Astra1DDynamic.cpp 8.5 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7
#include "Fields/Astra1DDynamic.hh"
#include "Fields/Fieldmap.icc"
#include "Physics/Physics.h"
#include "gsl/gsl_interp.h"
#include "gsl/gsl_spline.h"
#include "gsl/gsl_fft_real.h"

kraus's avatar
kraus committed
8 9 10
#include <fstream>
#include <ios>

gsell's avatar
gsell committed
11 12 13 14 15
using namespace std;
using Physics::mu_0;
using Physics::c;
using Physics::two_pi;

16
Astra1DDynamic::Astra1DDynamic(std::string aFilename):
gsell's avatar
gsell committed
17 18 19 20 21
    Fieldmap(aFilename),
    FourCoefs_m(NULL) {
    Inform msg("*1DD ");
    ifstream file;
    int skippedValues = 0;
22
    std::string tmpString;
gsell's avatar
gsell committed
23 24 25 26 27 28 29 30
    double tmpDouble;
    double tmpDouble2;

    Type = TAstraDynamic;

    // open field map, parse it and disable element on error
    file.open(Filename_m.c_str());
    if(file.good()) {
31
        bool parsing_passed = interpreteLine<std::string, int>(file, tmpString, accuracy_m);
gsell's avatar
gsell committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        parsing_passed = parsing_passed &&
                         interpreteLine<double>(file, frequency_m);
        parsing_passed = parsing_passed &&
                         interpreteLine<double, double>(file, zbegin_m, tmpDouble);

        tmpDouble2 = zbegin_m;
        while(!file.eof() && parsing_passed) {
            parsing_passed = interpreteLine<double, double>(file, zend_m, tmpDouble, false);
            if(zend_m - tmpDouble2 > 1e-10) {
                tmpDouble2 = zend_m;
            } else if(parsing_passed) {
                ++ skippedValues;
            }
        }

        num_gridpz_m = lines_read_m - 3 - skippedValues;
        lines_read_m = 0;

        if(!parsing_passed && !file.eof()) {
            disableFieldmapWarning();
            zend_m = zbegin_m - 1e-3;
        } else {
            // conversion from MHz to Hz and from frequency to angular frequency
            frequency_m *= two_pi * 1e6;
            xlrep_m = frequency_m / c;
        }
        length_m = 2.0 * num_gridpz_m * (zend_m - zbegin_m) / (num_gridpz_m - 1);
        file.close();
    } else {
        noFieldmapWarning();
        zbegin_m = 0.0;
        zend_m = -1e-3;
    }
}

Astra1DDynamic::~Astra1DDynamic() {
    if(FourCoefs_m != NULL) {
        delete[] FourCoefs_m;
    }
}

void Astra1DDynamic::readMap() {
    if(FourCoefs_m == NULL) {
        // declare variables and allocate memory
        Inform msg("*1DD ");
        ifstream in;

        bool parsing_passed = true;

        int tmpInt;

83
        std::string tmpString;
gsell's avatar
gsell committed
84 85 86 87 88

        double tmpDouble;
        double Ez_max = 0.0;
        double dz = (zend_m - zbegin_m) / (num_gridpz_m - 1);

89
        double *RealValues = new double[2 * num_gridpz_m];
gsell's avatar
gsell committed
90 91 92 93 94 95 96 97
        double *zvals = new double[num_gridpz_m];

        gsl_spline *Ez_interpolant = gsl_spline_alloc(gsl_interp_cspline, num_gridpz_m);
        gsl_interp_accel *Ez_accel = gsl_interp_accel_alloc();

        gsl_fft_real_wavetable *real = gsl_fft_real_wavetable_alloc(2 * num_gridpz_m);
        gsl_fft_real_workspace *work = gsl_fft_real_workspace_alloc(2 * num_gridpz_m);

98
        FourCoefs_m = new double[2 * accuracy_m - 1];
gsell's avatar
gsell committed
99 100 101

        // read in and parse field map
        in.open(Filename_m.c_str());
102
        interpreteLine<std::string, int>(in, tmpString, tmpInt);
gsell's avatar
gsell committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        interpreteLine<double>(in, tmpDouble);

        tmpDouble = zbegin_m - dz;
        for(int i = 0; i < num_gridpz_m && parsing_passed; /* skip increment of i here */) {
            parsing_passed = interpreteLine<double, double>(in, zvals[i], RealValues[i]);
            // the sequence of z-position should be strictly increasing
            // drop sampling points that don't comply to this
            if(zvals[i] - tmpDouble > 1e-10) {
                if(fabs(RealValues[i]) > Ez_max) {
                    Ez_max = fabs(RealValues[i]);
                }
                tmpDouble = zvals[i];
                ++ i; // increment i only if sampling point is accepted
            }
        }
        in.close();

        gsl_spline_init(Ez_interpolant, zvals, RealValues, num_gridpz_m);

        // get equidistant sampling from the, possibly, non-equidistant sampling
        // using cubic spline for this
        int ii = num_gridpz_m;
        for(int i = 0; i < num_gridpz_m - 1; ++ i, ++ ii) {
            double z = zbegin_m + dz * i;
            RealValues[ii] = gsl_spline_eval(Ez_interpolant, z, Ez_accel);
        }
        RealValues[ii ++] = RealValues[num_gridpz_m - 1];
        // prepend mirror sampling points such that field values are periodic for sure
        -- ii; // ii == 2*num_gridpz_m at the moment
        for(int i = 0; i < num_gridpz_m; ++ i, -- ii) {
            RealValues[i] = RealValues[ii];
        }

        gsl_fft_real_transform(RealValues, 1, 2 * num_gridpz_m, real, work);

        // normalize to Ez_max = 1 MV/m
        FourCoefs_m[0] = 1.e6 * RealValues[0] / (Ez_max * 2. * num_gridpz_m); // factor 1e6 due to conversion MV/m to V/m
        for(int i = 1; i < 2 * accuracy_m - 1; i++) {
            FourCoefs_m[i] = 1.e6 * RealValues[i] / (Ez_max * num_gridpz_m);
        }

        gsl_spline_free(Ez_interpolant);
        gsl_interp_accel_free(Ez_accel);

        gsl_fft_real_workspace_free(work);
        gsl_fft_real_wavetable_free(real);

        delete[] zvals;
        delete[] RealValues;

153
        INFOMSG(typeset_msg("read in fieldmap '" + Filename_m + "'", "info") << endl);
gsell's avatar
gsell committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    }
}

void Astra1DDynamic::freeMap() {
    if(FourCoefs_m != NULL) {
        Inform msg("*1DD ");

        delete[] FourCoefs_m;

        msg << typeset_msg("freed fieldmap '" + Filename_m  + "'", "info") << endl;
    }
}

bool Astra1DDynamic::getFieldstrength(const Vector_t &R, Vector_t &E, Vector_t &B) const {
    // do fourier interpolation in z-direction
    const double RR2 = R(0) * R(0) + R(1) * R(1);

    const double kz = two_pi * R(2) / length_m + Physics::pi;

    double ez = FourCoefs_m[0];
    double ezp = 0.0;
    double ezpp = 0.0;
    double ezppp = 0.0;
    double somefactor_base, somefactor;
    double coskzl;
    double sinkzl;

    int n = 1;
    for(int l = 1; l < accuracy_m ; l++, n += 2) {
        somefactor_base = two_pi / length_m * l;       // = \frac{d(kz*l)}{dz}
        somefactor = 1.0;
        coskzl = cos(kz * l);
        sinkzl = sin(kz * l);
187
        ez    += (FourCoefs_m[n] * coskzl - FourCoefs_m[n + 1] * sinkzl);
gsell's avatar
gsell committed
188
        somefactor *= somefactor_base;
189
        ezp   += somefactor * (-FourCoefs_m[n] * sinkzl - FourCoefs_m[n + 1] * coskzl);
gsell's avatar
gsell committed
190
        somefactor *= somefactor_base;
191
        ezpp  += somefactor * (-FourCoefs_m[n] * coskzl + FourCoefs_m[n + 1] * sinkzl);
gsell's avatar
gsell committed
192
        somefactor *= somefactor_base;
193
        ezppp += somefactor * (FourCoefs_m[n] * sinkzl + FourCoefs_m[n + 1] * coskzl);
gsell's avatar
gsell committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    }
    // expand the field off-axis
    const double f  = -(ezpp  + ez *  xlrep_m * xlrep_m) / 16.;
    const double fp = -(ezppp + ezp * xlrep_m * xlrep_m) / 16.;

    const double EfieldR = -(ezp / 2. + fp * RR2);
    const double BfieldT = (ez / 2. + f * RR2) * xlrep_m / c;

    E(0) +=  EfieldR * R(0);
    E(1) +=  EfieldR * R(1);
    E(2) +=  ez + 4. * f * RR2;
    B(0) += -BfieldT * R(1);
    B(1) +=  BfieldT * R(0);

    return false;
}

211
bool Astra1DDynamic::getFieldDerivative(const Vector_t &R, Vector_t &E, Vector_t &B, const DiffDirection &dir) const {
gsell's avatar
gsell committed
212 213 214 215 216
    const double kz = two_pi * R(2) / length_m + Physics::pi;
    double ezp = 0.0;

    int n = 1;
    for(int l = 1; l < accuracy_m; l++, n += 2)
217
        ezp += two_pi / length_m * l * (-FourCoefs_m[n] * sin(kz * l) - FourCoefs_m[n + 1] * cos(kz * l));
gsell's avatar
gsell committed
218 219 220 221 222 223 224 225 226 227 228

    E(2) +=  ezp;

    return false;
}

void Astra1DDynamic::getFieldDimensions(double &zBegin, double &zEnd, double &rBegin, double &rEnd) const {
    zBegin = zbegin_m;
    zEnd = zend_m;
}

229 230
void Astra1DDynamic::getFieldDimensions(double &xIni, double &xFinal, double &yIni, double &yFinal, double &zIni, double &zFinal) const {}

gsell's avatar
gsell committed
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
void Astra1DDynamic::swap()
{ }

void Astra1DDynamic::getInfo(Inform *msg) {
    (*msg) << Filename_m << " (1D dynamic); zini= " << zbegin_m << " m; zfinal= " << zend_m << " m;" << endl;
}

double Astra1DDynamic::getFrequency() const {
    return frequency_m;
}

void Astra1DDynamic::setFrequency(double freq) {
    frequency_m = freq;
}

void Astra1DDynamic::getOnaxisEz(vector<pair<double, double> > & F) {
    double Ez_max = 0.0;
    double tmpDouble;
    int tmpInt;
250
    std::string tmpString;
gsell's avatar
gsell committed
251 252 253
    F.resize(num_gridpz_m);

    ifstream in(Filename_m.c_str());
254
    interpreteLine<std::string, int>(in, tmpString, tmpInt);
gsell's avatar
gsell committed
255
    interpreteLine<double>(in, tmpDouble);
256

gsell's avatar
gsell committed
257 258 259 260 261 262 263 264 265 266 267 268
    for(int i = 0; i < num_gridpz_m; ++ i) {
        interpreteLine<double, double>(in, F[i].first, F[i].second);
        if(fabs(F[i].second) > Ez_max) {
            Ez_max = fabs(F[i].second);
        }
    }
    in.close();

    for(int i = 0; i < num_gridpz_m; ++ i) {
        F[i].second /= Ez_max;
    }
}