BoxCornerDomain.h 5.97 KB
Newer Older
1 2 3 4
//
// Class BoxCornerDomain
//   :FIXME: add brief description
//
5
// Copyright (c) 2008,        Yves Ineichen, ETH Zürich,
frey_m's avatar
frey_m committed
6
//               2013 - 2015, Tülin Kaman, Paul Scherrer Institut, Villigen PSI, Switzerland
7
//               2017 - 2020, Paul Scherrer Institut, Villigen PSI, Switzerland
frey_m's avatar
frey_m committed
8
// All rights reserved
9
//
10 11 12 13 14
// Implemented as part of the master thesis
// "A Parallel Multigrid Solver for Beam Dynamics"
// and the paper
// "A fast parallel Poisson solver on irregular domains applied to beam dynamics simulations"
// (https://doi.org/10.1016/j.jcp.2010.02.022)
frey_m's avatar
frey_m committed
15 16 17 18 19 20 21 22 23 24
//
// This file is part of OPAL.
//
// OPAL is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// You should have received a copy of the GNU General Public License
// along with OPAL. If not, see <https://www.gnu.org/licenses/>.
25
//
gsell's avatar
gsell committed
26
#ifndef BOXCORNER_DOMAIN_H
27
#define BOXCORNER_DOMAIN_H
gsell's avatar
gsell committed
28 29 30 31 32 33 34 35 36 37 38

#include <map>
#include <string>
#include <cmath>
#include <iostream>  // Neeeded for stream I/O
#include <fstream>   // Needed for file I/O
#include "IrregularDomain.h"


/*

39
    A and B are the half apperture of the box
gsell's avatar
gsell committed
40 41


42
                                     / (A,B)
gsell's avatar
gsell committed
43 44 45
                                    /
                                   /
                                  /
46 47 48 49
    L1                         /
------------      --------------+ (-A,B)
           | L2 |             |
        C|      |             |
gsell's avatar
gsell committed
50
           |------|             |      /
kraus's avatar
kraus committed
51
         .....                  |     /
gsell's avatar
gsell committed
52 53 54
(0,0)---.......-----------------+    /
         .....                  |   /
   z                            |  /
kraus's avatar
kraus committed
55
   |                            | /
56
--------------------------------+/ (-A,-B)
gsell's avatar
gsell committed
57

58
            Length_m
gsell's avatar
gsell committed
59 60 61

Test in which of the 3 parts of the geometry we are in.

62 63
    if((z < L1) || (z > (L1 + L2)))
        b = B;
gsell's avatar
gsell committed
64
    else
65
        b = B-C;
gsell's avatar
gsell committed
66

67 68 69 70 71

A  = max_m(0)
B  = max_m(1)
L1 = min_m(2)
L2 = max_m(2) - min_m(2)
gsell's avatar
gsell committed
72 73 74 75 76
*/

class BoxCornerDomain : public IrregularDomain {

public:
77 78
    using IrregularDomain::StencilIndex_t;
    using IrregularDomain::StencilValue_t;
gsell's avatar
gsell committed
79

80 81 82 83 84 85 86 87 88 89
    /**
     * \param A depth of the box
     * \param B maximal height of the box
     * \param C height of the corner
     * \param length of the structure
     * \param L1 length of the first part of the structure
     * \param L2 length of the corner
     */
    BoxCornerDomain(double A, double B, double C, double length,
                    double L1, double L2, Vector_t nr, Vector_t hr,
gsell's avatar
gsell committed
90 91 92 93
                    std::string interpl);
    ~BoxCornerDomain();

    /// returns discretization at (x,y,z)
94
    void getBoundaryStencil(int x, int y, int z, StencilValue_t& value, double &scaleFactor);
gsell's avatar
gsell committed
95 96

    /// we do not need this
97
    int getNumXY(int /*z*/) { return -1;}
gsell's avatar
gsell committed
98 99 100 101


    /// as a function of z, determine the hight (B) of the geometry
    inline double getB(double z) {
102 103
      if((z < min_m(2)) || (z > max_m(2)))
            return max_m(1);
gsell's avatar
gsell committed
104
        else
105
            return max_m(1) - C_m;
gsell's avatar
gsell committed
106 107 108 109 110 111 112
    }

    /// queries if a given (x,y,z) coordinate lies inside the domain
    inline bool isInside(int x, int y, int z) {
        const double xx = (x - (nr[0] - 1) / 2.0) * hr[0];
        const double yy = (y - (nr[1] - 1) / 2.0) * hr[1];
        const double b = getB(z * hr[2]);
113
        return (xx < getXRangeMax() && yy < b && z != 0 && z != nr[2] - 1);
gsell's avatar
gsell committed
114 115
    }

116
    void compute(Vector_t hr, NDIndex<3> localId);
gsell's avatar
gsell committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    //TODO: ?
    int getStartIdx() {return 0;}

private:

    //XXX: since the Y coorindate is dependent on the Z value we need (int,
    //int) -> intersection. To simplify things (for now) we use the same
    //structure for X...
    /// Map from a ([(x or y], z) to a list of intersection values with
    /// boundary.
    typedef std::multimap< std::pair<int, int>, double > BoxCornerPointList;

    /// all intersection points with grid lines in X direction
    BoxCornerPointList IntersectXDir;

    /// all intersection points with grid lines in Y direction
    BoxCornerPointList IntersectYDir;

    /// mapping (x,y,z) -> idx
    std::map<int, int> IdxMap;

    /// mapping idx -> (x,y,z)
    std::map<int, int> CoordMap;

    /// because the geometry can change in the y direction
    double actBMin_m;

    double actBMax_m;

147 148
    /// length of the structure
    double length_m;
gsell's avatar
gsell committed
149 150 151 152 153

    /// interpolation type
    int interpolationMethod;

    /// for debug reasons
154
    std::ofstream os_m;
gsell's avatar
gsell committed
155

156 157
    /// height of the corner
    double C_m;
gsell's avatar
gsell committed
158 159 160



161
    inline double getXIntersection(double cx, int /*z*/) {
162
        return (cx < 0) ? min_m(0) : max_m(0);
gsell's avatar
gsell committed
163 164 165
    }

    inline double getYIntersection(double cy, int z) {
166
        return (cy < 0) ? min_m(1) : getB(z * hr[2]);
gsell's avatar
gsell committed
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    }

    /// conversion from (x,y,z) to index in xyz plane
    inline int toCoordIdx(int x, int y, int z) {
        return (z * nr[1] + y) * nr[0] + x;
    }

    /// conversion from (x,y,z) to index on the 3D grid
    /*inline*/
    inline int getIdx(int x, int y, int z) {
        if(isInside(x, y, z) && x >= 0 && y >= 0 && z >= 0)
            return IdxMap[toCoordIdx(x, y, z)];
        else
            return -1;
    }

    /// conversion from a 3D index to (x,y,z)
    inline void getCoord(int idx, int &x, int &y, int &z) {

        int idxx = CoordMap[idx];

        x = idxx % (int)nr[0];
        idxx /= nr[0];
        y = idxx % (int)nr[1];
        idxx /= nr[1];
        z = idxx;

    }

    /// different interpolation methods for boundary points
197 198 199 200 201 202 203 204
    void constantInterpolation(int x, int y, int z, StencilValue_t& value,
                               double &scaleFactor);

    void linearInterpolation(int x, int y, int z, StencilValue_t& value,
                             double &scaleFactor);

    void quadraticInterpolation(int x, int y, int z, StencilValue_t& value,
                                double &scaleFactor);
gsell's avatar
gsell committed
205 206 207

};

208 209 210 211 212 213 214 215 216
#endif

// vi: set et ts=4 sw=4 sts=4:
// Local Variables:
// mode:c
// c-basic-offset: 4
// indent-tabs-mode: nil
// require-final-newline: nil
// End: