ParallelCyclotronTracker.h 12.1 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifndef OPAL_ParallelCyclotronTracker_HH
#define OPAL_ParallelCyclotronTracker_HH

// ------------------------------------------------------------------------
// $RCSfile: ParallelCyclotronTracker.h,v $
// ------------------------------------------------------------------------
// $Revision: 1.1.2.1 $
// ------------------------------------------------------------------------
// Copyright: see Copyright.readme
// ------------------------------------------------------------------------
//
// Class: ParallelCyclotron
//
// ------------------------------------------------------------------------
//
// $Date: 2004/11/12 20:10:11 $
// $Author: adelmann $
//
// ------------------------------------------------------------------------

#include "Algorithms/Tracker.h"
#include "Structure/DataSink.h"
#include "Utilities/Options.h"
#include "Structure/SurfacePhysics.h"
#include "Solvers/SurfacePhysicsHandler.hh"
#include <vector>

class BMultipoleField;
class PartBunch;
class PlanarArcGeometry;
class SurfacePhysicsHandler;

// Class ParallelCyclotronTracker
// ------------------------------------------------------------------------
enum CyclOperationModeT {SINGLEP, MULTIP, TUNECALC};

class ParallelCyclotronTracker: public Tracker {

public:

41 42
    typedef std::pair<double[8], Component *>      element_pair;
    typedef std::pair<string, element_pair>        type_pair;
gsell's avatar
gsell committed
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    typedef std::list<type_pair *>                 beamline_list;
    /// Constructor.
    //  The beam line to be tracked is "bl".
    //  The particle reference data are taken from "data".
    //  The particle bunch tracked is initially empty.
    //  If [b]revBeam[/b] is true, the beam runs from s = C to s = 0.
    //  If [b]revTrack[/b] is true, we track against the beam.
    explicit ParallelCyclotronTracker(const Beamline &bl, const PartData &data,
                                      bool revBeam, bool revTrack);

    /// Constructor.
    //  The beam line to be tracked is "bl".
    //  The particle reference data are taken from "data".
    //  The particle bunch tracked is taken from [b]bunch[/b].
    //  If [b]revBeam[/b] is true, the beam runs from s = C to s = 0.
    //  If [b]revTrack[/b] is true, we track against the beam.
    explicit ParallelCyclotronTracker(const Beamline &bl, PartBunch &bunch, DataSink &ds,
                                      const PartData &data, bool revBeam, bool revTrack, int maxSTEPS, int timeIntegrator);

    virtual ~ParallelCyclotronTracker();

    /// Apply the algorithm to a Cyclotorn
    virtual void visitCyclotron(const Cyclotron &cycl);

    /// Apply the algorithm to a RFCavity.
    virtual void visitRFCavity(const RFCavity &);

    /// Apply the algorithm to a BeamBeam.
    virtual void visitBeamBeam(const BeamBeam &);

    /// Apply the algorithm to a collimator.
    virtual void visitCollimator(const Collimator &);

    /// Apply the algorithm to a Corrector.
    virtual void visitCorrector(const Corrector &);

    /// Apply the algorithm to a Diagnostic.
    virtual void visitDiagnostic(const Diagnostic &);

    /// Apply the algorithm to a Drift.
    virtual void visitDrift(const Drift &);

    /// Apply the algorithm to a Lambertson.
    virtual void visitLambertson(const Lambertson &);

    /// Apply the algorithm to a Marker.
    virtual void visitMarker(const Marker &);

    /// Apply the algorithm to a Monitor.
    virtual void visitMonitor(const Monitor &);

    /// Apply the algorithm to a Multipole.
    virtual void visitMultipole(const Multipole &);

    /// Apply the algorithm to a Probe.
    virtual void visitProbe(const Probe &);

    /// Apply the algorithm to a RBend.
    virtual void visitRBend(const RBend &);

    /// Apply the algorithm to a RFQuadrupole.
    virtual void visitRFQuadrupole(const RFQuadrupole &);

    /// Apply the algorithm to a SBend.
    virtual void visitSBend(const SBend &);

    /// Apply the algorithm to a Separator.
    virtual void visitSeparator(const Separator &);

    /// Apply the algorithm to a Septum.
    virtual void visitSeptum(const Septum &);

    /// Apply the algorithm to a Solenoid.
    virtual void visitSolenoid(const Solenoid &);

    /// Apply the algorithm to a charge stripper.
    virtual void visitStripper(const Stripper &);

    /// Apply the algorithm to a ParallelPlate, it is empty for cyclotrontracker .
    virtual void visitParallelPlate(const ParallelPlate &);

    /// Apply the algorithm to a CyclotronValley.it is empty for cyclotrontracker .
    virtual void visitCyclotronValley(const CyclotronValley &);

    /// Apply the algorithm to the top-level beamline.
    //  overwrite the execute-methode from DefaultVisitor
    virtual void execute();

    /// Apply the algorithm to a beam line.
    //  overwrite the execute-methode from DefaultVisitor
    virtual void visitBeamline(const Beamline &);

    /// set total number of tracked bunches
    inline void setNumBunch(int n) { numBunch_m = n; }

    /// get total number of tracked bunches
    inline int  getNumBunch() { return numBunch_m; }

    /// set the working sub-mode for multi-bunch mode: "FORCE" or "AUTO"
    inline void  setMultiBunchMode(const int flag) {multiBunchMode_m = flag; }

    /// set last dumped step
    inline void setLastDumpedStep(const int para) {lastDumpedStep_m = para ; }

    /// set the control parameter for "AUTO" sub-mode
    inline void  setParaAutoMode(const double para) {CoeffDBunches_m = para; }
  
private:

    // Not implemented.
    ParallelCyclotronTracker();
    ParallelCyclotronTracker(const ParallelCyclotronTracker &);
    void operator=(const ParallelCyclotronTracker &);

    beamline_list FieldDimensions;
    std::list<Component *> myElements;
    int LastVisited;
    Beamline *itsBeamline;

    PartBunch *itsBunch;

    DataSink *itsDataSink;

    SurfacePhysicsHandler *sphys;

    /// The maximal number of steps the system is integrated
    int maxSteps_m;

    /// The scale factor for dimensionless variables
    double scaleFactor_m;

    double referenceR;
    double referenceTheta;
    double referenceZ;

    double referencePr;
    double referencePt;
    double referencePz;
    double referencePtot;

    double sinRefTheta_m;
    double cosRefTheta_m;
    /// The number of bunches specified in TURNS of RUN commond
    int numBunch_m;

    // 0 for single bunch (default),
    // 1 for FORCE,
    // 2 for AUTO
    int multiBunchMode_m;

    // control parameter for AUTO multi-bunch mode
    double CoeffDBunches_m;

    int lastDumpedStep_m;

    double PathLength_m;

    // the name of time integrator
    // The ID of time integrator
    // 0 --- RK-4(default)
    // 1 --- LF-2
204
    // 2 --- MTS
gsell's avatar
gsell committed
205 206 207 208
    int  timeIntegrator_m;

    void Tracker_LF();
    void Tracker_RK4();
209
    void Tracker_MTS();
gsell's avatar
gsell committed
210 211 212 213 214 215 216 217 218 219

    /*
     Local Variables both used by the integration methods
    */

    Vector_t rold_m, pold_m, rnew_m, ptmp_m;

    long long step_m;
    long long restartStep0_m;

220 221 222 223
    int turnnumber_m;

    double const eta_m; // parameter for reset bin in multi-bunch run, todo: readin from inputfile

gsell's avatar
gsell committed
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    // temporal 6 phase space varibles of particle [x,y,z,px,py,pz]. Unit: mm & dimensionless
    double variable_m[6];
    // temporal 3 real space varibles of particle ID=0 [x,y,z]. for tune with SC.  Unit: mm
    Vector_t variable_tune0_m;
    // temporal 3 real space varibles of particle ID=1 [x,y,z]. for tune with SC.  Unit: mm
    Vector_t variable_tune1_m;

    // vector of [angle, x, y] of SEO read in from external file for tune with SC. Unit : rad, mm
    std::vector<Vector_t> variable_SEO_m;

    // save initial phase space distribution (in global Cartesian frame ) for multi-bunch simultion. FixMe: not used
    Vector_t *initialR_m, *initialP_m;

    // record how many bunches has already been injected. ONLY FOR MPM
    int BunchCount_m;

    // decide how many energy bins. ONLY FOR MPM
    // For the time being, we set bin number equal to bunch number.
    int BinCount_m;

    // used for automatic injection in multi-bunch mode
    double RLastTurn_m , RThisTurn_m;

    // start time to record tune data
    double StartTime_m;

    // external field arrays for dumping
    Vector_t FDext_m[2], extE_m, extB_m;

    // mark the dumpstep to inject new bunch from here for AUTO mode of restart run of multibunch
    int backupDumpStep_m;

    const int myNode_m;
    const size_t initialLocalNum_m;
    const size_t initialTotalNum_m;

    std::ofstream outfTheta0_m;
    std::ofstream outfTheta1_m;
    std::ofstream outfTheta2_m;
    std::ofstream outfThetaEachTurn_m;


    //store the data of the beam which are required for injecting a new bunch for multibunch
    Ppos_t r_mb, p_mb;

    ParticleAttrib<double> q_mb;
    ParticleAttrib<double> m_mb;
    ParticleAttrib<short> ptype_mb;
    size_t npart_mb;

    void openFiles(string fn);
    void closeFiles();

    // Fringe fields for entrance and exit of magnetic elements.
    void applyEntranceFringe(double edge, double curve,
                             const BMultipoleField &field, double scale);
    void applyExitFringe(double edge, double curve,
                         const BMultipoleField &field, double scale);

    void buildupFieldList(double BcParameter[], string ElementType, Component *elptr);

    bool derivate(double *y, double t, double *yp, int Pindex);

    bool rk4(double x[], double t, double tau, int Pindex);

    // angle range [0~2PI) degree
    double calculateAngle(double x, double y);
    // angle range [-PI~PI) degree
    double calculateAngle2(double x, double y);

    bool readOneBunchFromFile(const size_t BeamCount);
    bool readOneBunch(const size_t BeamCount);
    void saveOneBunch();

    bool checkGapCross(Vector_t Rold, Vector_t Rnew, RFCavity * rfcavity, double &DistOld);
    bool RFkick(RFCavity * rfcavity, const double t, const double dt, const int Pindex);

    bool getTunes(std::vector<double> &t,  std::vector<double> &r,  std::vector<double> &z, int lastTurn, double &nur, double &nuz);

    IpplTimings::TimerRef IntegrationTimer_m;
    IpplTimings::TimerRef DumpTimer_m ;
    IpplTimings::TimerRef TransformTimer_m;
    IpplTimings::TimerRef BinRepartTimer_m;

    Vector_t calcMeanR() const;
    
    Vector_t calcMeanP() const;
    
    void repartition(); // Do repartition between nodes if step_m is multiple of Options::repartFreq
    
    // Transform the x- and y-parts of a particle attribute (position, momentum, fields) from the 
    // global reference frame to the local reference frame.
    //
    // phi is the angle of the bunch measured counter-clockwise from the positive x-axis.
    void globalToLocal(ParticleAttrib<Vector_t> & vectorArray, double phi, Vector_t const translationToGlobal = 0);
    
    // Transform the x- and y-parts of a particle attribute (position, momentum, fields) from the 
    // local reference frame to the global reference frame.
    void localToGlobal(ParticleAttrib<Vector_t> & vectorArray, double phi, Vector_t const translationToGlobal = 0);
    
324
    // Push particles for time h.
gsell's avatar
gsell committed
325 326 327 328 329
    // Apply effects of RF Gap Crossings.
    // Update time and path length.
    // Unit assumptions: [itsBunch->R] = m, [itsBunch->P] = 1, [h] = s, [c] = m/s, [itsBunch->getT()] = s
    void push(double h);

330 331 332 333 334 335 336
    // Kick particles for time h
    // The fields itsBunch->Bf, itsBunch->Ef are used to calculate the forces
    void kick(double h);

    // Apply the trilogy half push - kick - half push,
    // considering only external fields
    void borisExternalFields(double h);
337 338
    
    // apply the plugin elements: probe, collimator, stripper, septum 
339
    bool applyPluginElements(const double dt);
340

341 342 343 344 345 346
    std::ofstream outfTrackOrbit_m;

    void initTrackOrbitFile();

    void singleParticleDump();

347 348
    void evaluateSpaceChargeField();

349 350
    void initDistInGlobalFrame();

Matthias Toggweiler's avatar
Matthias Toggweiler committed
351 352
    void checkNumPart(std::string s);

gsell's avatar
gsell committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
};

/**
 *
 *
 * @param x
 * @param y
 *
 * @return angle range [0~2PI) degree
 */
inline
double ParallelCyclotronTracker::calculateAngle(double x, double y) {
    double thetaXY = atan2(y, x);

    if (thetaXY < 0) return thetaXY + Physics::two_pi;
    return thetaXY;
}

/**
 *
 *
 * @param x
 * @param y
 *
 * @return angle range [-PI~PI) degree
 */
inline
double ParallelCyclotronTracker::calculateAngle2(double x, double y) 
{ return atan2(y,x); }

#endif // OPAL_ParallelCyclotronTracker_HH