ClosedOrbitFinder.h 32.8 KB
Newer Older
1 2 3 4
/**
 * @file ClosedOrbitFinder.h
 * The algorithm is based on the paper of M. M. Gordon: "Computation of closed orbits and basic focusing properties for
 * sector-focused cyclotrons and the design of 'cyclops'" (1983)
5 6
 * As template arguments one chooses the type of the variables and the integrator for the ODEs. The supported steppers can
 * be found on
7 8 9 10 11 12
 * http://www.boost.org/ where it is part of the library Odeint.
 *
 * @author Matthias Frey
 * @version 1.0
 */

13 14 15
#ifndef CLOSEDORBITFINDER_H
#define CLOSEDORBITFINDER_H

16
#include <algorithm>
17 18 19
#include <array>
#include <cmath>
#include <functional>
adelmann's avatar
adelmann committed
20
#include <limits>
21
#include <numeric>
adelmann's avatar
adelmann committed
22
#include <stdexcept>
adelmann's avatar
adelmann committed
23
#include <string>
24
#include <utility>
25 26
#include <vector>

27
// #include "physics.h"
28

adelmann's avatar
adelmann committed
29
#include "MagneticField.h" // ONLY FOR STAND-ALONE PROGRAM
30 31 32 33 34 35 36


#include <fstream>

// include headers for integration
#include <boost/numeric/odeint/integrate/integrate_n_steps.hpp>

37
/// Finds a closed orbit of a cyclotron for a given energy
38 39 40
template<typename Value_type, typename Size_type, class Stepper>
class ClosedOrbitFinder
{
41 42 43 44 45 46 47 48 49 50 51 52 53
    public:
        /// Type of variables
        typedef Value_type value_type;
        /// Type for specifying sizes
        typedef Size_type size_type;
        /// Type of container for storing quantities (path length, orbit, etc.)
        typedef std::vector<value_type> container_type;
        /// Type for holding state of ODE values
        typedef std::vector<value_type> state_type;

        /// Sets the initial values for the integration and calls findOrbit().
        /*!
         * @param E is the energy [MeV] to which the closed orbit should be found
54
         * @param E0 is the potential energy (particle energy at rest) [MeV].
55 56
         * @param wo is the nominal orbital frequency (see paper of Dr. C. Baumgarten: "Transverse-Longitudinal
         * Coupling by Space Charge in Cyclotrons" (2012), formula (1))
adelmann's avatar
adelmann committed
57
         * @param N specifies the number of splits (2pi/N), i.e number of integration steps
58 59 60 61
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done. Program stops if closed orbit not found within this time.
         * @param Emin is the minimum energy [MeV] needed in cyclotron
         * @param Emax is the maximum energy [MeV] reached in cyclotron
adelmann's avatar
adelmann committed
62
         * @param nSector is the number of sectors (--> symmetry) of cyclotron
63
         * @param rmin is the minimal radius of the cyclotron, \f$ \left[r_{min}\right] = \si{m} \f$
adelmann's avatar
adelmann committed
64 65
         * @param ntheta is the number of angle splits (fieldmap variable)
         * @param nradial is the number of radial splits (fieldmap variable)
66
         * @param dr is the radial step size, \f$ \left[\Delta r\right] = \si{m} \f$
67
         * @param fieldmap is the location of the file that specifies the magnetic field
68 69
         * @param domain is a boolean (default: true). If "true" the closed orbit is computed over a single sector,
         * otherwise over 2*pi.
70
         */
71
        ClosedOrbitFinder(value_type, value_type, value_type, size_type, value_type, size_type, value_type, value_type, size_type,
72
                          value_type, size_type, size_type, value_type, const std::string&, bool = true);
73 74 75 76 77 78 79 80 81 82 83 84 85

        /// Returns the inverse bending radius (size of container N+1)
        container_type& getInverseBendingRadius();

        /// Returns the step lengths of the path (size of container N+1)
        container_type& getPathLength();

        /// Returns the field index (size of container N+1)
        container_type& getFieldIndex();

        /// Returns the radial and vertical tunes (in that order)
        std::pair<value_type,value_type> getTunes();

86 87 88 89 90 91 92
        /// Returns the closed orbit (size of container N+1) starting at specific angle (only makes sense when computing
        /// the closed orbit for a whole turn) (default value: 0°).
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the radius.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
93 94
        container_type getOrbit(value_type angle = 0);

95 96 97 98 99 100 101
        /// Returns the momentum of the orbit (size of container N+1)starting at specific angle (only makes sense when
        /// computing the closed orbit for a whole turn) (default value: 0°), \f$ \left[ p_{r} \right] = \si{m}\f$.
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the momentum.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
102
        container_type getMomentum(value_type angle = 0);
103 104 105 106 107 108 109

        /// Returns the relativistic factor gamma
        value_type getGamma();

        /// Returns the average orbit radius
        value_type getAverageRadius();

adelmann's avatar
adelmann committed
110 111
        /// Returns the frequency error
        value_type getFrequencyError();
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

        /// Returns true if a closed orbit could be found
        bool isConverged();

    private:
        /// Computes the closed orbit
        /*!
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done for finding the closed orbit
         */
        bool findOrbit(value_type, size_type);

        /// Fills in the values of h_m, ds_m, fidx_m. It gets called by in by constructor.
        void computeOrbitProperties();

        /// This function is called by the function getTunes().
        /*! Transfer matrix Y = [y11, y12; y21, y22] (see Gordon paper for more details).
         * @param y are the positions (elements y11 and y12 of Y)
         * @param py2 is the momentum of the second solution (element y22 of Y)
         * @param ncross is the number of sign changes (\#crossings of zero-line)
         */
        value_type computeTune(const std::array<value_type,2>&, value_type, size_type);

adelmann's avatar
adelmann committed
135
        /// This function computes nzcross_ which is used to compute the tune in z-direction and the frequency error
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        void computeVerticalOscillations();

        /// Stores current position in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> x_m; // x_m = [x1, x2]
        /// Stores current momenta in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> px_m; // px_m = [px1, px2]
        /// Stores current position in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> z_m; // z_m = [z1, z2]
        /// Stores current momenta in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> pz_m; // pz_m = [pz1, pz2]

        /// Stores the inverse bending radius
        container_type h_m;
        /// Stores the step length
        container_type ds_m;
        /// Stores the radial orbit (size: N_m+1)
        container_type r_m;
        /// Stores the radial momentum
        container_type pr_m;
        /// Stores the field index
        container_type fidx_m;

        /// Counts the number of zero-line crossings in horizontal direction (used for computing horizontal tune)
        size_type nxcross_m;
        /// Counts the number of zero-line crossings in vertical direction (used for computing vertical tune)
        size_type nzcross_m; //#crossings of zero-line in x- and z-direction

        /// Is the energy for which the closed orbit should be found
        value_type E_m;
165 166 167 168
        
        /// Is the potential energy [MeV]
        value_type E0_m;
        
169 170
        /// Is the nominal orbital frequency
        value_type wo_m;
adelmann's avatar
adelmann committed
171
        /// Number of integration steps
172 173 174 175 176 177 178 179 180 181 182 183 184
        size_type N_m;
        /// Is the angle step size
        value_type dtheta_m;

        /// Is the relativistic factor
        value_type gamma_m;

        /// Is the average radius
        value_type ravg_m;

        /// Is the phase
        value_type phase_m;

185 186 187
        /**
         * Boolean which tells if a closed orbit for this configuration could be found (get set by the function findOrbit)
         */
188 189 190 191 192 193 194
        bool converged_m;

        /// Minimum energy needed in cyclotron
        value_type Emin_m;

        /// Maximum energy reached in cyclotron
        value_type Emax_m;
195

adelmann's avatar
adelmann committed
196 197
        /// Number of sectors (symmetry)
        size_type nSector_m;
198

adelmann's avatar
adelmann committed
199 200
        /// Minimal radius of cyclotron, \f$ \left[r_{min}\right] = m \f$
        value_type rmin_m;
201

adelmann's avatar
adelmann committed
202 203
        /// Number of angle splits (fieldmap)
        size_type ntheta_m;
204

adelmann's avatar
adelmann committed
205 206
        /// Number of radial steps (fieldmap)
        size_type nradial_m;
207

adelmann's avatar
adelmann committed
208 209
        /// Radial step size, \f$ \left[\Delta r\right] = m \f$
        value_type dr_m;
210

211
        /**
212 213 214 215
         * Stores the last orbit value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastOrbitVal_m to
         * compute the vertical oscillations)
         */
216 217
        value_type lastOrbitVal_m;

218 219 220 221 222
        /**
         * Stores the last momentum value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastMomentumVal_m to
         * compute the vertical oscillations)
         */
223
        value_type lastMomentumVal_m;
224 225

        /**
226 227 228
         * Boolean which is true if computeVerticalOscillations() executed, otherwise false. This is used for checking in
         * getTunes() and getFrequencyError().
         */
229 230 231 232
        bool vertOscDone_m;

        /// Location of magnetic field
        std::string fieldmap_m;
233 234

        /**
235 236 237
         * Boolean which is true by default. "true": orbit integration over one sector only, "false": integration
         * over 2*pi
         */
adelmann's avatar
adelmann committed
238
        bool domain_m;
239

240 241 242 243 244
        /// Defines the stepper for integration of the ODE's
        Stepper stepper_m;

        /// ONLY FOR STAND-ALONE PROGRAM
        float** bmag_m;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        
        /*!
         * This quantity is defined in the paper "Transverse-Longitudinal Coupling by Space Charge in Cyclotrons" 
         * of Dr. Christian Baumgarten (2012)
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ (also defined in paper) as input argument.
         */
        std::function<double(double)> acon_m = [](double wo) { return Physics::c / wo; };
        
        /// Cyclotron unit \f$ \left[T\right] \f$ (Tesla)
        /*!
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ as input argument.
         */
        std::function<double(double, double)> bcon_m = [](double e0, double wo) {
            return e0 * 1.0e7 / (/* physics::q0 */ 1.0 * Physics::c * Physics::c / wo);
        };
260 261 262 263 264 265
};

// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

266
    template<typename Value_type, typename Size_type, class Stepper>
267
ClosedOrbitFinder<Value_type, Size_type, Stepper>::ClosedOrbitFinder(value_type E, value_type E0, value_type wo, size_type N,
268 269 270 271
                                                                     value_type accuracy, size_type maxit,
                                                                     value_type Emin, value_type Emax, size_type nSector,
                                                                     value_type rmin, size_type ntheta, size_type nradial,
                                                                     value_type dr, const std::string& fieldmap,
272
                                                                     bool domain)
273 274
: nxcross_m(0), nzcross_m(0), E_m(E), E0_m(E0), wo_m(wo), N_m(N), dtheta_m(Physics::two_pi/value_type(N)),
  gamma_m(E/E0+1.0), ravg_m(0), phase_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector),
275 276
  rmin_m(rmin), ntheta_m(ntheta), nradial_m(nradial), dr_m(dr), lastOrbitVal_m(0.0), lastMomentumVal_m(0.0),
  vertOscDone_m(false), fieldmap_m(fieldmap), domain_m(domain), stepper_m()
277
{
278 279

    if (Emin_m > Emax_m || E_m < Emin_m || E > Emax_m)
adelmann's avatar
adelmann committed
280
        throw std::domain_error("Error in ClosedOrbitFinder: Emin <= E <= Emax and Emin < Emax");
281

adelmann's avatar
adelmann committed
282 283 284
    // velocity: beta = v/c = sqrt(1-1/(gamma*gamma))
    if (gamma_m == 0)
        throw std::invalid_argument("Error in ClosedOrbitFinder: Relativistic factor equal zero.");
285

adelmann's avatar
adelmann committed
286 287 288 289
    // if domain_m = true --> integrate over a single sector
    if (domain_m) {
        N_m /=  nSector_m;
    }
290

291 292 293 294 295
    // reserve storage for the orbit and momentum (--> size = 0, capacity = N_m+1)
    /*
     * we need N+1 storage, since dtheta = 2pi/N (and not 2pi/(N-1)) that's why we need N+1 integration steps
     * to return to the origin (but the return size is N_m)
     */
adelmann's avatar
adelmann committed
296 297
    r_m.reserve(N_m + 1);
    pr_m.reserve(N_m + 1);
298

299
    // reserve memory of N_m for the properties (--> size = 0, capacity = N_m)
adelmann's avatar
adelmann committed
300 301 302
    h_m.reserve(N_m);
    ds_m.reserve(N_m);
    fidx_m.reserve(N_m);
303

304
    // compute closed orbit
305
    converged_m = findOrbit(accuracy, maxit);
306

307 308 309 310 311
    // compute h, ds, fidx, rav (average radius)
    computeOrbitProperties();
}

template<typename Value_type, typename Size_type, class Stepper>
312 313 314
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getInverseBendingRadius()
{
315
    return h_m;
316 317 318
}

template<typename Value_type, typename Size_type, class Stepper>
319
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
320
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getPathLength()
321
{
322
    return ds_m;
323 324 325
}

template<typename Value_type, typename Size_type, class Stepper>
326 327 328
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFieldIndex()
{
329
    return fidx_m;
330 331 332
}

template<typename Value_type, typename Size_type, class Stepper>
333 334 335
std::pair<Value_type,Value_type> ClosedOrbitFinder<Value_type, Size_type, Stepper>::getTunes() {
    // compute radial tune
    value_type nur = computeTune(x_m,px_m[1],nxcross_m);
336

337 338 339
    // compute nzcross_m
    if (!vertOscDone_m)
        computeVerticalOscillations();
340

341 342 343 344
    // compute vertical tune
    value_type nuz = computeTune(z_m,pz_m[1],nzcross_m);

    return std::make_pair(nur,nuz);
345 346 347
}

template<typename Value_type, typename Size_type, class Stepper>
348
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
349
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getOrbit(value_type angle)
350 351
{
    container_type r = r_m;
352

353 354 355
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
356

357 358
        // compute starting point
        size_type start = deg_step * angle;
359

360 361
        // copy end to start
        std::copy(r_m.begin() + start, r_m.end(), r.begin());
362

363 364 365
        // copy start to end
        std::copy_n(r_m.begin(), start, r.end() - start);
    }
366

367 368 369 370 371
    return r;
}

template<typename Value_type, typename Size_type, class Stepper>
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
372
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getMomentum(value_type angle)
373 374
{
    container_type pr = pr_m;
375

376 377 378
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
379

380 381 382 383
        // compute starting point
        size_type start = deg_step * angle;
        // copy end to start
        std::copy(pr_m.begin() + start, pr_m.end(), pr.begin());
384

385 386 387 388
        // copy start to end
        std::copy_n(pr_m.begin(), start, pr.end() - start);
    }
    return pr;
389 390 391
}

template<typename Value_type, typename Size_type, class Stepper>
392 393 394
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getGamma()
{
395
    return gamma_m;
396 397 398
}

template<typename Value_type, typename Size_type, class Stepper>
399 400 401
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getAverageRadius()
{
402
    return ravg_m;
403 404 405
}

template<typename Value_type, typename Size_type, class Stepper>
406 407
typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFrequencyError()
408
{
409 410 411
    // if the vertical oscillations aren't computed, we have to, since there we also compuote the frequency error.
    if(!vertOscDone_m)
        computeVerticalOscillations();
412

413
    return phase_m;
414 415 416 417
}

template<typename Value_type, typename Size_type, class Stepper>
inline bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::isConverged() {
418
    return converged_m;
419
}
420 421 422 423 424 425 426

// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

template<typename Value_type, typename Size_type, class Stepper>
bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::findOrbit(value_type accuracy, size_type maxit) {
427 428 429 430 431
    /* REMARK TO GORDON
     * q' = 1/b = 1/bcon
     * a' = a = acon
     */

adelmann's avatar
adelmann committed
432 433 434 435
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    bmag_m = MagneticField::malloc2df(ntheta_m,nradial_m);
    MagneticField::ReadSectorMap(bmag_m,nradial_m,ntheta_m,1,fieldmap_m,0.0);
    MagneticField::MakeNFoldSymmetric(bmag_m,ntheta_m,nradial_m,ntheta_m/nSector_m,nSector_m);
436
    value_type bint, brint, btint;
437

438 439 440
    // resize vectors (--> size = N_m+1, capacity = N_m+1), note: we do N_m+1 integration steps
    r_m.resize(N_m+1);
    pr_m.resize(N_m+1);
441

442
    // store acon and bcon locally
443 444
    value_type acon = acon_m(wo_m);               // [acon] = m
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);        // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
445 446 447 448 449 450 451 452 453 454 455 456

    // helper constants
    value_type p2;                                      // p^2 = p*p
    value_type pr2;                                     // squared radial momentum (pr^2 = pr*pr)
    value_type ptheta, invptheta;                       // Gordon, formula (5c)
    value_type invdenom;                                // denominator for computing dr,dpr
    value_type xold = 0.0;                              // for counting nxcross

    // index for reaching next element of the arrays r and pr (no nicer way found yet)
    size_type idx = 0;
    // observer for storing the current value after each ODE step (e.g. Runge-Kutta step) into the containers of r and pr
    auto store = [&](state_type& y, const value_type t)
457
    {
458 459 460 461 462 463
        r_m[idx] = y[0];
        pr_m[idx] = y[1];

        // count number of crossings (excluding starting point --> idx>0)
        nxcross_m += (idx > 0) * (y[4] * xold < 0);
        xold = y[4];
464

465 466 467 468
        ++idx;
    };

    // define the six ODEs (using lambda function)
469 470 471 472
    std::function<void(const state_type&, state_type&, const double)> orbit_integration = [&](const state_type &y,
                                                                                              state_type &dydt,
                                                                                              const double theta)
    {
473 474
        pr2 = y[1] * y[1];
        if (p2 < pr2)
adelmann's avatar
adelmann committed
475
            throw std::domain_error("Error in ClosedOrbitFinder::findOrbit: p_{r} > p^{2} (defined in Gordon paper)");
476

477 478 479 480 481
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
482
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
        bint *= invbcon;
        brint *= invbcon;

        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;
        // Gordon, formulas (9a) and (9b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = (y[1] * y[i] + y[0] * p2 * y[i+1] * invptheta * invptheta) * invptheta;
            dydt[i+1] = - y[1] * y[i+1] * invptheta - (bint + y[0] * brint) * y[i];
        }
    };

    // define initial state container for integration: y = {r, pr, x1, px1, x2, px2}
    state_type y(6);
499

500 501 502 503 504 505 506 507
    // difference of last and first value of r (1. element) and pr (2. element)
    container_type err(2);
    // correction term for initial values: r = r + dr, pr = pr + dpr; Gordon, formula (17)
    container_type delta = {0.0, 0.0};
    // amplitude of error; Gordon, formula (18) (a = a')
    value_type error = std::numeric_limits<value_type>::max();
    // if niterations > maxit --> stop iteration
    size_type niterations = 0;
508 509 510 511

    /*
     * Christian:
     * N = 1440 ---> N = 720 ---> dtheta = 2PI/720 --> nsteps = 721
512
     *
513
     * 0, 2, 4, ... ---> jeden zweiten berechnene: 1, 3, 5, ... interpolieren --> 1440 Werte
514
     *
515 516
     * Matthias:
     * N = 1440 --> dtheta = 2PI/1440 --> nsteps = 1441
517
     *
518
     * 0, 1, 2, 3, 4, 5, ... --> 1440 Werte
519
     *
520
     */
521

522 523
    // iterate until suggested energy (start with minimum energy)
    value_type E = Emin_m;
524 525

    // step size of energy
adelmann's avatar
adelmann committed
526
    value_type dE = (E_m - Emin_m) / (Emax_m - Emin_m);
527

adelmann's avatar
adelmann committed
528 529
    // energy increase not more than 0.25
    dE = (dE > 0.25) ? 0.25 : dE;
530 531

    // energy dependent values
532
    value_type en = E / E0_m;                      // en = E/E0 = E/(mc^2) (E0 is potential energy)
533 534 535 536 537 538 539 540 541 542 543 544 545
    value_type p = acon * std::sqrt(en * (2.0 + en));     // momentum [p] = m; Gordon, formula (3)
    value_type gamma2 = (1.0 + en) * (1.0 + en);          // = gamma^2
    value_type beta = std::sqrt(1.0 - 1.0 / gamma2);
    p2 = p * p;                                           // p^2 = p*p
    value_type invgamma4 = 1.0 / (gamma2 * gamma2);       // = 1/gamma^4

    // set initial values for radius and radial momentum for lowest energy Emin
    // orbit, [r] = m; Gordon, formula (20)
    // radial momentum; Gordon, formula (20)
    container_type init = {beta * acon, 0.0};

    // store initial values for updating values for higher energies
    container_type previous_init = {0.0, 0.0};
546

adelmann's avatar
adelmann committed
547
    do {
548 549

        // (re-)set inital values for r and pr
550
        r_m[0] = init[0];
551
        pr_m[0] = init[1];
552

553 554 555 556 557 558 559 560 561 562 563 564
        // integrate until error smaller than user-define accuracy
        do {
            // (re-)set inital values
            x_m[0]  = 1.0;               // x1; Gordon, formula (10)
            px_m[0] = 0.0;               // px1; Gordon, formula (10)
            x_m[1]  = 0.0;               // x2; Gordon, formula (10)
            px_m[1] = 1.0;               // px2; Gordon, formula (10)
            nxcross_m = 0;               // counts the number of crossings of x-axis (excluding first step)
            idx = 0;                     // index for looping over r and pr arrays

            // fill container with initial states
            y = {init[0],init[1], x_m[0], px_m[0], x_m[1], px_m[1]};
565

566 567
            // integrate from 0 to 2*pi (one has to get back to the "origin")
            boost::numeric::odeint::integrate_n_steps(stepper_m,orbit_integration,y,0.0,dtheta_m,N_m,store);
568

569 570 571 572 573
            // write new state
            x_m[0] = y[2];
            px_m[0] = y[3];
            x_m[1] = y[4];
            px_m[1] = y[5];
574

575 576 577 578
            // compute error (compare values of orbit and momentum for theta = 0 and theta = 2*pi)
            // (Note: size = N_m+1 --> last entry is N_m)
            err[0] = r_m[N_m] - r_m[0];      // Gordon, formula (14)
            err[1] = pr_m[N_m] - pr_m[0];    // Gordon, formula (14)
579

580 581 582 583
            // correct inital values of r and pr
            invdenom = 1.0 / (x_m[0] + px_m[1] - 2.0);
            delta[0] = ((px_m[1] - 1.0) * err[0] - x_m[1] * err[1]) * invdenom; // dr; Gordon, formula (16a)
            delta[1] = ((x_m[0] - 1.0) * err[1] - px_m[0] * err[0]) * invdenom; // dpr; Gordon, formula (16b)
584

585 586 587
            // improved initial values; Gordon, formula (17) (here it's used for higher energies)
            init[0] += delta[0];
            init[1] += delta[1];
588

589 590
            // compute amplitude of the error
            error = std::sqrt(delta[0] * delta[0] + delta[1] * delta[1] * invgamma4) / r_m[0];
591

592
        } while (error > accuracy && niterations++ < maxit);
593

594 595
        // reset iteration counter
        niterations = 0;
596

597 598
        // reset correction term
        delta[0] = delta[1] = 0.0;
adelmann's avatar
adelmann committed
599 600 601 602 603 604

        // increase energy by dE
        if (E_m <= E + dE)
            E = E_m;
        else
            E += dE;
605

606
        // set constants for new energy E
607
        en = E / E0_m;                     // en = E/E0 = E/(mc^2) (E0 is potential energy)
608 609 610 611
        p = acon * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
        p2 = p * p;                               // p^2 = p*p
        gamma2 = (1.0 + en) * (1.0 + en);
        invgamma4 = 1.0 / (gamma2 * gamma2);
612 613


adelmann's avatar
adelmann committed
614
    } while (E != E_m);
615

616 617 618 619 620
    /* store last entry, since it is needed in computeVerticalOscillations(), because we have to do the same
     * number of integrations steps there.
     */
    lastOrbitVal_m = r_m[N_m];           // needed in computeVerticalOscillations()
    lastMomentumVal_m = pr_m[N_m];       // needed in computeVerticalOscillations()
621

622 623 624
    // remove last entry (since we don't have to store [0,2pi], but [0,2pi[)  --> size = N_m, capacity = N_m+1
    r_m.pop_back();
    pr_m.pop_back();
625

626

627 628 629
    // returns true if converged, otherwise false
    return error < accuracy;
}
630 631

template<typename Value_type, typename Size_type, class Stepper>
632 633 634
Value_type ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeTune(const std::array<value_type,2>& y,
                                                                          value_type py2, size_type ncross)
{
635
    // Y = [y1, y2; py1, py2]
636

637 638
    // cos(mu)
    value_type cos = 0.5 * (y[0] + py2);
639
    
640
    value_type mu;
641

642 643
    // sign of sin(mu) has to be equal to y2
    bool negative = std::signbit(y[1]);
644

645
    bool uneven = (ncross % 2);
646

647 648 649
    if (std::fabs(cos) > 1.0) {
        // store the number of crossings
        value_type n = ncross;
650

651 652
        if (uneven)
            n = ncross - 1;
653

654 655
        // Gordon, formula (36b)
        value_type muPrime = -std::acosh(std::fabs(cos));      // mu'
656
        mu = n * Physics::pi + muPrime;
657

658 659 660 661 662 663 664
    } else {
        value_type muPrime = (uneven) ? std::acos(-cos) : std::acos(cos);    // mu'
        /* It has to be fulfilled: 0<= mu' <= pi
        * But since |cos(mu)| <= 1, we have
        * -1 <= cos(mu) <= 1 --> 0 <= mu <= pi (using above programmed line), such
        * that condition is already fulfilled.
        */
665

666
        // Gordon, formula (36)
667
        mu = ncross * Physics::pi + muPrime;
668

669 670
        // if sign(y[1]) > 0 && sign(sin(mu)) < 0
        if (!negative && std::signbit(std::sin(mu))) {
671
            mu = ncross * Physics::pi - muPrime;
672
        } else if (negative && !std::signbit(std::sin(mu))) {
673
            mu = ncross * Physics::pi - muPrime + Physics::two_pi;
674 675
        }
    }
676

677
    // nu = mu/theta, where theta = integration domain
678

adelmann's avatar
adelmann committed
679 680 681 682 683
    /* domain_m = true --> only integrated over a single sector --> multiply by nSector_m to
     * get correct tune.
     */
    if (domain_m)
        mu *= nSector_m;
684

685
    return mu * Physics::u_two_pi;
686 687 688
}

template<typename Value_type, typename Size_type, class Stepper>
689
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeOrbitProperties() {
690
    /*
691 692 693 694 695
     * The formulas for h, fidx and ds are from the paper:
     * "Tranverse-Longitudinal Coupling by Space Charge in Cyclotrons"
     * written by Dr. Christian Baumgarten (2012, PSI)
     * p. 6
     */
696

adelmann's avatar
adelmann committed
697
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
698
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta
699

700 701 702
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) (E0 is potential energy)
    value_type p = acon_m(wo_m) * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
703 704 705
    value_type p2 = p * p;
    value_type theta = 0.0;                                             // angle for interpolating
    value_type ptheta;
706

707 708 709 710 711 712 713
    // resize of container (--> size = N_m, capacity = N_m)
    h_m.resize(N_m);
    fidx_m.resize(N_m);
    ds_m.resize(N_m);

    for (size_type i = 0; i < N_m; ++i) {
        // interpolate magnetic field
714
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180.0 / Physics::pi,nradial_m,ntheta_m,r_m[i],rmin_m,dr_m,bmag_m);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;

        // inverse bending radius
        h_m[i] = bint / p;

        // local field index
        ptheta = std::sqrt(p2 - pr_m[i] * pr_m[i]);
        fidx_m[i] = (brint * ptheta - btint * pr_m[i] / r_m[i]) / p2; //(bint*bint);

        // path length element
        ds_m[i] = std::hypot(r_m[i] * pr_m[i] / ptheta,r_m[i]) * dtheta_m; // C++11 function

        // increase angle
        theta += dtheta_m;
731
    }
732 733 734

    // compute average radius
    ravg_m = std::accumulate(r_m.begin(),r_m.end(),0.0) / value_type(r_m.size());
735 736 737
}

template<typename Value_type, typename Size_type, class Stepper>
738
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeVerticalOscillations() {
739

740 741 742 743 744
    vertOscDone_m = true;

    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta

745 746
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) with potential energy E0
    value_type p = acon_m(wo_m) * std::sqrt(en *(en + 2.0));     // Gordon, formula (3)
747 748 749 750 751 752 753
    value_type p2 = p * p;                                              // p^2 = p*p
    size_type idx = 0;                                                  // index for going through container
    value_type pr2;                                                     // pr^2 = pr*pr
    value_type ptheta, invptheta;                                       // Gordon, formula (5c)
    value_type zold = 0.0;                                              // for counting nzcross

    // store bcon locally
754
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);     // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
755 756

    // define the ODEs (using lambda function)
757 758 759 760
    std::function<void(const state_type&, state_type&, const double)> vertical = [&](const state_type &y,
                                                                                     state_type &dydt,
                                                                                     const double theta)
    {
761
        pr2 = y[1] * y[1];
762 763 764 765
        if (p2 < pr2) {
            throw std::domain_error("Error in ClosedOrbitFinder::computeVerticalOscillations: p_{r} > p^{2}"
            "(defined in Gordon paper)");
        }
766

767 768 769 770 771
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
772
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
773 774 775
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
        // We have to integrate r and pr again, otherwise we don't have the Runge-Kutta of the B-field
        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;

        // Gordon, formulas (22a) and (22b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = y[0] * y[i+1] * invptheta;
            dydt[i+1] = (y[0] * brint - y[1] * invptheta * btint) * y[i];
        }

        // integrate phase
        dydt[6] = y[0] * invptheta * gamma_m - 1;
    };

    // to get next index for r and pr (to iterate over container)
    auto next = [&](state_type& y, const value_type t) {
        // number of times z2 changes sign
        nzcross_m += (idx > 0) * (y[4] * zold < 0);
        zold = y[4];
        ++idx;
    };

    // set initial state container for integration: y = {r, pr, z1, pz1, z2, pz2, phase}
    state_type y = {r_m[0], pr_m[0], 1.0, 0.0, 0.0, 1.0, 0.0};

    // add last element for integration (since we have to return to the initial point (--> size = N_m+1, capacity = N_m+1)
    r_m.push_back(lastOrbitVal_m);
    pr_m.push_back(lastMomentumVal_m);
807

808 809
    // integrate: assume no imperfections --> only integrate over a single sector (dtheta_m = 2pi/N_m)
    boost::numeric::odeint::integrate_n_steps(stepper_m,vertical,y,0.0,dtheta_m,N_m,next);
810

811 812 813
    // remove last element again (--> size = N_m, capacity = N_m+1)
    r_m.pop_back();
    pr_m.pop_back();
814

815 816 817 818 819
    // write new state
    z_m[0] = y[2];
    pz_m[0] = y[3];
    z_m[1] = y[4];
    pz_m[1] = y[5];
820
    phase_m = y[6] * Physics::u_two_pi; // / (2.0 * Physics::pi);
821

adelmann's avatar
adelmann committed
822 823 824 825 826
    /* domain_m = true --> only integrated over a single sector
     * --> multiply by nSector_m to get correct phase_m
     */
    if (domain_m)
        phase_m *= nSector_m;
827 828
}

829
#endif