p3m3dMicrobunching.cpp 35.2 KB
Newer Older
frey_m's avatar
frey_m committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
//
// Application p3m3dMicrobunching
//   mpirun -n 32 ./p3m3dMicrobunching ${Nx} ${Ny} ${Nz} ${r_cut} ${alpha} ${epsilon} ${Nsteps} $SeedID} ${printSteps}
//   Nx,Ny,Nx is the poisson solver grid size, r_cut is the cutoff for pp interaction, alpha is the splitting parameter,
//   epsilon is the softening parameter, printSteps=10 prints every tenth step
//
// Copyright (c) 2016, Benjamin Ulmer, ETH Zürich
// All rights reserved
//
// Implemented as part of the Master thesis
// "The P3M Model on Emerging Computer Architectures With Application to Microbunching"
// (http://amas.web.psi.ch/people/aadelmann/ETH-Accel-Lecture-1/projectscompleted/cse/thesisBUlmer.pdf)
//
// This file is part of OPAL.
//
// OPAL is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// You should have received a copy of the GNU General Public License
// along with OPAL. If not, see <https://www.gnu.org/licenses/>.
//
Andreas Adelmann's avatar
Andreas Adelmann committed
24 25 26 27 28 29 30 31 32 33 34 35 36
#include "Ippl.h"
#include <string>
#include <vector>
#include <iostream>
#include <cfloat>
#include <fstream>
#include <iomanip>
#include <complex>
#include "H5hut.h"
#include "Particle/BoxParticleCachingPolicy.h"
#include "Particle/PairBuilder/HashPairBuilderPeriodic.h"
#include "Particle/PairBuilder/HashPairBuilderPeriodicParallel.h"
#include "Particle/PairBuilder/PairConditions.h"
37
#include "Utility/PAssert.h"
Andreas Adelmann's avatar
Andreas Adelmann committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "math.h"
//#include "FixedAlgebra/FMatrix.h"

#include <random>

#include "VTKFieldWriterParallel.hpp"
#include "ChargedParticleFactory.hpp"


// dimension of our positions
const unsigned Dim = 3;

// some typedefs
typedef UniformCartesian<Dim, double>                                 Mesh_t;
typedef BoxParticleCachingPolicy<double, Dim, Mesh_t>                 CachingPolicy_t;
typedef ParticleSpatialLayout<double, Dim, Mesh_t, CachingPolicy_t>   playout_t;
typedef playout_t::SingleParticlePos_t                                Vector_t;
typedef Cell                                                          Center_t;
typedef CenteredFieldLayout<Dim, Mesh_t, Center_t>                    FieldLayout_t;
typedef Field<double, Dim, Mesh_t, Center_t>                          Field_t;
typedef Field<int, Dim, Mesh_t, Center_t>                             IField_t;
typedef Field<Vector_t, Dim, Mesh_t, Center_t>                        VField_t;
gsell's avatar
gsell committed
60
typedef Field<std::complex<double>, Dim, Mesh_t, Center_t>            CxField_t;
Andreas Adelmann's avatar
Andreas Adelmann committed
61 62 63
typedef FFT<CCTransform, Dim, double>                                 FFT_t;

typedef IntCIC                                                        IntrplCIC_t;
64 65
//typedef IntNGP                                                        IntrplNGP_t;
//typedef IntTSC                                                        IntrplTSC_t;
Andreas Adelmann's avatar
Andreas Adelmann committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79

typedef UniformCartesian<2, double>                                   Mesh2d_t;
typedef CenteredFieldLayout<2, Mesh2d_t, Center_t>                    FieldLayout2d_t;
typedef Field<double, 2, Mesh2d_t, Center_t>                          Field2d_t;

template<class T>
struct ApplyField;

//This is the periodic Greens function with regularization parameter epsilon.
template<unsigned int Dim>
struct SpecializedGreensFunction { };

template<>
struct SpecializedGreensFunction<3> {
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        template<class T, class FT, class FT2>
                static void calculate(Vektor<T, 3> &hrsq, FT &grn, FT2 *grnI, double alpha,double eps, double ke) {
                        double r;
                        NDIndex<3> elem0=NDIndex<3>(Index(0,0), Index(0,0),Index(0,0));
                        grn = grnI[0] * hrsq[0] + grnI[1] * hrsq[1] + grnI[2] * hrsq[2];
                        NDIndex<3> lDomain_m = grn.getLayout().getLocalNDIndex();
                        NDIndex<3> elem;
                        for (int i=lDomain_m[0].min(); i<=lDomain_m[0].max(); ++i) {
                                elem[0]=Index(i,i);
                                for (int j=lDomain_m[1].min(); j<=lDomain_m[1].max(); ++j) {
                                        elem[1]=Index(j,j);
                                        for (int k=lDomain_m[2].min(); k<=lDomain_m[2].max(); ++k) {
                                                elem[2]=Index(k,k);
                                                r = real(sqrt(grn.localElement(elem)));
                                                if(elem==elem0) {
                                                        //grn.localElement(elem) = ke*std::complex<double>(2*alpha/sqrt(M_PI)) ;
                                                        grn.localElement(elem) = 0 ;
                                                }
                                                else
                                                        grn.localElement(elem) = ke*std::complex<double>(erf(alpha*r)/(r+eps));
                                        }
                                }
                        }
                }
Andreas Adelmann's avatar
Andreas Adelmann committed
104 105 106 107
};

template< class CharT, class Traits>
double readNextBeamParamValue(std::basic_istream<CharT,Traits>& input) {
108 109 110 111 112 113 114 115 116 117
        std::basic_string<CharT,Traits> line;
        std::getline(input,line);
        //std::istringstream iss(line);
        //std::basic_string<CharT,Traits> number;
        //iss >> number;
        if(Ippl::myNode()==0) {
        std::cout << "the line read is" << line << std::endl;
        std::cout << "the number is " << std::stod(line) << std::endl;
        }
        return std::stod(line);
Andreas Adelmann's avatar
Andreas Adelmann committed
118 119 120 121
}


template<class PL>
122
class ChargedParticles : public IpplParticleBase<PL> {
123 124 125 126 127
        public:
                ParticleAttrib<double>          Q; //Charge [elementary charge e]
                ParticleAttrib<double>          m; //rest mass [MeV/c^2]
                ParticleAttrib<double>          Phi; //electrostatic potential
                ParticleAttrib<Vector_t>        EF; // Electric field [MeV/(sec)]
128 129
                ParticleAttrib<Vector_t>        p; //momentum [MeV/c]
                ParticleAttrib<int>             ID; //unique ID for debugging reasons => remove for production
130

131
                ChargedParticles(PL* pl, Vektor<double,3> nr, e_dim_tag /*decomp*/[Dim], unsigned seedID_=0) :
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
                        IpplParticleBase<PL>(pl),
                        nr_m(nr),
                        seedID(seedID_)
        {
                this->addAttribute(Q);
                this->addAttribute(m);
                this->addAttribute(Phi);
                this->addAttribute(EF);
                this->addAttribute(p);
                this->addAttribute(ID);

                //read beam parameters from input file:

                if(Ippl::myNode()==0) {
                std::cout << "we are reading the following beam parameters" << std::endl;
                }

                std::ifstream input("BeamParams.in");
                gamma = readNextBeamParamValue(input);
                deltagamma = readNextBeamParamValue(input);
                I = readNextBeamParamValue(input);
                extend_r[2] = readNextBeamParamValue(input);
                extend_r[1] = readNextBeamParamValue(input);
                extend_r[0] = extend_r[1];
                Ld = readNextBeamParamValue(input);
                sigmaX = readNextBeamParamValue(input);
                emittance = readNextBeamParamValue(input);
                R56 = readNextBeamParamValue(input);
                q = readNextBeamParamValue(input);
                //Npart = readNextBeamParamValue(input);
                m0 = readNextBeamParamValue(input);
                ke = readNextBeamParamValue(input);
                c = readNextBeamParamValue(input);

                double NpartTotal = extend_r[2]*I/(c*1.6e-19);
                std::cout << "total number of particles is = " << NpartTotal << std::endl;
                double particleDensity =NpartTotal/extend_r[2]*1/(2*M_PI*sigmaX*sigmaX);
                std::cout << "particle density = " << particleDensity << std::endl;
                Npart=particleDensity*extend_r[0]*extend_r[1]*extend_r[2];
                std::cout << "number of particles in simulation domain is = " << Npart << std::endl;
                //q=I*extend_r[2]/double(Npart);

                //wavelength of interest
                lambda = 0.5e-6;

                beta0=sqrt(1.-1./(gamma*gamma));
                for (unsigned j=0; j<10; j++)
                        theta[j]=0.001*double(j);
                extend_l[0]=0;
                extend_l[1]=0;
                extend_l[2]=0;



                for (unsigned int i = 0; i < 2 * Dim; ++i) {
                        //use periodic boundary conditions for the particles
                        this->getBConds()[i] = ParticlePeriodicBCond;
                        //boundary conditions used for interpolation kernels allow writes to ghost cells

                        if (Ippl::getNodes()>1) {
                                bc_m[i] = new ParallelInterpolationFace<double, Dim, Mesh_t, Center_t>(i);
                                //std periodic boundary conditions for gradient computations etc.
                                vbc_m[i] = new ParallelPeriodicFace<Vector_t, Dim, Mesh_t, Center_t>(i);
                                bcp_m[i] = new ParallelPeriodicFace<double, Dim, Mesh_t, Center_t>(i);
                        }
                        else {
                                bc_m[i] = new InterpolationFace<double, Dim, Mesh_t, Center_t>(i);
                                //std periodic boundary conditions for gradient computations etc.
                                vbc_m[i] = new PeriodicFace<Vector_t, Dim, Mesh_t, Center_t>(i);
                                bcp_m[i] = new PeriodicFace<double, Dim, Mesh_t, Center_t>(i);
                        }
                }

                for (unsigned int d = 0;d<Dim;++d) {
                        rmax_m[d] = extend_r[d];
                        rmin_m[d] = extend_l[d];
                }

                domain_m = this->getFieldLayout().getDomain();
                lDomain_m = this->getFieldLayout().getLocalNDIndex(); // local domain

                //initialize the FFT
                bool compressTemps = true;
                fft_m = new FFT_t(domain_m,compressTemps);

                fft_m->setDirectionName(+1, "forward");
                fft_m->setDirectionName(-1, "inverse");
        }

                inline const Mesh_t& getMesh() const { return this->getLayout().getLayout().getMesh(); }

                inline Mesh_t& getMesh() { return this->getLayout().getLayout().getMesh(); }

                inline const FieldLayout_t& getFieldLayout() const {
                        return dynamic_cast<FieldLayout_t&>( this->getLayout().getLayout().getFieldLayout());
                }

                inline FieldLayout_t& getFieldLayout() {
                        return dynamic_cast<FieldLayout_t&>(this->getLayout().getLayout().getFieldLayout());
                }

                void update()
                {
                        //should only be needed if meshspacing changes -----------
                        for (unsigned int d = 0;d<Dim;++d) {
                                hr_m[d] = (extend_r[d] - extend_l[d]) / (nr_m[d]);
                        }
                        this->getMesh().set_meshSpacing(&(hr_m[0]));
                        this->getMesh().set_origin(extend_l);
                        //--------------------------------------------------------

                        //init resets the meshes to 0 ?!
                        rhocmpl_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1));
                        grncmpl_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1));
                        rho_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1),bc_m);
                        phi_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1),bcp_m);
                        eg_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1), vbc_m);

                        domain_m = this->getFieldLayout().getDomain();
                        lDomain_m = this->getFieldLayout().getLocalNDIndex();

                        IpplParticleBase<PL>::update();
                }



                void calcMoments() {
                        double part[2 * Dim];

                        double loc_centroid[2 * Dim];
                        double loc_moment[2 * Dim][2 * Dim];
                        double moments[2 * Dim][2 * Dim];

                        for(unsigned i = 0; i < 2 * Dim; i++) {
                                loc_centroid[i] = 0.0;
                                for(unsigned j = 0; j <= i; j++) {
                                        loc_moment[i][j] = 0.0;
                                        loc_moment[j][i] = loc_moment[i][j];
                                }
                        }

                        //double p0=m0*gamma*beta0;
                        for(unsigned long k = 0; k < this->getLocalNum(); ++k) {
                                part[1] = this->p[k](0);
                                part[3] = this->p[k](1);
                                part[5] = (gamma*this->p[k](2));
                                part[0] = this->R[k](0);
                                part[2] = this->R[k](1);
                                part[4] = this->R[k](2)/gamma;

                                for(unsigned i = 0; i < 2 * Dim; i++) {
                                        loc_centroid[i]   += part[i];
                                        for(unsigned j = 0; j <= i; j++) {
                                                loc_moment[i][j]   += part[i] * part[j];
                                        }
                                }
                        }

                        for(unsigned i = 0; i < 2 * Dim; i++) {
                                for(unsigned j = 0; j < i; j++) {
                                        loc_moment[j][i] = loc_moment[i][j];
                                }
                        }

                        reduce(&(loc_moment[0][0]), &(loc_moment[0][0]) + 2 * Dim * 2 * Dim,
                                        &(moments[0][0]), OpAddAssign());

                        reduce(&(loc_centroid[0]), &(loc_centroid[0]) + 2 * Dim,
                                        &(centroid_m[0]), OpAddAssign());

                        for(unsigned i = 0; i < 2 * Dim; i++) {
                                for(unsigned j = 0; j <= i; j++) {
                                        moments_m[i][j] = moments[i][j];
                                        moments_m[j][i] = moments[i][j];
                                }
                        }
                }

                //compute the determinant of a matrix with dimensions up to 2*Dimx2*dim
                double det(int n, double mat[2*Dim][2*Dim]) {
                        double d=0;
                        int c, subi, i, j, subj;
                        double submat[2*Dim][2*Dim];
                        if (n == 2)
                                return( (mat[0][0] * mat[1][1]) - (mat[1][0] * mat[0][1]));
                        else {
                                for(c = 0; c < n; c++) {
                                        subi = 0;
                                        for(i = 1; i < n; i++) {
                                                subj = 0;
                                                for(j = 0; j < n; j++){
                                                        if (j == c)
                                                                continue;
                                                        submat[subi][subj] = mat[i][j];
                                                        subj++;
                                                }
                                                subi++;
                                        }
                                        d = d + (pow(-1 ,c) * mat[0][c] * det(n - 1 ,submat));
                                }
                        }
                        return d;
                }

                //compute the full determinant of the 6x6 momentsmatrix to get the emittance
                double computeEmittance() {
                        const double N =  static_cast<double>(this->getTotalNum());
                        double moments[2*Dim][2*Dim];

                        for(unsigned i = 0; i < 2 * Dim; i++) {
                                for(unsigned j = 0; j < 2*Dim; j++) {
                                        moments[i][j] = moments_m[i][j]/N-centroid_m[i]*centroid_m[j]/(N*N);
                                }
                        }

                        double eps = sqrt(det(2*Dim,moments));
                        return eps;
                }



                void computeBeamStatistics() {
                        const size_t locNp = this->getLocalNum();
                        const double N =  static_cast<double>(this->getTotalNum());
                        const double zero = 0.0;

                        Vector_t eps2, fac, rsqsum, psqsum, rpsum;
                        for(unsigned int i = 0 ; i < Dim; i++) {
                                rmean_m(i) = centroid_m[2 * i] / N;
                                pmean_m(i) = centroid_m[(2 * i) + 1] / N;
                                rsqsum(i) = moments_m[2 * i][2 * i] - N * rmean_m(i) * rmean_m(i);
                                psqsum(i) = moments_m[(2 * i) + 1][(2 * i) + 1] - N * pmean_m(i) * pmean_m(i);
                                if(psqsum(i) < 0)
                                        psqsum(i) = 0;
                                rpsum(i) = moments_m[(2 * i)][(2 * i) + 1] - N * rmean_m(i) * pmean_m(i);
                        }

                        eps2 = (rsqsum * psqsum - rpsum * rpsum) / (N * N);
                        rpsum /= N;

                        for(unsigned int i = 0 ; i < Dim; i++) {
                                rrms_m(i) = sqrt(rsqsum(i) / N);
                                prms_m(i) = sqrt(psqsum(i) / N);
                                eps_m(i)  =  std::sqrt(std::max(eps2(i), zero));
                                double tmp = rrms_m(i) * prms_m(i);
                                fac(i) = (tmp == 0) ? zero : 1.0 / tmp;
                        }
                        rprms_m = rpsum * fac;

                        // Find normalized emittance.
                        double actual_gamma = 0.0;
                        for(size_t i = 0; i < locNp; i++)
                                actual_gamma += sqrt(1.0 + (gamma*p[i](2)+m0*gamma*beta0)*(gamma*p[i](2)+m0*gamma*beta0)/m0/m0 + p[i](1)*p[i](1)/m0/m0+p[i](0)*p[i](0)/m0/m0) ;

                        reduce(actual_gamma, actual_gamma, OpAddAssign());
                        actual_gamma /= N;

                        //eps_norm_m = eps_m *actual_gamma*beta0;
                        eps_norm_m = eps_m/m0;
                        eps6x6_m=computeEmittance();
                        eps6x6_normalized_m = eps6x6_m*actual_gamma*beta0;
                }

395
                void calculatePairForces(double interaction_radius, double eps, double alpha);
396

397
                void calculateGridForces(double /*interaction_radius*/, double alpha, double eps, int /*it*/=0) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                        // (1) scatter charge to charge density grid and transform to fourier space
                        //this->Q.scatter(this->rho_m, this->R, IntrplTSC_t());
                        rho_m[domain_m]=0; //!!!!!! there has to be a better way than setting rho to 0 every time
                        this->Q.scatter(this->rho_m, this->R, IntrplCIC_t());
                        //this->Q.scatter(this->rho_m, this->R, IntrplNGP_t());
                        //dumpVTKScalar(rho_m,this,it,"RhoInterpol");

                        //rhocmpl_m[domain_m] = rho_m[domain_m];
                        rhocmpl_m[domain_m] = rho_m[domain_m]/(hr_m[0]*hr_m[1]*hr_m[2]);
                        RhoSum=sum(real(rhocmpl_m));

                        //std::cout << "total charge in densitty field before ion subtraction is" << sum(real(rhocmpl_m))<< std::endl;
                        //subtract the background charge of the ions
                        //rhocmpl_m[domain_m]=1.+rhocmpl_m[domain_m];
                        //std::cout << "total charge in densitty field after ion subtraction is" << sum(real(rhocmpl_m)) << std::endl;

                        //compute rhoHat and store in rhocmpl_m
                        fft_m->transform("inverse", rhocmpl_m);
                        // (2) compute Greens function in real space and transform to fourier space
                        /////////compute G with Index Magic///////////////////
                        // Fields used to eliminate excess calculation in greensFunction()
                        IField_t grnIField_m[3];

                        // mesh and layout objects for rho_m
                        Mesh_t *mesh_m = &(getMesh());
                        FieldLayout_t *layout_m = &(getFieldLayout());

                        //This loop stores in grnIField_m[i] the index of the ith dimension mirrored at the central axis. e.g. grnIField_m[0]=[(0 1 2 3 ... 3 2 1) ; (0 1 2 3 ... 3 2 1; ...)]
                        for (int i = 0; i < 3; ++i) {
                                grnIField_m[i].initialize(*mesh_m, *layout_m);
                                grnIField_m[i][domain_m] = where(lt(domain_m[i], nr_m[i]/2),
                                                domain_m[i] * domain_m[i],
                                                (nr_m[i]-domain_m[i]) *
                                                (nr_m[i]-domain_m[i]));
                        }
                        Vector_t hrsq(hr_m * hr_m);
                        SpecializedGreensFunction<3>::calculate(hrsq, grncmpl_m, grnIField_m, alpha,eps,ke);
                        /////////////////////////////////////////////////

                        //transform G -> Ghat and store in grncmpl_m
                        fft_m->transform("inverse", grncmpl_m);
                        //multiply in fourier space and obtain PhiHat in rhocmpl_m
                        rhocmpl_m *= grncmpl_m;

                        // (3) Backtransformation: compute potential field in real space and E=-Grad Phi
                        //compute electrostatic potential Phi in real space by FFT PhiHat -> Phi and store it in rhocmpl_m
                        fft_m->transform("forward", rhocmpl_m);

                        //take only the real part and store in phi_m (has periodic bc instead of interpolation bc)
                        phi_m = real(rhocmpl_m)*hr_m[0]*hr_m[1]*hr_m[2];
                        //dumpVTKScalar( phi_m, this,it, "Phi_m") ;

                        //compute Electric field on the grid by -Grad(Phi) store in eg_m
                        eg_m = -Grad1Ord(phi_m, eg_m);

                        //interpolate the electric field to the particle positions
                        EF.gather(eg_m, this->R,  IntrplCIC_t());
                        //interpolate electrostatic potenital to the particle positions
                        Phi.gather(phi_m, this->R, IntrplCIC_t());
                }

                void closeH5(){
                        H5CloseFile(H5f_m);
                }

                void openH5(std::string fn){
                    h5_prop_t props = H5CreateFileProp ();
                    MPI_Comm comm = Ippl::getComm();
                    h5_err_t h5err = H5SetPropFileMPIOCollective (props, &comm);
467
                    PAssert (h5err != H5_ERR);
468 469 470
                    H5f_m = H5OpenFile(fn.c_str(), H5_O_WRONLY, props);
                }

471
        const Vector_t get_hr() { return hr_m; }
Andreas Adelmann's avatar
Andreas Adelmann committed
472 473


474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
                //private:
                BConds<double, Dim, Mesh_t, Center_t> bc_m;
                BConds<double, Dim, Mesh_t, Center_t> bcp_m;
                BConds<Vector_t, Dim, Mesh_t, Center_t> vbc_m;

                CxField_t rhocmpl_m;
                CxField_t grncmpl_m;

                Field_t rho_m;
                Field_t phi_m;

                VField_t eg_m;

                Vektor<int,Dim> nr_m;
                Vector_t hr_m;
                Vector_t rmax_m;
                Vector_t rmin_m;
                Vektor<double,Dim> extend_l;
                Vektor<double,Dim> extend_r;
                Mesh_t *mesh_m;
                FieldLayout_t *layout_m;
                NDIndex<Dim> domain_m;
                NDIndex<Dim> lDomain_m;

                double total_charge;
                FFT_t *fft_m;
                e_dim_tag decomp_m[Dim];

                //Beam parameter:
                double gamma; //energy [1]
                double deltagamma; //longitdnl. energy spread [1]
                double I; //beam current [A]
                double Ld; //drift length [m]
                double sigmaX; //rms envelope size [m]
                double emittance; //transverse emittance [m rad]
                double q; //charge per particle [e]
                double m0; //particle rest mass [MeV/c^2]
                double ke; //coulomb constant [m^2MeV/(se^2c)]
                double R56; //energy-position coupling [m]
                double c; //speed of light [m/s]
                int Npart; //number of particles

                double beta0; //relative velocity of the beam

                //TEMP debug variable
                double RhoSum=0;

                h5_file_t H5f_m;
                double lambda;
                double theta[10];
                std::complex<double> b0[10];
                std::complex<double> bend[10];
                std::complex<double> MBgain[10];
                unsigned seedID;


                //Moment calculations:
                /// 6x6 matrix of the moments of the beam
                //FMatrix<double, 2 * Dim, 2 * Dim> moments_m;
                double moments_m[2*Dim][2*Dim];
                /// holds the centroid of the beam
                double centroid_m[2 * Dim];
                /// rms beam size (m)
                Vector_t rrms_m;
                /// rms momenta
                Vector_t prms_m;
                /// mean position (m)
                Vector_t rmean_m;
                /// mean momenta
                Vector_t pmean_m;
                /// rms emittance (not normalized)
                Vector_t eps_m;
                /// emittance including correlations: Det(whole 6x6 matrix)
                double eps6x6_normalized_m;
                double eps6x6_m;
                /// rms normalized emittance
                Vector_t eps_norm_m;
                /// rms correlation
                Vector_t rprms_m;
Andreas Adelmann's avatar
Andreas Adelmann committed
553 554 555 556 557

};

template<class T>
struct ApplyField {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        ApplyField(T c, double r, double epsilon, double alpha, double coulombConst) : C(c), R(r), eps(epsilon), a(alpha), ke(coulombConst) {}
        void operator()(std::size_t i, std::size_t j, ChargedParticles<playout_t> &P,Vektor<double,3> &shift) const
        {
                Vector_t diff = P.R[i] - (P.R[j]+shift);
                double sqr = 0;

                for (unsigned d = 0; d<Dim; ++d)
                        sqr += diff[d]*diff[d];

                //compute r with softening parameter, unsoftened r is obtained by sqrt(sqr)
                if(sqr!=0) {
                        double r = std::sqrt(sqr+eps*eps);

                        //for order two transition
                        if (P.Q[i]!=0 && P.Q[j]!=0) {
                                //compute potential energy
                                double phi =ke*(1.-erf(a*sqrt(sqr)))/r;

                                //compute force
                                Vector_t Fij = ke*C*(diff/sqrt(sqr))*((2.*a*exp(-a*a*sqr))/(sqrt(M_PI)*r)+(1.-erf(a*sqrt(sqr)))/(r*r));

                                //Actual Force is F_ij multiplied by Qi*Qj
                                //The electrical field on particle i is E=F/q_i and hence:
                                P.EF[i] -= P.Q[j]*Fij;
                                P.EF[j] += P.Q[i]*Fij;
                                //update potential per particle
                                P.Phi[i] += P.Q[j]*phi;
                                P.Phi[j] +=	P.Q[i]*phi;
                        }
                }
        }
        T C;
        double R;
        double eps;
        double a;
        double ke;
Andreas Adelmann's avatar
Andreas Adelmann committed
594 595
};

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

template<class PL>
void ChargedParticles<PL>::calculatePairForces(double interaction_radius, double eps, double alpha)
{
    if (interaction_radius>0){
        if (Ippl::getNodes() > 1) {
            HashPairBuilderPeriodicParallel< ChargedParticles<playout_t> > HPB(*this);
            HPB.for_each(RadiusCondition<double, Dim>(interaction_radius), ApplyField<double>(-1,interaction_radius,eps,alpha,ke),extend_l, extend_r);
        }
        else {
            HashPairBuilderPeriodic< ChargedParticles<playout_t> > HPB(*this);
            HPB.for_each(RadiusCondition<double, Dim>(interaction_radius), ApplyField<double>(-1,interaction_radius,eps,alpha,ke),extend_l, extend_r);
        }
    }
}


Andreas Adelmann's avatar
Andreas Adelmann committed
613
int main(int argc, char *argv[]){
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        Ippl ippl(argc, argv);
        Inform msg(argv[0]);
        Inform msg2all(argv[0],INFORM_ALL_NODES);

        IpplTimings::TimerRef allTimer = IpplTimings::getTimer("AllTimer");
        IpplTimings::startTimer(allTimer);

        Vektor<int,Dim> nr;

        nr = Vektor<int,Dim>(atoi(argv[1]),atoi(argv[2]),atoi(argv[3]));
        int param = 4;

        double interaction_radius = atof(argv[param++]);
        double alpha =atof(argv[param++]);
        double eps = atof(argv[param++]);
        int iterations =  atoi(argv[param++]);
        unsigned myseedID = atoi(argv[param++]);
        int printEvery =  atoi(argv[param++]);

        //double R56 =  atof(argv[param++]); //coupling constant in m for real frame
        ///////// setup the initial layout ///////////////////////////////////////
        e_dim_tag decomp[Dim];
        Mesh_t *mesh;
        FieldLayout_t *FL;
        ChargedParticles<playout_t>  *P;

        NDIndex<Dim> domain;
        for (unsigned i=0; i<Dim; i++)
                domain[i] = domain[i] = Index(nr[i]+1);

        for (unsigned d=0; d < Dim; ++d)
                decomp[d] = SERIAL;
        decomp[2]=PARALLEL;
        //decomp[1]=PARALLEL;

        // create mesh and layout objects for this problem domain
        mesh          = new Mesh_t(domain);
        FL            = new FieldLayout_t(*mesh, decomp);
        playout_t* PL = new playout_t(*FL, *mesh);
        //define beam parameters:


        /////////// Create the particle distribution /////////////////////////////////////////////////////
        P = new ChargedParticles<playout_t>(PL, nr, decomp,myseedID);
        INFOMSG(P->getMesh() << endl);
        INFOMSG(P->getFieldLayout() << endl);
        msg << endl << endl;

        double tend = P->Ld/(P->beta0);
        std::cout << "tend = "<< tend << std::endl;
        //lorentz transform to beam frame:
        //////// TODO check lorentz transformation of time
        //tend = P->gamma*(tend-P->beta0*P->Ld);
        tend /= P->gamma;
        std::cout << "tend' = "<< tend << std::endl;
        double dt=tend/iterations;
        std::cout << "TIMESTEP dt = " << dt << std::endl;
        createParticleDistributionMicrobunching(P, myseedID);
        /////////////////////////////////////////////////////////////////////////////////////////////
        PL->setAllCacheDimensions(interaction_radius);
        PL->enableCaching();

        /////// Print mesh informations ////////////////////////////////////////////////////////////
        Ippl::Comm->barrier();
        //dumpParticlesCSVp(P,0);

        INFOMSG(P->getMesh() << endl);
        INFOMSG(P->getFieldLayout() << endl);
        msg << endl << endl;

        msg<<"number of particles = " << endl;
        msg<< P->getTotalNum() << endl;
        msg<<"Total charge Q = " << endl;
        msg<< P->total_charge << endl;
        ////////////////////////////////////////////////////////////////////////////////////////////
        std::string fname;
        fname = "data/particleData_seedID_";
        fname += std::to_string(P->seedID);
        fname += ".h5part";

        P->openH5(fname);
        dumpH5part(P,0);
        unsigned printid=1;
        msg << "Starting iterations ..." << endl;

        // calculate initial grid forces
        P->calculateGridForces(interaction_radius,alpha,eps,0);
        //dumpVTKVector(P->eg_m, P,0,"EFieldAfterPMandPP");

        P->calcMoments();
        P->computeBeamStatistics();
        writeBeamStatistics(P,0);

        for (int it=0; it<iterations; it++) {
                // advance the particle positions
                // basic leapfrogging timestep scheme.  velocities are offset
                // by half a timestep from the positions.

                //energy position coupling:
                /*
                   Vektor<double,3> kHat;
                   kHat[0]=0; kHat[1]=0; kHat[2]=1.;
                 */
                //assign(P->R, P->R + dt * P->p/(P->gamma*P->m0)+rearrangez*1./P->gamma*(1.-sqrt(1.+dot(P->p,P->p)/(P->m0*P->m0*P->c*P->c)))*P->R56);
                assign(P->R, P->R + dt * P->p/P->m0);
                //shift particle due to longitudinal dispersion
                //assign(P->R, P->R + kHat*P->gamma*P->R56*P->p/(P->beta0*P->m0));
                /*
                   for (unsigned i=0; i<P->getLocalNum(); ++i) {
                   P->R[i][2]+=(sqrt(P->p[i][2]+P->m0*P->m0)/(P->m0)-1.)*1./P->gamma*P->R56;
                   }
                 */
                // update particle distribution across processors
                msg <<"do particle update" << endl;
                IpplTimings::TimerRef updateTimer = IpplTimings::getTimer("UpdateTimer");
                IpplTimings::startTimer(updateTimer);
                P->update();
                IpplTimings::stopTimer(updateTimer);

                msg <<"done particle update" << endl;
                // compute the electric field
                msg << "calculating grid" << endl;
                IpplTimings::TimerRef gridTimer = IpplTimings::getTimer("GridTimer");
                IpplTimings::startTimer(gridTimer);

                P->calculateGridForces(interaction_radius,alpha,eps,it+1);

                IpplTimings::stopTimer(gridTimer);

                msg << "calculating pairs" << endl;

                IpplTimings::TimerRef particleTimer = IpplTimings::getTimer("ParticleTimer");
                IpplTimings::startTimer(particleTimer);

                P->calculatePairForces(interaction_radius,eps,alpha);
                IpplTimings::stopTimer(particleTimer);

                //P->update();

                //dumpVTKVector(P->eg_m, P,it+1,"EFieldAfterPMandPP");
                //dumpVTKScalar(P->rho_m,P,it+1,"RhoInterpol");

                //second part of leapfrog: advance velocitites
                assign(P->p, P->p + dt * P->Q * P->EF);

                if((it+1)%printEvery==0){
                        //dumpVTKVector(P->eg_m, P,printid,"EFieldAfterPMandPP");
                        dumpH5part(P,printid++);
                }
                //dumpParticlesCSVp(P,it+1);


                P->calcMoments();
                P->computeBeamStatistics();
                writeBeamStatistics(P,it+1);


                msg << "Finished iteration " << it << endl;
        }
Andreas Adelmann's avatar
Andreas Adelmann committed
773

774 775
        //print final state
        dumpH5part(P,printid++);
Andreas Adelmann's avatar
Andreas Adelmann committed
776 777


778
        //P->computeBunchingGain();
Andreas Adelmann's avatar
Andreas Adelmann committed
779

780 781
        P->closeH5();
        Ippl::Comm->barrier();
Andreas Adelmann's avatar
Andreas Adelmann committed
782

783 784
        msg<<"number of particles = " << endl;
        msg<< P->getTotalNum() << endl;
Andreas Adelmann's avatar
Andreas Adelmann committed
785

786 787
        IpplTimings::stopTimer(allTimer);
        IpplTimings::print();
Andreas Adelmann's avatar
Andreas Adelmann committed
788

789 790 791
        delete P;
        delete FL;
        delete mesh;
Andreas Adelmann's avatar
Andreas Adelmann committed
792

793
        return 0;
794 795 796 797 798 799 800 801 802
}

// vi: set et ts=4 sw=4 sts=4:
// Local Variables:
// mode:c
// c-basic-offset: 4
// indent-tabs-mode: nil
// require-final-newline: nil
// End: