Astra1DDynamic.cpp 8.33 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#include <fstream>
#include <ios>

#include "Fields/Astra1DDynamic.hh"
#include "Fields/Fieldmap.icc"
#include "Physics/Physics.h"
#include "gsl/gsl_interp.h"
#include "gsl/gsl_spline.h"
#include "gsl/gsl_fft_real.h"

using namespace std;
using Physics::mu_0;
using Physics::c;
using Physics::two_pi;

Astra1DDynamic::Astra1DDynamic(string aFilename):
    Fieldmap(aFilename),
    FourCoefs_m(NULL) {
    Inform msg("*1DD ");
    ifstream file;
    int skippedValues = 0;
    string tmpString;
    double tmpDouble;
    double tmpDouble2;

    Type = TAstraDynamic;

    // open field map, parse it and disable element on error
    file.open(Filename_m.c_str());
    if(file.good()) {
        bool parsing_passed = interpreteLine<string, int>(file, tmpString, accuracy_m);
        parsing_passed = parsing_passed &&
                         interpreteLine<double>(file, frequency_m);
        parsing_passed = parsing_passed &&
                         interpreteLine<double, double>(file, zbegin_m, tmpDouble);

        tmpDouble2 = zbegin_m;
        while(!file.eof() && parsing_passed) {
            parsing_passed = interpreteLine<double, double>(file, zend_m, tmpDouble, false);
            if(zend_m - tmpDouble2 > 1e-10) {
                tmpDouble2 = zend_m;
            } else if(parsing_passed) {
                ++ skippedValues;
            }
        }

        num_gridpz_m = lines_read_m - 3 - skippedValues;
        lines_read_m = 0;

        if(!parsing_passed && !file.eof()) {
            disableFieldmapWarning();
            zend_m = zbegin_m - 1e-3;
        } else {
            // conversion from MHz to Hz and from frequency to angular frequency
            frequency_m *= two_pi * 1e6;
            xlrep_m = frequency_m / c;
        }
        length_m = 2.0 * num_gridpz_m * (zend_m - zbegin_m) / (num_gridpz_m - 1);
        file.close();
    } else {
        noFieldmapWarning();
        zbegin_m = 0.0;
        zend_m = -1e-3;
    }
}

Astra1DDynamic::~Astra1DDynamic() {
    if(FourCoefs_m != NULL) {
        delete[] FourCoefs_m;
    }
}

void Astra1DDynamic::readMap() {
    if(FourCoefs_m == NULL) {
        // declare variables and allocate memory
        Inform msg("*1DD ");
        ifstream in;

        bool parsing_passed = true;

        int tmpInt;

        string tmpString;

        double tmpDouble;
        double Ez_max = 0.0;
        double dz = (zend_m - zbegin_m) / (num_gridpz_m - 1);

        double *RealValues = new double[2*num_gridpz_m];
        double *zvals = new double[num_gridpz_m];

        gsl_spline *Ez_interpolant = gsl_spline_alloc(gsl_interp_cspline, num_gridpz_m);
        gsl_interp_accel *Ez_accel = gsl_interp_accel_alloc();

        gsl_fft_real_wavetable *real = gsl_fft_real_wavetable_alloc(2 * num_gridpz_m);
        gsl_fft_real_workspace *work = gsl_fft_real_workspace_alloc(2 * num_gridpz_m);

        FourCoefs_m = new double[2*accuracy_m - 1];

        // read in and parse field map
        in.open(Filename_m.c_str());
        interpreteLine<string, int>(in, tmpString, tmpInt);
        interpreteLine<double>(in, tmpDouble);

        tmpDouble = zbegin_m - dz;
        for(int i = 0; i < num_gridpz_m && parsing_passed; /* skip increment of i here */) {
            parsing_passed = interpreteLine<double, double>(in, zvals[i], RealValues[i]);
            // the sequence of z-position should be strictly increasing
            // drop sampling points that don't comply to this
            if(zvals[i] - tmpDouble > 1e-10) {
                if(fabs(RealValues[i]) > Ez_max) {
                    Ez_max = fabs(RealValues[i]);
                }
                tmpDouble = zvals[i];
                ++ i; // increment i only if sampling point is accepted
            }
        }
        in.close();

        gsl_spline_init(Ez_interpolant, zvals, RealValues, num_gridpz_m);

        // get equidistant sampling from the, possibly, non-equidistant sampling
        // using cubic spline for this
        int ii = num_gridpz_m;
        for(int i = 0; i < num_gridpz_m - 1; ++ i, ++ ii) {
            double z = zbegin_m + dz * i;
            RealValues[ii] = gsl_spline_eval(Ez_interpolant, z, Ez_accel);
        }
        RealValues[ii ++] = RealValues[num_gridpz_m - 1];
        // prepend mirror sampling points such that field values are periodic for sure
        -- ii; // ii == 2*num_gridpz_m at the moment
        for(int i = 0; i < num_gridpz_m; ++ i, -- ii) {
            RealValues[i] = RealValues[ii];
        }

        gsl_fft_real_transform(RealValues, 1, 2 * num_gridpz_m, real, work);

        // normalize to Ez_max = 1 MV/m
        FourCoefs_m[0] = 1.e6 * RealValues[0] / (Ez_max * 2. * num_gridpz_m); // factor 1e6 due to conversion MV/m to V/m
        for(int i = 1; i < 2 * accuracy_m - 1; i++) {
            FourCoefs_m[i] = 1.e6 * RealValues[i] / (Ez_max * num_gridpz_m);
        }

        gsl_spline_free(Ez_interpolant);
        gsl_interp_accel_free(Ez_accel);

        gsl_fft_real_workspace_free(work);
        gsl_fft_real_wavetable_free(real);

        delete[] zvals;
        delete[] RealValues;

        INFOMSG( typeset_msg("read in fieldmap '" + Filename_m + "'", "info") << endl);
    }
}

void Astra1DDynamic::freeMap() {
    if(FourCoefs_m != NULL) {
        Inform msg("*1DD ");

        delete[] FourCoefs_m;

        msg << typeset_msg("freed fieldmap '" + Filename_m  + "'", "info") << endl;
    }
}

bool Astra1DDynamic::getFieldstrength(const Vector_t &R, Vector_t &E, Vector_t &B) const {
    // do fourier interpolation in z-direction
    const double RR2 = R(0) * R(0) + R(1) * R(1);

    const double kz = two_pi * R(2) / length_m + Physics::pi;

    double ez = FourCoefs_m[0];
    double ezp = 0.0;
    double ezpp = 0.0;
    double ezppp = 0.0;
    double somefactor_base, somefactor;
    double coskzl;
    double sinkzl;

    int n = 1;
    for(int l = 1; l < accuracy_m ; l++, n += 2) {
        somefactor_base = two_pi / length_m * l;       // = \frac{d(kz*l)}{dz}
        somefactor = 1.0;
        coskzl = cos(kz * l);
        sinkzl = sin(kz * l);
        ez    += (FourCoefs_m[n] * coskzl - FourCoefs_m[n+1] * sinkzl);
        somefactor *= somefactor_base;
        ezp   += somefactor * (-FourCoefs_m[n] * sinkzl - FourCoefs_m[n+1] * coskzl);
        somefactor *= somefactor_base;
        ezpp  += somefactor * (-FourCoefs_m[n] * coskzl + FourCoefs_m[n+1] * sinkzl);
        somefactor *= somefactor_base;
        ezppp += somefactor * (FourCoefs_m[n] * sinkzl + FourCoefs_m[n+1] * coskzl);
    }
    // expand the field off-axis
    const double f  = -(ezpp  + ez *  xlrep_m * xlrep_m) / 16.;
    const double fp = -(ezppp + ezp * xlrep_m * xlrep_m) / 16.;

    const double EfieldR = -(ezp / 2. + fp * RR2);
    const double BfieldT = (ez / 2. + f * RR2) * xlrep_m / c;

    E(0) +=  EfieldR * R(0);
    E(1) +=  EfieldR * R(1);
    E(2) +=  ez + 4. * f * RR2;
    B(0) += -BfieldT * R(1);
    B(1) +=  BfieldT * R(0);

    return false;
}

bool Astra1DDynamic::getFieldstrength_fdiff(const Vector_t &R, Vector_t &E, Vector_t &B, const DiffDirection &dir) const {
    const double kz = two_pi * R(2) / length_m + Physics::pi;
    double ezp = 0.0;

    int n = 1;
    for(int l = 1; l < accuracy_m; l++, n += 2)
        ezp += two_pi / length_m * l * (-FourCoefs_m[n] * sin(kz * l) - FourCoefs_m[n+1] * cos(kz * l));

    E(2) +=  ezp;

    return false;
}

void Astra1DDynamic::getFieldDimensions(double &zBegin, double &zEnd, double &rBegin, double &rEnd) const {
    zBegin = zbegin_m;
    zEnd = zend_m;
}

void Astra1DDynamic::swap()
{ }

void Astra1DDynamic::getInfo(Inform *msg) {
    (*msg) << Filename_m << " (1D dynamic); zini= " << zbegin_m << " m; zfinal= " << zend_m << " m;" << endl;
}

double Astra1DDynamic::getFrequency() const {
    return frequency_m;
}

void Astra1DDynamic::setFrequency(double freq) {
    frequency_m = freq;
}

void Astra1DDynamic::getOnaxisEz(vector<pair<double, double> > & F) {
    double Ez_max = 0.0;
    double tmpDouble;
    int tmpInt;
    string tmpString;
    F.resize(num_gridpz_m);

    ifstream in(Filename_m.c_str());
    interpreteLine<string, int>(in, tmpString, tmpInt);
    interpreteLine<double>(in, tmpDouble);
    
    for(int i = 0; i < num_gridpz_m; ++ i) {
        interpreteLine<double, double>(in, F[i].first, F[i].second);
        if(fabs(F[i].second) > Ez_max) {
            Ez_max = fabs(F[i].second);
        }
    }
    in.close();

    for(int i = 0; i < num_gridpz_m; ++ i) {
        F[i].second /= Ez_max;
    }
}