ClosedOrbitFinder.h 33.7 KB
Newer Older
1 2 3 4
/**
 * @file ClosedOrbitFinder.h
 * The algorithm is based on the paper of M. M. Gordon: "Computation of closed orbits and basic focusing properties for
 * sector-focused cyclotrons and the design of 'cyclops'" (1983)
5 6
 * As template arguments one chooses the type of the variables and the integrator for the ODEs. The supported steppers can
 * be found on
7 8 9 10 11 12
 * http://www.boost.org/ where it is part of the library Odeint.
 *
 * @author Matthias Frey
 * @version 1.0
 */

13 14 15
#ifndef CLOSEDORBITFINDER_H
#define CLOSEDORBITFINDER_H

16
#include <algorithm>
17 18 19
#include <array>
#include <cmath>
#include <functional>
adelmann's avatar
adelmann committed
20
#include <limits>
21
#include <numeric>
adelmann's avatar
adelmann committed
22
#include <stdexcept>
adelmann's avatar
adelmann committed
23
#include <string>
24
#include <utility>
25 26
#include <vector>

27
// #include "physics.h"
28

adelmann's avatar
adelmann committed
29
#include "MagneticField.h" // ONLY FOR STAND-ALONE PROGRAM
30 31 32 33 34 35 36


#include <fstream>

// include headers for integration
#include <boost/numeric/odeint/integrate/integrate_n_steps.hpp>

37
/// Finds a closed orbit of a cyclotron for a given energy
38 39 40
template<typename Value_type, typename Size_type, class Stepper>
class ClosedOrbitFinder
{
41 42 43 44 45 46 47 48 49 50 51 52 53
    public:
        /// Type of variables
        typedef Value_type value_type;
        /// Type for specifying sizes
        typedef Size_type size_type;
        /// Type of container for storing quantities (path length, orbit, etc.)
        typedef std::vector<value_type> container_type;
        /// Type for holding state of ODE values
        typedef std::vector<value_type> state_type;

        /// Sets the initial values for the integration and calls findOrbit().
        /*!
         * @param E is the energy [MeV] to which the closed orbit should be found
54
         * @param E0 is the potential energy (particle energy at rest) [MeV].
55 56
         * @param wo is the nominal orbital frequency (see paper of Dr. C. Baumgarten: "Transverse-Longitudinal
         * Coupling by Space Charge in Cyclotrons" (2012), formula (1))
adelmann's avatar
adelmann committed
57
         * @param N specifies the number of splits (2pi/N), i.e number of integration steps
58 59 60 61
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done. Program stops if closed orbit not found within this time.
         * @param Emin is the minimum energy [MeV] needed in cyclotron
         * @param Emax is the maximum energy [MeV] reached in cyclotron
adelmann's avatar
adelmann committed
62
         * @param nSector is the number of sectors (--> symmetry) of cyclotron
63
         * @param rmin is the minimal radius of the cyclotron, \f$ \left[r_{min}\right] = \si{m} \f$
adelmann's avatar
adelmann committed
64 65
         * @param ntheta is the number of angle splits (fieldmap variable)
         * @param nradial is the number of radial splits (fieldmap variable)
66
         * @param dr is the radial step size, \f$ \left[\Delta r\right] = \si{m} \f$
67
         * @param fieldmap is the location of the file that specifies the magnetic field
Andreas Adelmann's avatar
Andreas Adelmann committed
68
	 * @param guesss value of radius for closed orbit finder 
69 70
         * @param domain is a boolean (default: true). If "true" the closed orbit is computed over a single sector,
         * otherwise over 2*pi.
71
         */
72
        ClosedOrbitFinder(value_type, value_type, value_type, size_type, value_type, size_type, value_type, value_type, size_type,
Andreas Adelmann's avatar
Andreas Adelmann committed
73
                          value_type, size_type, size_type, value_type, const std::string&, value_type, bool = true);
74 75 76 77 78 79 80 81 82 83 84 85 86

        /// Returns the inverse bending radius (size of container N+1)
        container_type& getInverseBendingRadius();

        /// Returns the step lengths of the path (size of container N+1)
        container_type& getPathLength();

        /// Returns the field index (size of container N+1)
        container_type& getFieldIndex();

        /// Returns the radial and vertical tunes (in that order)
        std::pair<value_type,value_type> getTunes();

87 88 89 90 91 92 93
        /// Returns the closed orbit (size of container N+1) starting at specific angle (only makes sense when computing
        /// the closed orbit for a whole turn) (default value: 0°).
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the radius.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
94 95
        container_type getOrbit(value_type angle = 0);

96 97 98 99 100 101
        /// Returns the momentum of the orbit (size of container N+1)starting at specific angle (only makes sense when
        /// computing the closed orbit for a whole turn) (default value: 0°), \f$ \left[ p_{r} \right] = \si{m}\f$.
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the momentum.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
102
         * @returns the momentum in \f$ \beta * \gamma \f$ units
103
         */
104
        container_type getMomentum(value_type angle = 0);
105 106 107 108 109 110 111

        /// Returns the relativistic factor gamma
        value_type getGamma();

        /// Returns the average orbit radius
        value_type getAverageRadius();

adelmann's avatar
adelmann committed
112 113
        /// Returns the frequency error
        value_type getFrequencyError();
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

        /// Returns true if a closed orbit could be found
        bool isConverged();

    private:
        /// Computes the closed orbit
        /*!
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done for finding the closed orbit
         */
        bool findOrbit(value_type, size_type);

        /// Fills in the values of h_m, ds_m, fidx_m. It gets called by in by constructor.
        void computeOrbitProperties();

        /// This function is called by the function getTunes().
        /*! Transfer matrix Y = [y11, y12; y21, y22] (see Gordon paper for more details).
         * @param y are the positions (elements y11 and y12 of Y)
         * @param py2 is the momentum of the second solution (element y22 of Y)
         * @param ncross is the number of sign changes (\#crossings of zero-line)
         */
        value_type computeTune(const std::array<value_type,2>&, value_type, size_type);

adelmann's avatar
adelmann committed
137
        /// This function computes nzcross_ which is used to compute the tune in z-direction and the frequency error
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        void computeVerticalOscillations();

        /// Stores current position in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> x_m; // x_m = [x1, x2]
        /// Stores current momenta in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> px_m; // px_m = [px1, px2]
        /// Stores current position in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> z_m; // z_m = [z1, z2]
        /// Stores current momenta in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> pz_m; // pz_m = [pz1, pz2]

        /// Stores the inverse bending radius
        container_type h_m;
        /// Stores the step length
        container_type ds_m;
        /// Stores the radial orbit (size: N_m+1)
        container_type r_m;
        /// Stores the radial momentum
        container_type pr_m;
        /// Stores the field index
        container_type fidx_m;

        /// Counts the number of zero-line crossings in horizontal direction (used for computing horizontal tune)
        size_type nxcross_m;
        /// Counts the number of zero-line crossings in vertical direction (used for computing vertical tune)
        size_type nzcross_m; //#crossings of zero-line in x- and z-direction

        /// Is the energy for which the closed orbit should be found
        value_type E_m;
167 168 169 170
        
        /// Is the potential energy [MeV]
        value_type E0_m;
        
171 172
        /// Is the nominal orbital frequency
        value_type wo_m;
adelmann's avatar
adelmann committed
173
        /// Number of integration steps
174 175 176 177 178 179 180 181 182 183 184 185 186
        size_type N_m;
        /// Is the angle step size
        value_type dtheta_m;

        /// Is the relativistic factor
        value_type gamma_m;

        /// Is the average radius
        value_type ravg_m;

        /// Is the phase
        value_type phase_m;

187 188 189
        /**
         * Boolean which tells if a closed orbit for this configuration could be found (get set by the function findOrbit)
         */
190 191 192 193 194 195 196
        bool converged_m;

        /// Minimum energy needed in cyclotron
        value_type Emin_m;

        /// Maximum energy reached in cyclotron
        value_type Emax_m;
197

adelmann's avatar
adelmann committed
198 199
        /// Number of sectors (symmetry)
        size_type nSector_m;
200

adelmann's avatar
adelmann committed
201 202
        /// Minimal radius of cyclotron, \f$ \left[r_{min}\right] = m \f$
        value_type rmin_m;
203

adelmann's avatar
adelmann committed
204 205
        /// Number of angle splits (fieldmap)
        size_type ntheta_m;
206

adelmann's avatar
adelmann committed
207 208
        /// Number of radial steps (fieldmap)
        size_type nradial_m;
209

adelmann's avatar
adelmann committed
210 211
        /// Radial step size, \f$ \left[\Delta r\right] = m \f$
        value_type dr_m;
212

213
        /**
214 215 216 217
         * Stores the last orbit value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastOrbitVal_m to
         * compute the vertical oscillations)
         */
218 219
        value_type lastOrbitVal_m;

220 221 222 223 224
        /**
         * Stores the last momentum value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastMomentumVal_m to
         * compute the vertical oscillations)
         */
225
        value_type lastMomentumVal_m;
226 227

        /**
228 229 230
         * Boolean which is true if computeVerticalOscillations() executed, otherwise false. This is used for checking in
         * getTunes() and getFrequencyError().
         */
231 232 233 234
        bool vertOscDone_m;

        /// Location of magnetic field
        std::string fieldmap_m;
235 236

        /**
237 238 239
         * Boolean which is true by default. "true": orbit integration over one sector only, "false": integration
         * over 2*pi
         */
adelmann's avatar
adelmann committed
240
        bool domain_m;
241

242 243 244 245 246
        /// Defines the stepper for integration of the ODE's
        Stepper stepper_m;

        /// ONLY FOR STAND-ALONE PROGRAM
        float** bmag_m;
Andreas Adelmann's avatar
Andreas Adelmann committed
247 248 249

	/// a guesss for the clo finder
	value_type rguess_m;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        
        /*!
         * This quantity is defined in the paper "Transverse-Longitudinal Coupling by Space Charge in Cyclotrons" 
         * of Dr. Christian Baumgarten (2012)
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ (also defined in paper) as input argument.
         */
        std::function<double(double)> acon_m = [](double wo) { return Physics::c / wo; };
        
        /// Cyclotron unit \f$ \left[T\right] \f$ (Tesla)
        /*!
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ as input argument.
         */
        std::function<double(double, double)> bcon_m = [](double e0, double wo) {
            return e0 * 1.0e7 / (/* physics::q0 */ 1.0 * Physics::c * Physics::c / wo);
        };
265 266 267 268 269 270
};

// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

271
    template<typename Value_type, typename Size_type, class Stepper>
272
ClosedOrbitFinder<Value_type, Size_type, Stepper>::ClosedOrbitFinder(value_type E, value_type E0, value_type wo, size_type N,
273 274 275 276
                                                                     value_type accuracy, size_type maxit,
                                                                     value_type Emin, value_type Emax, size_type nSector,
                                                                     value_type rmin, size_type ntheta, size_type nradial,
                                                                     value_type dr, const std::string& fieldmap,
Andreas Adelmann's avatar
Andreas Adelmann committed
277
								     value_type rguess,
278
                                                                     bool domain)
279 280
: nxcross_m(0), nzcross_m(0), E_m(E), E0_m(E0), wo_m(wo), N_m(N), dtheta_m(Physics::two_pi/value_type(N)),
  gamma_m(E/E0+1.0), ravg_m(0), phase_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector),
281
  rmin_m(rmin), ntheta_m(ntheta), nradial_m(nradial), dr_m(dr), lastOrbitVal_m(0.0), lastMomentumVal_m(0.0),
Andreas Adelmann's avatar
Andreas Adelmann committed
282
  vertOscDone_m(false), fieldmap_m(fieldmap), domain_m(domain), stepper_m(), rguess_m(rguess)
283
{
284

Andreas Adelmann's avatar
Andreas Adelmann committed
285 286
  //    if (Emin_m > Emax_m || E_m < Emin_m || E > Emax_m)
  //      throw std::domain_error("Error in ClosedOrbitFinder: Emin <= E <= Emax and Emin < Emax");
287

adelmann's avatar
adelmann committed
288 289 290
    // velocity: beta = v/c = sqrt(1-1/(gamma*gamma))
    if (gamma_m == 0)
        throw std::invalid_argument("Error in ClosedOrbitFinder: Relativistic factor equal zero.");
291

adelmann's avatar
adelmann committed
292 293 294 295
    // if domain_m = true --> integrate over a single sector
    if (domain_m) {
        N_m /=  nSector_m;
    }
296

297 298 299 300 301
    // reserve storage for the orbit and momentum (--> size = 0, capacity = N_m+1)
    /*
     * we need N+1 storage, since dtheta = 2pi/N (and not 2pi/(N-1)) that's why we need N+1 integration steps
     * to return to the origin (but the return size is N_m)
     */
adelmann's avatar
adelmann committed
302 303
    r_m.reserve(N_m + 1);
    pr_m.reserve(N_m + 1);
304

305
    // reserve memory of N_m for the properties (--> size = 0, capacity = N_m)
adelmann's avatar
adelmann committed
306 307 308
    h_m.reserve(N_m);
    ds_m.reserve(N_m);
    fidx_m.reserve(N_m);
309

310
    // compute closed orbit
311
    converged_m = findOrbit(accuracy, maxit);
312

313 314 315 316 317
    // compute h, ds, fidx, rav (average radius)
    computeOrbitProperties();
}

template<typename Value_type, typename Size_type, class Stepper>
318 319 320
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getInverseBendingRadius()
{
321
    return h_m;
322 323 324
}

template<typename Value_type, typename Size_type, class Stepper>
325
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
326
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getPathLength()
327
{
328
    return ds_m;
329 330 331
}

template<typename Value_type, typename Size_type, class Stepper>
332 333 334
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFieldIndex()
{
335
    return fidx_m;
336 337 338
}

template<typename Value_type, typename Size_type, class Stepper>
339 340 341
std::pair<Value_type,Value_type> ClosedOrbitFinder<Value_type, Size_type, Stepper>::getTunes() {
    // compute radial tune
    value_type nur = computeTune(x_m,px_m[1],nxcross_m);
342

343 344 345
    // compute nzcross_m
    if (!vertOscDone_m)
        computeVerticalOscillations();
346

347 348 349 350
    // compute vertical tune
    value_type nuz = computeTune(z_m,pz_m[1],nzcross_m);

    return std::make_pair(nur,nuz);
351 352 353
}

template<typename Value_type, typename Size_type, class Stepper>
354
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
355
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getOrbit(value_type angle)
356 357
{
    container_type r = r_m;
358

359 360 361
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
362

363 364
        // compute starting point
        size_type start = deg_step * angle;
365

366 367
        // copy end to start
        std::copy(r_m.begin() + start, r_m.end(), r.begin());
368

369 370 371
        // copy start to end
        std::copy_n(r_m.begin(), start, r.end() - start);
    }
372

373 374 375 376 377
    return r;
}

template<typename Value_type, typename Size_type, class Stepper>
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
378
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getMomentum(value_type angle)
379 380
{
    container_type pr = pr_m;
381

382 383 384
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
385

386 387 388 389
        // compute starting point
        size_type start = deg_step * angle;
        // copy end to start
        std::copy(pr_m.begin() + start, pr_m.end(), pr.begin());
390

391 392 393
        // copy start to end
        std::copy_n(pr_m.begin(), start, pr.end() - start);
    }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    
    // change units from meters to \beta * \gamma
    /* in Gordon paper:
     * 
     * p = \gamma * \beta * a
     * 
     * where a = c / \omega_{0} with \omega_{0} = 2 * \pi * \nu_{0} = 2 * \pi * \nu_{rf} / h
     * 
     * c: speed of light
     * h: harmonic number
     * v_{rf}: nomial rf frequency
     * 
     * Units:
     * 
     * [a] = m --> [p] = m
     * 
410
     * The momentum in \beta * \gamma is obtained by dividing by "a"
411
     */
412
    value_type factor =  1.0 / acon_m(wo_m);
413 414
    std::for_each(pr.begin(), pr.end(), [factor](value_type p) { return p * factor; });
    
415
    return pr;
416 417 418
}

template<typename Value_type, typename Size_type, class Stepper>
419 420 421
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getGamma()
{
422
    return gamma_m;
423 424 425
}

template<typename Value_type, typename Size_type, class Stepper>
426 427 428
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getAverageRadius()
{
429
    return ravg_m;
430 431 432
}

template<typename Value_type, typename Size_type, class Stepper>
433 434
typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFrequencyError()
435
{
436 437 438
    // if the vertical oscillations aren't computed, we have to, since there we also compuote the frequency error.
    if(!vertOscDone_m)
        computeVerticalOscillations();
439

440
    return phase_m;
441 442 443 444
}

template<typename Value_type, typename Size_type, class Stepper>
inline bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::isConverged() {
445
    return converged_m;
446
}
447 448 449 450 451 452 453

// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

template<typename Value_type, typename Size_type, class Stepper>
bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::findOrbit(value_type accuracy, size_type maxit) {
454 455 456 457 458
    /* REMARK TO GORDON
     * q' = 1/b = 1/bcon
     * a' = a = acon
     */

adelmann's avatar
adelmann committed
459 460 461 462
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    bmag_m = MagneticField::malloc2df(ntheta_m,nradial_m);
    MagneticField::ReadSectorMap(bmag_m,nradial_m,ntheta_m,1,fieldmap_m,0.0);
    MagneticField::MakeNFoldSymmetric(bmag_m,ntheta_m,nradial_m,ntheta_m/nSector_m,nSector_m);
463
    value_type bint, brint, btint;
464

465 466 467
    // resize vectors (--> size = N_m+1, capacity = N_m+1), note: we do N_m+1 integration steps
    r_m.resize(N_m+1);
    pr_m.resize(N_m+1);
468

469
    // store acon and bcon locally
470 471
    value_type acon = acon_m(wo_m);               // [acon] = m
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);        // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
472 473 474 475 476 477 478 479 480 481 482 483

    // helper constants
    value_type p2;                                      // p^2 = p*p
    value_type pr2;                                     // squared radial momentum (pr^2 = pr*pr)
    value_type ptheta, invptheta;                       // Gordon, formula (5c)
    value_type invdenom;                                // denominator for computing dr,dpr
    value_type xold = 0.0;                              // for counting nxcross

    // index for reaching next element of the arrays r and pr (no nicer way found yet)
    size_type idx = 0;
    // observer for storing the current value after each ODE step (e.g. Runge-Kutta step) into the containers of r and pr
    auto store = [&](state_type& y, const value_type t)
484
    {
485 486 487 488 489 490 491 492 493 494
        r_m[idx] = y[0];
        pr_m[idx] = y[1];

        // count number of crossings (excluding starting point --> idx>0)
        nxcross_m += (idx > 0) * (y[4] * xold < 0);
        xold = y[4];
        ++idx;
    };

    // define the six ODEs (using lambda function)
495 496 497 498
    std::function<void(const state_type&, state_type&, const double)> orbit_integration = [&](const state_type &y,
                                                                                              state_type &dydt,
                                                                                              const double theta)
    {
499 500
        pr2 = y[1] * y[1];
        if (p2 < pr2)
adelmann's avatar
adelmann committed
501
            throw std::domain_error("Error in ClosedOrbitFinder::findOrbit: p_{r} > p^{2} (defined in Gordon paper)");
502

503 504 505 506 507
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
508
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        bint *= invbcon;
        brint *= invbcon;

        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;
        // Gordon, formulas (9a) and (9b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = (y[1] * y[i] + y[0] * p2 * y[i+1] * invptheta * invptheta) * invptheta;
            dydt[i+1] = - y[1] * y[i+1] * invptheta - (bint + y[0] * brint) * y[i];
        }
    };

    // define initial state container for integration: y = {r, pr, x1, px1, x2, px2}
    state_type y(6);
525

526 527 528 529 530 531 532 533
    // difference of last and first value of r (1. element) and pr (2. element)
    container_type err(2);
    // correction term for initial values: r = r + dr, pr = pr + dpr; Gordon, formula (17)
    container_type delta = {0.0, 0.0};
    // amplitude of error; Gordon, formula (18) (a = a')
    value_type error = std::numeric_limits<value_type>::max();
    // if niterations > maxit --> stop iteration
    size_type niterations = 0;
534 535 536 537

    /*
     * Christian:
     * N = 1440 ---> N = 720 ---> dtheta = 2PI/720 --> nsteps = 721
538
     *
539
     * 0, 2, 4, ... ---> jeden zweiten berechnene: 1, 3, 5, ... interpolieren --> 1440 Werte
540
     *
541 542
     * Matthias:
     * N = 1440 --> dtheta = 2PI/1440 --> nsteps = 1441
543
     *
544
     * 0, 1, 2, 3, 4, 5, ... --> 1440 Werte
545
     *
546
     */
547

Andreas Adelmann's avatar
Andreas Adelmann committed
548 549 550 551 552 553 554 555
    // step size of energy
    value_type dE; 

    if (Emin_m == Emax_m)
      dE = 0.0;
    else
      dE = (E_m - Emin_m) / (Emax_m - Emin_m);

556 557
    // iterate until suggested energy (start with minimum energy)
    value_type E = Emin_m;
558

adelmann's avatar
adelmann committed
559 560
    // energy increase not more than 0.25
    dE = (dE > 0.25) ? 0.25 : dE;
561 562

    // energy dependent values
563
    value_type en = E / E0_m;                      // en = E/E0 = E/(mc^2) (E0 is potential energy)
564 565 566 567 568 569 570 571 572
    value_type p = acon * std::sqrt(en * (2.0 + en));     // momentum [p] = m; Gordon, formula (3)
    value_type gamma2 = (1.0 + en) * (1.0 + en);          // = gamma^2
    value_type beta = std::sqrt(1.0 - 1.0 / gamma2);
    p2 = p * p;                                           // p^2 = p*p
    value_type invgamma4 = 1.0 / (gamma2 * gamma2);       // = 1/gamma^4

    // set initial values for radius and radial momentum for lowest energy Emin
    // orbit, [r] = m; Gordon, formula (20)
    // radial momentum; Gordon, formula (20)
Andreas Adelmann's avatar
Andreas Adelmann committed
573 574 575 576 577

    container_type init;
    if (rguess_m < 0)
      init = {beta * acon, 0.0};
    else
Andreas Adelmann's avatar
Andreas Adelmann committed
578
      init = {rguess_m/1000.0, 0.0};
579 580 581

    // store initial values for updating values for higher energies
    container_type previous_init = {0.0, 0.0};
582

583
       do {
584 585

        // (re-)set inital values for r and pr
586
        r_m[0] = init[0];
587
        pr_m[0] = init[1];
588

589 590 591 592 593 594 595 596 597 598 599 600
        // integrate until error smaller than user-define accuracy
        do {
            // (re-)set inital values
            x_m[0]  = 1.0;               // x1; Gordon, formula (10)
            px_m[0] = 0.0;               // px1; Gordon, formula (10)
            x_m[1]  = 0.0;               // x2; Gordon, formula (10)
            px_m[1] = 1.0;               // px2; Gordon, formula (10)
            nxcross_m = 0;               // counts the number of crossings of x-axis (excluding first step)
            idx = 0;                     // index for looping over r and pr arrays

            // fill container with initial states
            y = {init[0],init[1], x_m[0], px_m[0], x_m[1], px_m[1]};
601

602 603
            // integrate from 0 to 2*pi (one has to get back to the "origin")
            boost::numeric::odeint::integrate_n_steps(stepper_m,orbit_integration,y,0.0,dtheta_m,N_m,store);
604

605 606 607 608 609
            // write new state
            x_m[0] = y[2];
            px_m[0] = y[3];
            x_m[1] = y[4];
            px_m[1] = y[5];
610

611 612 613 614
            // compute error (compare values of orbit and momentum for theta = 0 and theta = 2*pi)
            // (Note: size = N_m+1 --> last entry is N_m)
            err[0] = r_m[N_m] - r_m[0];      // Gordon, formula (14)
            err[1] = pr_m[N_m] - pr_m[0];    // Gordon, formula (14)
615

616 617 618 619
            // correct inital values of r and pr
            invdenom = 1.0 / (x_m[0] + px_m[1] - 2.0);
            delta[0] = ((px_m[1] - 1.0) * err[0] - x_m[1] * err[1]) * invdenom; // dr; Gordon, formula (16a)
            delta[1] = ((x_m[0] - 1.0) * err[1] - px_m[0] * err[0]) * invdenom; // dpr; Gordon, formula (16b)
620

621 622 623
            // improved initial values; Gordon, formula (17) (here it's used for higher energies)
            init[0] += delta[0];
            init[1] += delta[1];
624

625 626 627
            // compute amplitude of the error
            error = std::sqrt(delta[0] * delta[0] + delta[1] * delta[1] * invgamma4) / r_m[0];
        } while (error > accuracy && niterations++ < maxit);
628

629 630
        // reset iteration counter
        niterations = 0;
631

632 633
        // reset correction term
        delta[0] = delta[1] = 0.0;
adelmann's avatar
adelmann committed
634 635 636 637 638 639

        // increase energy by dE
        if (E_m <= E + dE)
            E = E_m;
        else
            E += dE;
640

641
        // set constants for new energy E
642
        en = E / E0_m;                     // en = E/E0 = E/(mc^2) (E0 is potential energy)
643 644 645 646
        p = acon * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
        p2 = p * p;                               // p^2 = p*p
        gamma2 = (1.0 + en) * (1.0 + en);
        invgamma4 = 1.0 / (gamma2 * gamma2);
647 648


649
	   } while (E != E_m);
650

651 652 653 654 655
    /* store last entry, since it is needed in computeVerticalOscillations(), because we have to do the same
     * number of integrations steps there.
     */
    lastOrbitVal_m = r_m[N_m];           // needed in computeVerticalOscillations()
    lastMomentumVal_m = pr_m[N_m];       // needed in computeVerticalOscillations()
656

657 658 659
    // remove last entry (since we don't have to store [0,2pi], but [0,2pi[)  --> size = N_m, capacity = N_m+1
    r_m.pop_back();
    pr_m.pop_back();
660

661

662 663 664
    // returns true if converged, otherwise false
    return error < accuracy;
}
665 666

template<typename Value_type, typename Size_type, class Stepper>
667 668 669
Value_type ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeTune(const std::array<value_type,2>& y,
                                                                          value_type py2, size_type ncross)
{
670
    // Y = [y1, y2; py1, py2]
671

672 673
    // cos(mu)
    value_type cos = 0.5 * (y[0] + py2);
674
    
675
    value_type mu;
676

677 678
    // sign of sin(mu) has to be equal to y2
    bool negative = std::signbit(y[1]);
679

680
    bool uneven = (ncross % 2);
681

682 683 684
    if (std::fabs(cos) > 1.0) {
        // store the number of crossings
        value_type n = ncross;
685

686 687
        if (uneven)
            n = ncross - 1;
688

689 690
        // Gordon, formula (36b)
        value_type muPrime = -std::acosh(std::fabs(cos));      // mu'
691
        mu = n * Physics::pi + muPrime;
692

693 694 695 696 697 698 699
    } else {
        value_type muPrime = (uneven) ? std::acos(-cos) : std::acos(cos);    // mu'
        /* It has to be fulfilled: 0<= mu' <= pi
        * But since |cos(mu)| <= 1, we have
        * -1 <= cos(mu) <= 1 --> 0 <= mu <= pi (using above programmed line), such
        * that condition is already fulfilled.
        */
700

701
        // Gordon, formula (36)
702
        mu = ncross * Physics::pi + muPrime;
703

704 705
        // if sign(y[1]) > 0 && sign(sin(mu)) < 0
        if (!negative && std::signbit(std::sin(mu))) {
706
            mu = ncross * Physics::pi - muPrime;
707
        } else if (negative && !std::signbit(std::sin(mu))) {
708
            mu = ncross * Physics::pi - muPrime + Physics::two_pi;
709 710
        }
    }
711

712
    // nu = mu/theta, where theta = integration domain
713

adelmann's avatar
adelmann committed
714 715 716 717 718
    /* domain_m = true --> only integrated over a single sector --> multiply by nSector_m to
     * get correct tune.
     */
    if (domain_m)
        mu *= nSector_m;
719

720
    return mu * Physics::u_two_pi;
721 722 723
}

template<typename Value_type, typename Size_type, class Stepper>
724
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeOrbitProperties() {
725
    /*
726 727 728 729 730
     * The formulas for h, fidx and ds are from the paper:
     * "Tranverse-Longitudinal Coupling by Space Charge in Cyclotrons"
     * written by Dr. Christian Baumgarten (2012, PSI)
     * p. 6
     */
731

adelmann's avatar
adelmann committed
732
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
733
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta
734

735 736 737
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) (E0 is potential energy)
    value_type p = acon_m(wo_m) * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
738 739 740
    value_type p2 = p * p;
    value_type theta = 0.0;                                             // angle for interpolating
    value_type ptheta;
741

742 743 744 745 746 747 748
    // resize of container (--> size = N_m, capacity = N_m)
    h_m.resize(N_m);
    fidx_m.resize(N_m);
    ds_m.resize(N_m);

    for (size_type i = 0; i < N_m; ++i) {
        // interpolate magnetic field
749
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180.0 / Physics::pi,nradial_m,ntheta_m,r_m[i],rmin_m,dr_m,bmag_m);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;

        // inverse bending radius
        h_m[i] = bint / p;

        // local field index
        ptheta = std::sqrt(p2 - pr_m[i] * pr_m[i]);
        fidx_m[i] = (brint * ptheta - btint * pr_m[i] / r_m[i]) / p2; //(bint*bint);

        // path length element
        ds_m[i] = std::hypot(r_m[i] * pr_m[i] / ptheta,r_m[i]) * dtheta_m; // C++11 function

        // increase angle
        theta += dtheta_m;
766
    }
767 768 769

    // compute average radius
    ravg_m = std::accumulate(r_m.begin(),r_m.end(),0.0) / value_type(r_m.size());
770 771 772
}

template<typename Value_type, typename Size_type, class Stepper>
773
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeVerticalOscillations() {
774

775 776 777 778 779
    vertOscDone_m = true;

    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta

780 781
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) with potential energy E0
    value_type p = acon_m(wo_m) * std::sqrt(en *(en + 2.0));     // Gordon, formula (3)
782 783 784 785 786 787 788
    value_type p2 = p * p;                                              // p^2 = p*p
    size_type idx = 0;                                                  // index for going through container
    value_type pr2;                                                     // pr^2 = pr*pr
    value_type ptheta, invptheta;                                       // Gordon, formula (5c)
    value_type zold = 0.0;                                              // for counting nzcross

    // store bcon locally
789
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);     // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
790 791

    // define the ODEs (using lambda function)
792 793 794 795
    std::function<void(const state_type&, state_type&, const double)> vertical = [&](const state_type &y,
                                                                                     state_type &dydt,
                                                                                     const double theta)
    {
796
        pr2 = y[1] * y[1];
797 798 799 800
        if (p2 < pr2) {
            throw std::domain_error("Error in ClosedOrbitFinder::computeVerticalOscillations: p_{r} > p^{2}"
            "(defined in Gordon paper)");
        }
801

802 803 804 805 806
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
807
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
808 809 810
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        // We have to integrate r and pr again, otherwise we don't have the Runge-Kutta of the B-field
        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;

        // Gordon, formulas (22a) and (22b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = y[0] * y[i+1] * invptheta;
            dydt[i+1] = (y[0] * brint - y[1] * invptheta * btint) * y[i];
        }

        // integrate phase
        dydt[6] = y[0] * invptheta * gamma_m - 1;
    };

    // to get next index for r and pr (to iterate over container)
    auto next = [&](state_type& y, const value_type t) {
        // number of times z2 changes sign
        nzcross_m += (idx > 0) * (y[4] * zold < 0);
        zold = y[4];
        ++idx;
    };

    // set initial state container for integration: y = {r, pr, z1, pz1, z2, pz2, phase}
    state_type y = {r_m[0], pr_m[0], 1.0, 0.0, 0.0, 1.0, 0.0};

    // add last element for integration (since we have to return to the initial point (--> size = N_m+1, capacity = N_m+1)
    r_m.push_back(lastOrbitVal_m);
    pr_m.push_back(lastMomentumVal_m);
842

843 844
    // integrate: assume no imperfections --> only integrate over a single sector (dtheta_m = 2pi/N_m)
    boost::numeric::odeint::integrate_n_steps(stepper_m,vertical,y,0.0,dtheta_m,N_m,next);
845

846 847 848
    // remove last element again (--> size = N_m, capacity = N_m+1)
    r_m.pop_back();
    pr_m.pop_back();
849

850 851 852 853 854
    // write new state
    z_m[0] = y[2];
    pz_m[0] = y[3];
    z_m[1] = y[4];
    pz_m[1] = y[5];
855
    phase_m = y[6] * Physics::u_two_pi; // / (2.0 * Physics::pi);
856

adelmann's avatar
adelmann committed
857 858 859 860 861
    /* domain_m = true --> only integrated over a single sector
     * --> multiply by nSector_m to get correct phase_m
     */
    if (domain_m)
        phase_m *= nSector_m;
862 863
}

Andreas Adelmann's avatar
Andreas Adelmann committed
864
#endif