TestFFT-PPP.cpp 8.64 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// -*- C++ -*-
/***************************************************************************
 *
 * The IPPL Framework
 * 
 * This program was prepared by PSI. 
 * All rights in the program are reserved by PSI.
 * Neither PSI nor the author(s)
 * makes any warranty, express or implied, or assumes any liability or
 * responsibility for the use of this software
 *
 * Visit http://www.acl.lanl.gov/POOMS for more details
 *
 ***************************************************************************/

// -*- C++ -*-
/***************************************************************************
 *
 * The IPPL Framework
 * 
 *
 * Visit http://people.web.psi.ch/adelmann/ for more details
 *
 ***************************************************************************/

// TestFFT.cpp , Tim Williams 1/27/1997
// Updated by Julian Cummings, 3/31/98

// Tests the use of the (parallel) FFT class.

#include "Ippl.h"

#include <complex>
using namespace std;

#define THREED

enum FsT {FFTSolver,Pt2PtSolver,TreeSolver,None};
enum InterPolT {NGP,CIC};
enum BCT {OOO,OOP,PPP,DDD,DDO,DDP};   // OOO == all dim, open BC
enum TestCases {test1};

bool Configure(int argc, char *argv[], InterPolT *interPol, 
	       unsigned int *nx, unsigned int *ny, unsigned int *nz,
	       TestCases *test2Perform,
	       int *serialDim, unsigned int *processes,  unsigned int *nLoop) 
{

  Inform msg("Configure ");
  Inform errmsg("Error ");

  string bc_str;
  string interPol_str;
  string dist_str;

  for (int i=1; i < argc; ++i) {
    string s(argv[i]);
    if (s == "-grid") {
      *nx = atoi(argv[++i]);
      *ny = atoi(argv[++i]);
      *nz = atoi(argv[++i]);
    } else if (s == "-test1") {
      *test2Perform = test1;
    } else if (s == "-NGP") {
      *interPol = NGP;
      msg << "Interploation NGP" << endl;
    } else if (s == "-CIC") {
      *interPol = CIC;
      msg << "Interploation CIC" << endl;
    } else if (s == "-Loop") {
      *nLoop = atoi(argv[++i]);
    } else if (s == "-Decomp") {
      *serialDim = atoi(argv[++i]);
    } 
    else {
      errmsg << "Illegal format for or unknown option '" << s.c_str() << "'.";
      errmsg << endl;
    }
  }
  if (*serialDim == 0)
    msg << "Serial dimension is x" << endl;
  else if (*serialDim == 1)
    msg << "Serial dimension is y" << endl;
  else if (*serialDim == 2)
    msg << "Serial dimension is z" << endl;
  else {
    msg << "All parallel" << endl;
    *serialDim = -1;
  }

  *processes = Ippl::getNodes();

  return true;
}

int main(int argc, char *argv[])
{
  Ippl ippl(argc,argv);
  Inform testmsg(NULL,0);

  unsigned int processes;
  int serialDim = -1;
  TestCases test2do;
  unsigned int nx,ny,nz;
  unsigned int nLoop;
  InterPolT interPol;

108 109 110
  /* bool res = */
  Configure(argc, argv, &interPol, &nx, &ny, &nz,
            &test2do, &serialDim, &processes, &nLoop);
gsell's avatar
gsell committed
111 112 113 114 115 116 117 118 119

  // The preceding cpp definition causes compile-time setting of D:
  const unsigned D=3U;
  testmsg << "Dimensionality: D= " << D << " P= " << processes;
  testmsg << " nx= " << nx << " ny= " << ny << " nz= " << nz << endl;
  
  unsigned ngrid[D];   // grid sizes

  // Used in evaluating correctness of results:
120
  double realDiff = -1.0;
gsell's avatar
gsell committed
121 122
  
  // Various counters, constants, etc:
123
  unsigned int d;
gsell's avatar
gsell committed
124
  
125
  /* int tag = */ Ippl::Comm->next_tag(IPPL_APP_TAG0);
gsell's avatar
gsell committed
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  double pi = acos(-1.0);
  double twopi = 2.0*pi;
  // Timer:
  Timer timer;
  
  // Layout information:
  unsigned vnodes;             // number of vnodes; input at cmd line
  e_dim_tag allParallel[D];    // Specifies SERIAL, PARALLEL dims
  for (d=0; d<D; d++) 
    allParallel[d] = PARALLEL;

  // Compression of temporaries:
  bool compressTemps;
  vnodes = processes;
  compressTemps = false;
  ngrid[0]=nx;
  ngrid[1]=ny;
  ngrid[2]=nz;

  testmsg << "In-place CC transform using all-parallel layout ..." << endl;

  // ================BEGIN INTERACTION LOOP====================================
 
    //------------------------complex<-->complex-------------------------------
    // Complex test Fields
    // create standard domain
    NDIndex<D> ndiStandard;
    for (d=0; d<D; d++) 
      ndiStandard[d] = Index(ngrid[d]);

    // create new domain with axes permuted to match FFT output
    NDIndex<D> ndiPermuted;
    ndiPermuted[0] = ndiStandard[D-1];
    for (d=1; d<D; d++) 
      ndiPermuted[d] = ndiStandard[d-1];

    // create half-size domain for RC transform along zeroth axis
    NDIndex<D> ndiStandard0h = ndiStandard;
    ndiStandard0h[0] = Index(ngrid[0]/2+1);
    // create new domain with axes permuted to match FFT output
    NDIndex<D> ndiPermuted0h;
    ndiPermuted0h[0] = ndiStandard0h[D-1];
    for (d=1; d<D; d++) 
      ndiPermuted0h[d] = ndiStandard0h[d-1];

    // create half-size domain for sine transform along zeroth axis
    // and RC transform along first axis
    NDIndex<D> ndiStandard1h = ndiStandard;
    ndiStandard1h[1] = Index(ngrid[1]/2+1);
    // create new domain with axes permuted to match FFT output
    NDIndex<D> ndiPermuted1h;
    ndiPermuted1h[0] = ndiStandard1h[D-1];
    for (d=1; d<D; d++) 
      ndiPermuted1h[d] = ndiStandard1h[d-1];

    // all parallel layout, standard domain, normal axis order
    FieldLayout<D> layoutPPStan(ndiStandard,allParallel,vnodes);
    
    FieldLayout<D> layoutPPStan0h(ndiStandard0h,allParallel,vnodes);
    
    FieldLayout<D> layoutPPStan1h(ndiStandard1h,allParallel,vnodes);
    
    // create test Fields for complex-to-complex FFT
gsell's avatar
gsell committed
189 190
    BareField<std::complex<double>,D> CFieldPPStan(layoutPPStan);
    BareField<std::complex<double>,D> CFieldPPStan_save(layoutPPStan);
gsell's avatar
gsell committed
191 192 193 194 195 196
    BareField<double,D> diffFieldPPStan(layoutPPStan);
    
    // For calling FieldDebug functions from debugger, set up output format:
    setFormat(4,3);

    // Rather more complete test functions (sine or cosine mode):
gsell's avatar
gsell committed
197 198
    std::complex<double> sfact(1.0,0.0);      // (1,0) for sine mode; (0,0) for cosine mode
    std::complex<double> cfact(0.0,0.0);      // (0,0) for sine mode; (1,0) for cosine mode
gsell's avatar
gsell committed
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

    // Conditionally-compiled loading functions (couldn't make these
    double xfact, kx, yfact, ky, zfact, kz;
    xfact = pi/(ngrid[0] + 1.0);
    yfact = 2.0*twopi/(ngrid[1]);
    zfact = 2.0*twopi/(ngrid[2]);
    kx = 1.0; ky = 2.0; kz = 3.0; // wavenumbers
    CFieldPPStan[ndiStandard[0]][ndiStandard[1]][ndiStandard[2]] = 
      sfact * ( sin( (ndiStandard[0]+1) * kx * xfact +
                      ndiStandard[1]    * ky * yfact +
                      ndiStandard[2]    * kz * zfact ) +
		sin( (ndiStandard[0]+1) * kx * xfact -
                      ndiStandard[1]    * ky * yfact -
                      ndiStandard[2]    * kz * zfact ) ) + 
      cfact * (-cos( (ndiStandard[0]+1) * kx * xfact +
                      ndiStandard[1]    * ky * yfact +
                      ndiStandard[2]    * kz * zfact ) + 
		cos( (ndiStandard[0]+1) * kx * xfact -
                      ndiStandard[1]    * ky * yfact -
                      ndiStandard[2]    * kz * zfact ) );

    CFieldPPStan_save = CFieldPPStan; // Save values for checking later
    
    // CC FFT tests
    // Instantiate complex<-->complex FFT object
    // Transform in all directions
    FFT<CCTransform,D,double> ccfft(ndiStandard, compressTemps);

    // set direction names
    ccfft.setDirectionName(+1, "forward");
    ccfft.setDirectionName(-1, "inverse");
    timer.start();
    for (unsigned int i=0; i<nLoop; i++)  {
      // Test complex<-->complex transform (simple test: forward then inverse transform, see if get back original values.
      ccfft.transform("forward", CFieldPPStan);
      ccfft.transform("inverse", CFieldPPStan);
      diffFieldPPStan = Abs(CFieldPPStan - CFieldPPStan_save);
      realDiff = max(diffFieldPPStan);
      testmsg << "CC <-> CC: fabs(realDiff) = " << fabs(realDiff) << endl;
      //-------------------------------------------------------------------------
      CFieldPPStan = CFieldPPStan_save;
    }
    timer.stop();
    testmsg << "Results " << nLoop << " times CC <-> CC: CPU time = " << timer.cpu_time() << " secs.";
    testmsg <<  " Dimensionality: D= " << D << " P= " << processes;
    testmsg << " nx= " << nx << " ny= " << ny << " nz= " << nz;
    testmsg << " ||d||= " << fabs(realDiff) << endl;
    return 0;
}

/***************************************************************************
 * $RCSfile: TestFFT-PPP.cpp,v $   $Author: adelmann $
 * $Revision: 1.1.1.1 $   $Date: 2003/01/23 07:40:36 $
 ***************************************************************************/

/***************************************************************************
 * $RCSfile: addheaderfooter,v $   $Author: adelmann $
 * $Revision: 1.1.1.1 $   $Date: 2003/01/23 07:40:17 $
 * IPPL_VERSION_ID: $Id: addheaderfooter,v 1.1.1.1 2003/01/23 07:40:17 adelmann Exp $ 
 ***************************************************************************/