referenceR << " [mm] " << endl;
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
    *gmsg << "* Total reference momentum   = " << referencePtot * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference azimuthal momentum  = " << referencePt * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum     = " << referencePr * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* " << opalRing_m->getSymmetry() << " fold field symmetry "
          << endl;
    *gmsg << "* Harmonic number h= " << opalRing_m->getHarmonicNumber() << " "
          << endl;
}
gsell's avatar
gsell committed
315 316 317 318 319 320 321 322 323 324

/**
 *
 *
 * @param cycl
 */
void ParallelCyclotronTracker::visitCyclotron(const Cyclotron &cycl) {

    *gmsg << "* --------- Cyclotron ------------------------------" << endl;

325 326
    Cyclotron *elptr = dynamic_cast<Cyclotron *>(cycl.clone());
    myElements.push_back(elptr);
327
     
328
    // Fresh run (no restart):
329
    if(!OpalData::getInstance()->inRestartRun()) {
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        // Get reference values from cyclotron element
        referenceR     = elptr->getRinit();
        referenceTheta = elptr->getPHIinit();
        referenceZ     = elptr->getZinit();
        referencePr    = elptr->getPRinit();
        referencePz    = elptr->getPZinit();
         
        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "PHIINIT is out of [-180, 180)!");
        }

        referencePtot =  itsReference.getGamma() * itsReference.getBeta();

        // Calculate reference azimuthal (tangential) momentum from total-, z- and radial momentum:
        float insqrt = referencePtot * referencePtot - referencePr * referencePr - referencePz * referencePz;

        if(insqrt < 0) {

            if(insqrt > -1.0e-10) {

	        referencePt = 0.0;

            } else {

	        throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "Pt imaginary!");
            }

        } else {

            referencePt = sqrt(insqrt);
        }

        if(referencePtot < 0.0) referencePt *= -1.0;
        // End calculate referencePt

    // Restart a run:
    } else {

        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {

            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "PHIINIT is out of [-180, 180)!");

        }
      
        referencePtot =  bega;
        // Note: Nothing else has to be set, b/c everything comes from the h5 file -DW
377 378
    }

379 380 381 382 383 384 385 386 387 388 389
    // TEMP Debug Output -DW
    Vector_t const meanP = calcMeanP();
    *gmsg << endl;
    *gmsg << "** Reference P:"  << endl;
    *gmsg << "referencePtot = " << referencePtot << endl;
    *gmsg << "Ptot (from Bunch) = " << sqrt(dot(meanP, meanP)) << endl;
    *gmsg << "referencePr = "   << referencePr   << endl;
    *gmsg << "referencePz = "   << referencePz   << endl;
    *gmsg << "referencePt = "   << referencePt   << endl;
    *gmsg << endl;
    // ENDTEMP
gsell's avatar
gsell committed
390

391
    sinRefTheta_m = sin(referenceTheta / 180.0 * pi);
392 393
    cosRefTheta_m = cos(referenceTheta / 180.0 * pi);   
   
394
    *gmsg << endl;
adelmann's avatar
adelmann committed
395
    *gmsg << "* Bunch global starting position:" << endl;
396 397
    *gmsg << "* RINIT = " << referenceR  << " [mm]" << endl;
    *gmsg << "* PHIINIT = " << referenceTheta << " [deg]" << endl;
398
    *gmsg << "* ZINIT = " << referenceZ << " [mm]" << endl;
399
    *gmsg << endl;
adelmann's avatar
adelmann committed
400
    *gmsg << "* Bunch global starting momenta:" << endl;
gsell's avatar
gsell committed
401 402
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
403 404 405 406
    *gmsg << "* Total reference momentum (beta * gamma) = " << referencePtot * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference azimuthal momentum (Pt) = " << referencePt * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum (Pr) = " << referencePr * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference axial momentum (Pz) = " << referencePz * 1000.0 << " [MCU]" << endl;
407
    *gmsg << endl;
adelmann's avatar
adelmann committed
408

gsell's avatar
gsell committed
409
    double sym = elptr->getSymmetry();
410
    *gmsg << "* " << sym << "-fold field symmerty " << endl;
gsell's avatar
gsell committed
411

412 413 414
    // ckr: this just returned the default value as defined in Component.h
    // double rff = elptr->getRfFrequ();
    // *gmsg << "* Rf frequency= " << rff << " [MHz]" << endl;
gsell's avatar
gsell committed
415 416

    string fmfn = elptr->getFieldMapFN();
417
    *gmsg << "* Field map file name = " << fmfn << " " << endl;
gsell's avatar
gsell committed
418 419

    string type = elptr->getType();
420
    *gmsg << "* Type of cyclotron = " << type << " " << endl;
421 422 423
    
    double rmin = elptr->getMinR();
    double rmax = elptr->getMaxR();
424
    *gmsg << "* Radial aperture = " << rmin << " ... " << rmax<<" [mm] "<< endl;
425 426 427

    double zmin = elptr->getMinZ();
    double zmax = elptr->getMaxZ();
428
    *gmsg << "* Vertical aperture = " << zmin << " ... " << zmax<<" [mm]"<< endl;
gsell's avatar
gsell committed
429

430
    /**
431
    bool Sflag = elptr->getSuperpose();
432 433 434 435 436
    string flagsuperposed;
    if (Sflag)
      flagsuperposed="yes";
    else
      flagsuperposed="no";
437
    *gmsg << "* Electric field maps are superposed? " << flagsuperposed << " " << endl;
438
    */
439

gsell's avatar
gsell committed
440
    double h = elptr->getCyclHarm();
441
    *gmsg << "* Harmonic number h = " << h << " " << endl;
gsell's avatar
gsell committed
442

443
    /**
adelmann's avatar
adelmann committed
444
    if (elptr->getSuperpose())
445
        *gmsg << "* Fields are superposed " << endl;
446
    */
adelmann's avatar
adelmann committed
447

gsell's avatar
gsell committed
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    /**
     * To ease the initialise() function, set a integral parameter fieldflag internally.
     * Its value is  by the option "TYPE" of the element  "CYCLOTRON"
     * fieldflag = 1, readin PSI format measured field file (default)
     * fieldflag = 2, readin carbon cyclotron field file created by Jianjun Yang, TYPE=CARBONCYCL
     * fieldflag = 3, readin ANSYS format file for CYCIAE-100 created by Jianjun Yang, TYPE=CYCIAE
     * fieldflag = 4, readin AVFEQ format file for Riken cyclotrons
     * fieldflag = 5, readin FFAG format file for MSU/FNAL FFAG
     * fieldflag = 6, readin both median plane B field map and 3D E field map of RF cavity for compact cyclotron
     */
    int  fieldflag;
    if(type == string("CARBONCYCL")) {
        fieldflag = 2;
    } else if(type == string("CYCIAE")) {
        fieldflag = 3;
    } else if(type == string("AVFEQ")) {
        fieldflag = 4;
    } else if(type == string("FFAG")) {
        fieldflag = 5;
    } else if(type == string("BANDRF")) {
        fieldflag = 6;
    } else
        fieldflag = 1;

    // read field map on the  middle plane of cyclotron.
    // currently scalefactor is set to 1.0
    elptr->initialise(itsBunch, fieldflag, 1.0);

    double BcParameter[8];
adelmann's avatar
adelmann committed
477 478
    for(int i = 0; i < 8; i++) 
      BcParameter[i] = 0.0;
gsell's avatar
gsell committed
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    string ElementType = "CYCLOTRON";
    BcParameter[0] = elptr->getRmin();
    BcParameter[1] = elptr->getRmax();

    // store inner radius and outer radius of cyclotron field map in the list
    buildupFieldList(BcParameter, ElementType, elptr);

}

/**
 * Not implemented and most probable never used
 *
 */
void ParallelCyclotronTracker::visitBeamBeam(const BeamBeam &) {
    *gmsg << "In BeamBeam tracker is missing " << endl;
}

/**
 *
 *
 * @param coll
 */
void ParallelCyclotronTracker::visitCollimator(const Collimator &coll) {

503
    *gmsg << "* --------- Collimator -----------------------------" << endl;
gsell's avatar
gsell committed
504

505 506
    Collimator* elptr = dynamic_cast<Collimator *>(coll.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
507

508
    double xstart = elptr->getXStart();
adelmann's avatar
adelmann committed
509
    *gmsg << "* Xstart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
510

511
    double xend = elptr->getXEnd();
adelmann's avatar
adelmann committed
512
    *gmsg << "* Xend= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
513

514
    double ystart = elptr->getYStart();
adelmann's avatar
adelmann committed
515
    *gmsg << "* Ystart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
516

517
    double yend = elptr->getYEnd();
adelmann's avatar
adelmann committed
518
    *gmsg << "* Yend= " <<yend << " [mm]" << endl;
gsell's avatar
gsell committed
519

520
    double zstart = elptr->getZStart();
adelmann's avatar
adelmann committed
521
    *gmsg << "* Zstart= " << zstart << " [mm]" << endl;
522 523

    double zend = elptr->getZEnd();
adelmann's avatar
adelmann committed
524
    *gmsg << "* Zend= " <<zend << " [mm]" << endl;
525

526
    double width = elptr->getWidth();
adelmann's avatar
adelmann committed
527
    *gmsg << "* Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
528 529 530 531 532 533 534

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "CCOLLIMATOR";
535 536 537 538
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
gsell's avatar
gsell committed
539 540 541 542 543 544 545 546 547 548 549 550 551 552
    BcParameter[4] = width ;
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitCorrector(const Corrector &corr) {
    *gmsg << "In Corrector; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Corrector *>(corr.clone()));
}

adelmann's avatar
adelmann committed
553 554 555 556 557 558 559 560 561 562 563 564
/**
 *
 *
 * @param degrader
 */
void ParallelCyclotronTracker::visitDegrader(const Degrader &deg) {
    *gmsg << "In Degrader; L= " << deg.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Degrader *>(deg.clone()));

}


gsell's avatar
gsell committed
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 *
 *
 * @param diag
 */
void ParallelCyclotronTracker::visitDiagnostic(const Diagnostic &diag) {
    *gmsg << "In Diagnostic; L= " << diag.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Diagnostic *>(diag.clone()));
}

/**
 *
 *
 * @param drift
 */
void ParallelCyclotronTracker::visitDrift(const Drift &drift) {
    *gmsg << "In drift L= " << drift.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Drift *>(drift.clone()));
}

/**
 *
 *
 * @param lamb
 */
void ParallelCyclotronTracker::visitLambertson(const Lambertson &lamb) {
    *gmsg << "In Lambertson; L= " << lamb.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Lambertson *>(lamb.clone()));
}

/**
 *
 *
 * @param marker
 */
void ParallelCyclotronTracker::visitMarker(const Marker &marker) {
    //   *gmsg << "In Marker; L= " << marker.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Marker *>(marker.clone()));
    // Do nothing.
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitMonitor(const Monitor &corr) {
    //   *gmsg << "In Monitor; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Monitor *>(corr.clone()));
    //   applyDrift(flip_s * corr.getElementLength());
}

617

gsell's avatar
gsell committed
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 *
 *
 * @param mult
 */
void ParallelCyclotronTracker::visitMultipole(const Multipole &mult) {
    *gmsg << "In Multipole; L= " << mult.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Multipole *>(mult.clone()));
}

/**
 *
 *
 * @param prob
 */
void ParallelCyclotronTracker::visitProbe(const Probe &prob) {
634
    *gmsg << "* -----------  Probe -------------------------------" << endl;
635 636
    Probe *elptr = dynamic_cast<Probe *>(prob.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
637

638
    double xstart = elptr->getXstart();
639
    *gmsg << "XStart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
640

641
    double xend = elptr->getXend();
642
    *gmsg << "XEnd= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
643

644
    double ystart = elptr->getYstart();
645
    *gmsg << "YStart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
646

647
    double yend = elptr->getYend();
648
    *gmsg << "YEnd= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
649

650
    double width = elptr->getWidth();
651
    *gmsg << "Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "PROBE";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store probe parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitRBend(const RBend &bend) {
    *gmsg << "In RBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RBend *>(bend.clone()));
}

681 682 683 684 685 686 687 688 689
void ParallelCyclotronTracker::visitSBend3D(const SBend3D &bend) {
    *gmsg << "Adding SBend3D" << endl;
    if (opalRing_m != NULL)
        opalRing_m->appendElement(bend);
    else
        throw OpalException("ParallelCyclotronTracker::visitSBend3D",
                      "Need to define a RINGDEFINITION to use SBend3D element");
}

gsell's avatar
gsell committed
690 691 692 693 694 695 696 697
/**
 *
 *
 * @param as
 */
void ParallelCyclotronTracker::visitRFCavity(const RFCavity &as) {

    *gmsg << "* --------- RFCavity ------------------------------" << endl;
698

699 700
    RFCavity *elptr = dynamic_cast<RFCavity *>(as.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
701 702 703 704 705 706 707

    if((elptr->getComponentType() != "SINGLEGAP") && (elptr->getComponentType() != "DOUBLEGAP")) {
        *gmsg << (elptr->getComponentType()) << endl;
        throw OpalException("ParallelCyclotronTracker::visitRFCavity",
                            "The ParallelCyclotronTracker can only play with cyclotron type RF system currently ...");
    }

708
    double rmin = elptr->getRmin();
gsell's avatar
gsell committed
709 710
    *gmsg << "* Minimal radius of cavity= " << rmin << " [mm]" << endl;

711
    double rmax = elptr->getRmax();
gsell's avatar
gsell committed
712 713
    *gmsg << "* Maximal radius of cavity= " << rmax << " [mm]" << endl;

714
    double rff = elptr->getCycFrequency();
gsell's avatar
gsell committed
715 716
    *gmsg << "* RF frequency (2*pi*f)= " << rff << " [rad/s]" << endl;

717
    string fmfn = elptr->getFieldMapFN();
gsell's avatar
gsell committed
718 719
    *gmsg << "* RF Field map file name= " << fmfn << endl;

720
    double angle = elptr->getAzimuth();
gsell's avatar
gsell committed
721 722
    *gmsg << "* Cavity azimuth position= " << angle << " [deg] " << endl;

723
    double gap = elptr->getGapWidth();
gsell's avatar
gsell committed
724 725
    *gmsg << "* Cavity gap width= " << gap << " [mm] " << endl;

726
    double pdis = elptr->getPerpenDistance();
gsell's avatar
gsell committed
727 728 729
    *gmsg << "* Cavity Shift distance= " << pdis << " [mm] " << endl;


730
    double phi0 = elptr->getPhi0();
gsell's avatar
gsell committed
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    *gmsg << "* Initial RF phase (t=0)= " << phi0 << " [deg] " << endl;

    // read cavity voltage profile data from file.
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "CAVITY";
    BcParameter[0] = rmin;
    BcParameter[1] = rmax;
    BcParameter[2] = pdis;
    BcParameter[3] = angle;

    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param rfq
 */
void ParallelCyclotronTracker::visitRFQuadrupole(const RFQuadrupole &rfq) {
    *gmsg << "In RFQuadrupole; L= " << rfq.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RFQuadrupole *>(rfq.clone()));
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitSBend(const SBend &bend) {
    *gmsg << "In SBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<SBend *>(bend.clone()));
}

/**
 *
 *
 * @param sep
 */
void ParallelCyclotronTracker::visitSeparator(const Separator &sep) {
    *gmsg << "In Seapator L= " << sep.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Separator *>(sep.clone()));
}

/**
 *
 *
 * @param sept
 */
void ParallelCyclotronTracker::visitSeptum(const Septum &sept) {
784 785

    *gmsg << "* -----------  Septum -------------------------------" << endl;
gsell's avatar
gsell committed
786

787 788
    Septum *elptr = dynamic_cast<Septum *>(sept.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
789

790
    double xstart = elptr->getXstart();
791
    *gmsg << "XStart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
792

793
    double xend = elptr->getXend();
794
    *gmsg << "XEnd= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
795

796
    double ystart = elptr->getYstart();
797
    *gmsg << "YStart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
798

799
    double yend = elptr->getYend();
800
    *gmsg << "YEnd= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
801

802
    double width = elptr->getWidth();
803
    *gmsg << "Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "SEPTUM";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store septum parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param solenoid
 */
void ParallelCyclotronTracker::visitSolenoid(const Solenoid &solenoid) {
    myElements.push_back(dynamic_cast<Solenoid *>(solenoid.clone()));
    Component *elptr = *(--myElements.end());
    if(!elptr->hasAttribute("ELEMEDGE")) {
        *gmsg << "Solenoid: no position of the element given!" << endl;
        return;
    }
}

/**
 *
 *
 * @param pplate
 */
void ParallelCyclotronTracker::visitParallelPlate(const ParallelPlate &pplate) {//do nothing

    //*gmsg << "ParallelPlate: not in use in ParallelCyclotronTracker!" << endl;

    //buildupFieldList(startField, endField, elptr);

}

/**
 *
 *
 * @param cv
 */
void ParallelCyclotronTracker::visitCyclotronValley(const CyclotronValley &cv) {
    // Do nothing here.
}
/**
 * not used
 *
 * @param angle
 * @param curve
 * @param field
 * @param scale
 */
void ParallelCyclotronTracker::applyEntranceFringe(double angle, double curve,
        const BMultipoleField &field, double scale) {

}

/**
 *
 *
 * @param stripper
 */

void ParallelCyclotronTracker::visitStripper(const Stripper &stripper) {

    *gmsg << "* ---------Stripper------------------------------" << endl;

881 882 883 884
    Stripper *elptr = dynamic_cast<Stripper *>(stripper.clone());
    myElements.push_back(elptr);

    double xstart = elptr->getXstart();
gsell's avatar
gsell committed
885 886
    *gmsg << "XStart= " << xstart << " [mm]" << endl;

887
    double xend = elptr->getXend();
gsell's avatar
gsell committed
888 889
    *gmsg << "XEnd= " << xend << " [mm]" << endl;

890
    double ystart = elptr->getYstart();
gsell's avatar
gsell committed
891 892
    *gmsg << "YStart= " << ystart << " [mm]" << endl;

893
    double yend = elptr->getYend();
gsell's avatar
gsell committed
894 895
    *gmsg << "YEnd= " << yend << " [mm]" << endl;

896
    double width = elptr->getWidth();
gsell's avatar
gsell committed
897 898
    *gmsg << "Width= " << width << " [mm]" << endl;

899
    double opcharge = elptr->getOPCharge();
gsell's avatar
gsell committed
900 901
    *gmsg << "Charge of outcome particle = +e * " << opcharge << endl;

902
    double opmass = elptr->getOPMass();
adelmann's avatar
Cleanup  
adelmann committed
903
    *gmsg << "* Mass of the outcome particle = " << opmass << " [GeV/c^2]" << endl;
gsell's avatar
gsell committed
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "STRIPPER";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;
    BcParameter[5] = opcharge;
    BcParameter[6] = opmass;

    buildupFieldList(BcParameter, ElementType, elptr);
}


void ParallelCyclotronTracker::applyExitFringe(double angle, double curve,
        const BMultipoleField &field, double scale) {

}


/**
 *
 *
 * @param BcParameter
 * @param ElementType
 * @param elptr
 */
void ParallelCyclotronTracker::buildupFieldList(double BcParameter[], string ElementType, Component *elptr) {
    beamline_list::iterator sindex;

    type_pair *localpair = new type_pair();
    localpair->first = ElementType;

    for(int i = 0; i < 8; i++)
        *(((localpair->second).first) + i) = *(BcParameter + i);

    (localpair->second).second = elptr;

    // always put cyclotron as the first element in the list.
948
    if(ElementType == "OPALRING") {
gsell's avatar
gsell committed
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        sindex = FieldDimensions.begin();
    } else {
        sindex = FieldDimensions.end();
    }
    FieldDimensions.insert(sindex, localpair);

}

/**
 *
 *
 * @param bl
 */
void ParallelCyclotronTracker::visitBeamline(const Beamline &bl) {
    itsBeamline->iterate(*dynamic_cast<BeamlineVisitor *>(this), false);
}

Matthias Toggweiler's avatar
Matthias Toggweiler committed
966 967 968 969
void ParallelCyclotronTracker::checkNumPart(std::string s) {
    int nlp = itsBunch->getLocalNum();
    int minnlp = 0;
    int maxnlp = 111111;
gsell's avatar
gsell committed
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    reduce(nlp, minnlp, OpMinAssign());
    reduce(nlp, maxnlp, OpMaxAssign());
    *gmsg << s << " min local particle number " << minnlp << " max local particle number: " << maxnlp << endl;
}

/**
 *
 *
 */
void ParallelCyclotronTracker::execute() {

    /*
      Initialize common variables and structures
      for the integrators
    */

    step_m = 0;
    restartStep0_m = 0;
988
    // record how many bunches have already been injected. ONLY FOR MPM
gsell's avatar
gsell committed
989 990 991 992 993 994
    BunchCount_m = itsBunch->getNumBunch();

    // For the time being, we set bin number equal to bunch number. FixMe: not used
    BinCount_m = BunchCount_m;

    itsBeamline->accept(*this);
995 996
    if (opalRing_m != NULL)
        opalRing_m->lockRing();
gsell's avatar
gsell committed
997 998

    // display the selected elements
adelmann's avatar
Cleanup  
adelmann committed
999 1000
    *gmsg << "* -----------------------------" << endl;
    *gmsg << "* The selected Beam line elements are :" << endl;
gsell's avatar
gsell committed
1001
    for(beamline_list::iterator sindex = FieldDimensions.begin(); sindex != FieldDimensions.end(); sindex++)
adelmann's avatar
Cleanup  
adelmann committed
1002 1003
      *gmsg << "* -> " <<  ((*sindex)->first) << endl;
    *gmsg << "* -----------------------------" << endl;
1004

1005 1006 1007
    // don't initializeBoundaryGeometry()
    // get BoundaryGeometry that is already initialized
    bgf_m = OpalData::getInstance()->getGlobalGeometry(); 
1008

gsell's avatar
gsell committed
1009 1010 1011 1012 1013 1014
    // external field arrays for dumping
    for(int k = 0; k < 2; k++)
        FDext_m[k] = Vector_t(0.0, 0.0, 0.0);
    extE_m = Vector_t(0.0, 0.0, 0.0);
    extB_m = Vector_t(0.0, 0.0, 0.0);

adelmann's avatar
adelmann committed
1015 1016 1017

    *gmsg << *itsBunch << endl;

gsell's avatar
gsell committed
1018 1019 1020 1021 1022 1023
    if(timeIntegrator_m == 0) {
        *gmsg << "* 4th order Runge-Kutta integrator" << endl;
        Tracker_RK4();
    } else if(timeIntegrator_m == 1) {
        *gmsg << "* 2nd order Leap-Frog integrator" << endl;
        Tracker_LF();
1024 1025 1026
    } else if(timeIntegrator_m == 2) {
        *gmsg << "* Multiple time stepping (MTS) integrator" << endl;
        Tracker_MTS();
gsell's avatar
gsell committed
1027 1028 1029 1030 1031
    } else {
        *gmsg << "ERROR: Invalid name of TIMEINTEGRATOR in Track command" << endl;
        exit(1);
    }

adelmann's avatar
Cleanup  
adelmann committed
1032 1033
    *gmsg << "* -----------------------------" << endl;
    *gmsg << "* Finalizing i.e. write data and close files :" << endl;
gsell's avatar
gsell committed
1034 1035 1036
    for(beamline_list::iterator sindex = FieldDimensions.begin(); sindex != FieldDimensions.end(); sindex++) {
        (((*sindex)->second).second)->finalise();
    }
adelmann's avatar
Cleanup  
adelmann committed
1037
    *gmsg << "* -----------------------------" << endl;
gsell's avatar
gsell committed
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

/**
   In general the two tracker have much code in common.
   This is a great source of errors.
   Need to avoid this

*/



/**
 *
 *
 */
void ParallelCyclotronTracker::Tracker_LF() {

    BorisPusher pusher;

    // time steps interval between bunches for multi-bunch simulation.
    const int stepsPerTurn = itsBunch->getStepsPerTurn();

1060
    const double harm = getHarmonicNumber();
gsell's avatar
gsell committed
1061 1062 1063 1064 1065 1066 1067 1068 1069

    // load time
    const double dt = itsBunch->getdT() * 1.0e9 * harm; //[s]-->[ns]

    // find the injection time interval
    if(numBunch_m > 1) {
        *gmsg << "Time interval between neighbour bunches is set to " << stepsPerTurn *dt << "[ns]" << endl;
    }

1070
    initTrackOrbitFile();
gsell's avatar
gsell committed
1071 1072 1073 1074

    int SteptoLastInj = itsBunch->getSteptoLastInj();

    // get data from h5 file for restart run
1075
    if(OpalData::getInstance()->inRestartRun()) {
1076
        restartStep0_m = itsBunch->getLocalTrackStep();
gsell's avatar
gsell committed
1077
        step_m = restartStep0_m;
1078
        if (numBunch_m > 1) itsBunch->resetPartBinID2(eta_m);
1079
        *gmsg << "* Restart at integration step " << restartStep0_m << endl;
gsell's avatar
gsell committed
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    }

    if(OpalData::getInstance()->hasBunchAllocated() && Options::scan) {
        lastDumpedStep_m = 0;
        itsBunch->setT(0.0);
    }

    *gmsg << "* Beginning of this run is at t= " << itsBunch->getT() * 1e9 << " [ns]" << endl;
    *gmsg << "* The time step is set to dt= " << dt << " [ns]" << endl;

    // for single Particle Mode, output at zero degree.
    if(initialTotalNum_m == 1)
1092
        openFiles(OpalData::getInstance()->getInputBasename());
gsell's avatar
gsell committed
1093 1094

    double const initialReferenceTheta = referenceTheta / 180.0 * pi;
1095

1096
    initDistInGlobalFrame();
gsell's avatar
gsell committed
1097 1098 1099 1100 1101 1102 1103 1104

    //  read in some control parameters
    const int SinglePartDumpFreq = Options::sptDumpFreq;
    const int resetBinFreq = Options::rebinFreq;
    const int scSolveFreq = Options::scSolveFreq;
    const bool doDumpAfterEachTurn = Options::psDumpEachTurn;


1105
    int boundpDestroyFreq = 10; // TODO: Should this be treated as a control parameter? 
gsell's avatar
gsell committed
1106 1107 1108 1109

    // prepare for dump after each turn
    double oldReferenceTheta = initialReferenceTheta;

adelmann's avatar
Cleanup  
adelmann committed
1110 1111
    *gmsg << "* Single particle trajectory dump frequency is set to " << SinglePartDumpFreq << endl;
    *gmsg << "* Repartition frequency is set to " << Options::repartFreq << endl;
gsell's avatar
gsell committed
1112 1113 1114 1115 1116 1117 1118 1119
    if(numBunch_m > 1)
        *gmsg << "particles energy bin ID reset frequency is set to " << resetBinFreq << endl;

    // if initialTotalNum_m = 2, trigger SEO mode
    // prepare for transverse tuning calculation
    vector<double> Ttime, Tdeltr, Tdeltz;
    // prepare for transverse tuning calculation
    vector<int> TturnNumber;
1120
    turnnumber_m = 1;
gsell's avatar
gsell committed
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150


    // flag to determine when to transit from single-bunch to multi-bunches mode
    bool flagTransition = false;
    // step point determining the next time point of check for transition
    int stepsNextCheck = step_m + itsBunch->getStepsPerTurn();

    const  double deltaTheta = pi / (stepsPerTurn);
    // record at which angle the space charge are solved
    double angleSpaceChargeSolve = 0.0;

    if(initialTotalNum_m == 1) {
        *gmsg << "* *---------------------------- SINGLE PARTICLE MODE------ ----------------------------*** " << endl;
        *gmsg << "* Instruction: when the total particle number equal to 1, single particle mode is triggered automatically," << endl
              << "* The initial distribution file must be specified which should contain only one line for the single particle " << endl
              << "* *------------NOTE: SINGLE PARTICLE MODE ONLY WORKS SERIALLY ON SINGLE NODE ------------------*** " << endl;
        if(Ippl::getNodes() != 1)
            throw OpalException("Error in ParallelCyclotronTracker::execute", "SINGLE PARTICLE MODE ONLY WORKS SERIALLY ON SINGLE NODE!");

    } else if(initialTotalNum_m == 2) {
        *gmsg << "* *------------------------ STATIC EQUILIBRIUM ORBIT MODE ----------------------------*** " << endl;
        *gmsg << "* Instruction: when the total particle number equal to 2, SEO mode is triggered automatically." << endl
              << "* This mode does NOT include any RF cavities. The initial distribution file must be specified" << endl
              << "* In the file the first line is for reference particle and the second line is for offcenter particle." << endl
              << "* The tunes are calculated by FFT routines based on these two particles. " << endl
              << "* *------------NOTE: SEO MODE ONLY WORKS SERIALLY ON SINGLE NODE ------------------*** " << endl;
        if(Ippl::getNodes() != 1)
            throw OpalException("Error in ParallelCyclotronTracker::execute", "SEO MODE ONLY WORKS SERIALLY ON SINGLE NODE!");
    }

1151
    // apply the plugin elements: probe, collimator, stripper, septum
1152 1153 1154
    // make sure that we apply elements even on first step
    applyPluginElements(dt);

gsell's avatar
gsell committed
1155 1156 1157
    // *****************II***************
    // main integration loop
    // *****************II***************
adelmann's avatar
Cleanup  
adelmann committed
1158
    *gmsg << "* ---------------------------- Start tracking ----------------------------" << endl;
gsell's avatar
gsell committed
1159 1160
    for(; step_m < maxSteps_m; step_m++) {
        bool dumpEachTurn = false;
1161 1162 1163
        if(step_m % SinglePartDumpFreq == 0) {
            singleParticleDump();
        }
gsell's avatar
gsell committed
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        Ippl::Comm->barrier();

        // Push for first half step
        itsBunch->R *= Vector_t(0.001);
        push(0.5 * dt * 1e-9);
        itsBunch->R *= Vector_t(1000.0);

        // bunch injection
        if(numBunch_m > 1) {

            if((BunchCount_m == 1) && (multiBunchMode_m == 2) && (!flagTransition)) {
                if(step_m == stepsNextCheck) {
                    // under 3 conditions, following code will be execute
                    // to check the distance between two neighborring bunches
                    // 1.multi-bunch mode, AUTO sub-mode
                    // 2.After each revolution
                    // 3.only one bunch exists

                    *gmsg << "checking for automatically injecting new bunch ..." << endl;

                    itsBunch->R /= Vector_t(1000.0); // mm --> m
                    itsBunch->calcBeamParameters_cycl();
                    itsBunch->R *= Vector_t(1000.0); // m --> mm

                    Vector_t Rmean = itsBunch->get_centroid() * 1000.0; // m --> mm

                    RThisTurn_m = sqrt(pow(Rmean[0], 2.0) + pow(Rmean[1], 2.0));

                    Vector_t Rrms = itsBunch->get_rrms() * 1000.0; // m --> mm

                    double XYrms =  sqrt(pow(Rrms[0], 2.0) + pow(Rrms[1], 2.0));


                    // if the distance between two neighbour bunch is less than CoeffDBunches_m times of its 2D rms size
                    // start multi-bunch simulation, fill current phase space to initialR and initialP arrays

                    if((RThisTurn_m - RLastTurn_m) < CoeffDBunches_m * XYrms) {
                        // since next turn, start multi-bunches
                        saveOneBunch();
                        flagTransition = true;

1205
                        *gmsg << "*** Save beam distribution at turn #" << turnnumber_m << " ***" << endl;
1206
                        *gmsg << "*** After one revolution, Multi-Bunch Mode will be invoked ***" << endl;
gsell's avatar
gsell committed
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

                    }

                    stepsNextCheck += stepsPerTurn;

                    *gmsg << "RLastTurn = " << RLastTurn_m << " [mm]" << endl;
                    *gmsg << "RThisTurn = " << RThisTurn_m << " [mm]" << endl;
                    *gmsg << "    XYrms = " << XYrms    << " [mm]" << endl;

                    RLastTurn_m = RThisTurn_m;
                }
            } else if(SteptoLastInj == stepsPerTurn - 1) {
                if(BunchCount_m < numBunch_m) {

                    // under 4 conditions, following code will be execute
                    // to read new bunch from hdf5 format file for FORCE or AUTO mode
                    // 1.multi-bunch mode
                    // 2.after each revolution
                    // 3.existing bunches is less than the specified bunches
                    // 4.FORCE mode, or AUTO mode with flagTransition = true
                    // Note: restart from 1 < BunchCount < numBunch_m must be avoided.
                    *gmsg << "step " << step_m << ", inject a new bunch... ... ..." << endl;
                    BunchCount_m++;

                    // read initial distribution from h5 file
                    if(multiBunchMode_m == 1) {
                        readOneBunch(BunchCount_m - 1);
1234
                        itsBunch->resetPartBinID2(eta_m);
gsell's avatar
gsell committed
1235 1236 1237 1238 1239 1240 1241
                    } else if(multiBunchMode_m == 2) {

                        if(OpalData::getInstance()->inRestartRun())
                            readOneBunchFromFile(BunchCount_m - 1);
                        else
                            readOneBunch(BunchCount_m - 1);

1242
                        itsBunch->resetPartBinID2(eta_m);
gsell's avatar
gsell committed
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
                    }

                    SteptoLastInj = 0;

                    itsBunch->setNumBunch(BunchCount_m);

                    stepsNextCheck += stepsPerTurn;

                    // update  after injection
                    itsBunch->boundp();

                    Ippl::Comm->barrier();
                    *gmsg << BunchCount_m << "'th bunch injected, total particle number = " << itsBunch->getTotalNum() << endl;
                }
            } else if(BunchCount_m == numBunch_m) {
                // After this, numBunch_m is wrong but useless
                numBunch_m--;

            } else {
                SteptoLastInj++;
            }
        }

        // calculate self fields Space Charge effects are included only when total macropaticles number is NOT LESS THAN 1000.
        if(itsBunch->hasFieldSolver() && initialTotalNum_m >= 1000) {
            if(step_m % scSolveFreq == 0) {
                //    *gmsg << "Calculate space charge at step " << step_m<<endl;
                // Firstly reset E and B to zero before fill new space charge field data for each track step
                itsBunch->Bf = Vector_t(0.0);
                itsBunch->Ef = Vector_t(0.0);

                Vector_t const meanR = calcMeanR();
                if((itsBunch->weHaveBins()) && BunchCount_m > 1) {
                    IpplTimings::startTimer(TransformTimer_m);
                    double const binsPhi = itsBunch->calcMeanPhi() - 0.5 * pi;
                    angleSpaceChargeSolve = binsPhi;
                    globalToLocal(itsBunch->R, binsPhi, meanR);

                    //scale coordinates
                    itsBunch->R /= Vector_t(1000.0); // mm --> m

                    if((step_m + 1) % boundpDestroyFreq == 0)
                        itsBunch->boundp_destroy();
                    else
                        itsBunch->boundp();

                    IpplTimings::stopTimer(TransformTimer_m);

                    // calcualte gamma for each energy bin
                    itsBunch->calcGammas_cycl();

                    repartition();
1295

gsell's avatar
gsell committed
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                    // calculate space charge field for each energy bin
                    for(int b = 0; b < itsBunch->getLastemittedBin() ; b++) {

                        if(itsBunch->pbin_m->getTotalNumPerBin(b) >= 1000) {
                            //if(itsBunch->getNumPartInBin(b) >= 1000) {
                            itsBunch->setBinCharge(b, itsBunch->getChargePerParticle());
                            //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//
                            itsBunch->computeSelfFields_cycl(b);
                            //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//
                            INFOMSG("Bin:" << b << ", charge per particle " <<  itsBunch->getChargePerParticle() << endl);
                        } else {
                            INFOMSG("Note: Bin " << b << ": less than 1000 particles, omit space charge fields" << endl);
                        }
                    }

                    itsBunch->Q = itsBunch->getChargePerParticle();

                    IpplTimings::startTimer(TransformTimer_m);

                    //scale coordinates back
                    itsBunch->R *= Vector_t(1000.0); // m --> mm
1317

gsell's avatar
gsell committed
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
                    localToGlobal(itsBunch->R, binsPhi, meanR);
                    localToGlobal(itsBunch->Ef, binsPhi);
                    localToGlobal(itsBunch->Bf, binsPhi);
                } else {
                    Vector_t const meanP = calcMeanP();
                    double const phi = calculateAngle(meanP(0), meanP(1)) - 0.5 * pi;
                    angleSpaceChargeSolve = phi;
                    globalToLocal(itsBunch->R, phi, meanR);

                    //scale coordinates
                    itsBunch->R /= Vector_t(1000.0); // mm --> m

                    if((step_m + 1) % boundpDestroyFreq == 0)
                        itsBunch->boundp_destroy();
                    else
                        itsBunch->boundp();

                    IpplTimings::stopTimer(TransformTimer_m);
                    repartition();
                    //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//
                    double const meanGamma = sqrt(1.0 + pow(meanP(0), 2.0) + pow(meanP(1), 2.0));
                    itsBunch->computeSelfFields_cycl(meanGamma);
                    //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//

                    IpplTimings::startTimer(TransformTimer_m);

                    //scale coordinates back
                    itsBunch->R *= Vector_t(1000.0); // m --> mm
1346

gsell's avatar
gsell committed
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
                    localToGlobal(itsBunch->R, phi, meanR);
                    localToGlobal(itsBunch->Ef, phi);
                    localToGlobal(itsBunch->Bf, phi);
                }

                IpplTimings::stopTimer(TransformTimer_m);
            } else {
                Vector_t const meanP = calcMeanP();
                double const phi = calculateAngle(meanP(0), meanP(1)) - 0.5 * pi;
                double const deltaPhi = phi - angleSpaceChargeSolve;
                localToGlobal(itsBunch->Ef, deltaPhi);
                localToGlobal(itsBunch->Bf, deltaPhi);
            }
        } else {
            // if field solver is not available , only update bunch, to transfer particles between nodes if needed,
            // reset parameters such as LocalNum, initialTotalNum_m.
            // INFOMSG("No space charge Effects are included!"<<endl;);
            if((step_m % Options::repartFreq * 100) == 0