ClosedOrbitFinder.h 33.4 KB
Newer Older
1 2 3 4
/**
 * @file ClosedOrbitFinder.h
 * The algorithm is based on the paper of M. M. Gordon: "Computation of closed orbits and basic focusing properties for
 * sector-focused cyclotrons and the design of 'cyclops'" (1983)
5 6
 * As template arguments one chooses the type of the variables and the integrator for the ODEs. The supported steppers can
 * be found on
7 8 9 10 11 12
 * http://www.boost.org/ where it is part of the library Odeint.
 *
 * @author Matthias Frey
 * @version 1.0
 */

13 14 15
#ifndef CLOSEDORBITFINDER_H
#define CLOSEDORBITFINDER_H

16
#include <algorithm>
17 18 19
#include <array>
#include <cmath>
#include <functional>
adelmann's avatar
adelmann committed
20
#include <limits>
21
#include <numeric>
adelmann's avatar
adelmann committed
22
#include <string>
23
#include <utility>
24 25
#include <vector>

26
#include "Utilities/Options.h"
27 28 29
#include "Utilities/Options.h"
#include "Utilities/OpalException.h"

30
// #include "physics.h"
31

32
#include "MagneticField.h"
frey_m's avatar
frey_m committed
33

34 35 36
// include headers for integration
#include <boost/numeric/odeint/integrate/integrate_n_steps.hpp>

37
/// Finds a closed orbit of a cyclotron for a given energy
38 39 40
template<typename Value_type, typename Size_type, class Stepper>
class ClosedOrbitFinder
{
41 42 43 44 45 46 47 48 49 50 51 52 53
    public:
        /// Type of variables
        typedef Value_type value_type;
        /// Type for specifying sizes
        typedef Size_type size_type;
        /// Type of container for storing quantities (path length, orbit, etc.)
        typedef std::vector<value_type> container_type;
        /// Type for holding state of ODE values
        typedef std::vector<value_type> state_type;

        /// Sets the initial values for the integration and calls findOrbit().
        /*!
         * @param E is the energy [MeV] to which the closed orbit should be found
54
         * @param E0 is the potential energy (particle energy at rest) [MeV].
55 56
         * @param wo is the nominal orbital frequency (see paper of Dr. C. Baumgarten: "Transverse-Longitudinal
         * Coupling by Space Charge in Cyclotrons" (2012), formula (1))
adelmann's avatar
adelmann committed
57
         * @param N specifies the number of splits (2pi/N), i.e number of integration steps
58 59 60 61
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done. Program stops if closed orbit not found within this time.
         * @param Emin is the minimum energy [MeV] needed in cyclotron
         * @param Emax is the maximum energy [MeV] reached in cyclotron
adelmann's avatar
adelmann committed
62
         * @param nSector is the number of sectors (--> symmetry) of cyclotron
63
         * @param fmapfn is the location of the file that specifies the magnetic field
frey_m's avatar
frey_m committed
64 65
	 * @param guess value of radius for closed orbit finder
         * @param type specifies the field format (e.g. CARBONCYCL)
66
         * @param scaleFactor for the magnetic field (default: 1.0)
67 68
         * @param domain is a boolean (default: true). If "true" the closed orbit is computed over a single sector,
         * otherwise over 2*pi.
69
         */
70 71 72
        ClosedOrbitFinder(value_type E, value_type E0, value_type wo, size_type N,
                          value_type accuracy, size_type maxit, value_type Emin, value_type Emax,
                          size_type nSector, const std::string& fmapfn, value_type guess,
frey_m's avatar
frey_m committed
73
                          const std::string& type, value_type scaleFactor = 1.0,
74
                          bool domain = true);
75 76 77 78 79 80 81 82 83 84 85 86 87

        /// Returns the inverse bending radius (size of container N+1)
        container_type& getInverseBendingRadius();

        /// Returns the step lengths of the path (size of container N+1)
        container_type& getPathLength();

        /// Returns the field index (size of container N+1)
        container_type& getFieldIndex();

        /// Returns the radial and vertical tunes (in that order)
        std::pair<value_type,value_type> getTunes();

88 89 90 91 92 93 94
        /// Returns the closed orbit (size of container N+1) starting at specific angle (only makes sense when computing
        /// the closed orbit for a whole turn) (default value: 0°).
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the radius.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
95 96
        container_type getOrbit(value_type angle = 0);

97 98 99 100 101 102
        /// Returns the momentum of the orbit (size of container N+1)starting at specific angle (only makes sense when
        /// computing the closed orbit for a whole turn) (default value: 0°), \f$ \left[ p_{r} \right] = \si{m}\f$.
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the momentum.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
103
         * @returns the momentum in \f$ \beta * \gamma \f$ units
104
         */
105
        container_type getMomentum(value_type angle = 0);
106 107 108 109 110 111 112

        /// Returns the relativistic factor gamma
        value_type getGamma();

        /// Returns the average orbit radius
        value_type getAverageRadius();

adelmann's avatar
adelmann committed
113 114
        /// Returns the frequency error
        value_type getFrequencyError();
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

        /// Returns true if a closed orbit could be found
        bool isConverged();

    private:
        /// Computes the closed orbit
        /*!
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done for finding the closed orbit
         */
        bool findOrbit(value_type, size_type);

        /// Fills in the values of h_m, ds_m, fidx_m. It gets called by in by constructor.
        void computeOrbitProperties();

        /// This function is called by the function getTunes().
        /*! Transfer matrix Y = [y11, y12; y21, y22] (see Gordon paper for more details).
         * @param y are the positions (elements y11 and y12 of Y)
         * @param py2 is the momentum of the second solution (element y22 of Y)
         * @param ncross is the number of sign changes (\#crossings of zero-line)
         */
        value_type computeTune(const std::array<value_type,2>&, value_type, size_type);

adelmann's avatar
adelmann committed
138
        /// This function computes nzcross_ which is used to compute the tune in z-direction and the frequency error
139 140 141 142 143 144
        void computeVerticalOscillations();

        /// Stores current position in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> x_m; // x_m = [x1, x2]
        /// Stores current momenta in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> px_m; // px_m = [px1, px2]
frey_m's avatar
frey_m committed
145
        /// Stores current position in vertical direction for the solutions of the ODE with different initial values
146
        std::array<value_type,2> z_m; // z_m = [z1, z2]
frey_m's avatar
frey_m committed
147
        /// Stores current momenta in vertical direction for the solutions of the ODE with different initial values
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        std::array<value_type,2> pz_m; // pz_m = [pz1, pz2]

        /// Stores the inverse bending radius
        container_type h_m;
        /// Stores the step length
        container_type ds_m;
        /// Stores the radial orbit (size: N_m+1)
        container_type r_m;
        /// Stores the radial momentum
        container_type pr_m;
        /// Stores the field index
        container_type fidx_m;

        /// Counts the number of zero-line crossings in horizontal direction (used for computing horizontal tune)
        size_type nxcross_m;
        /// Counts the number of zero-line crossings in vertical direction (used for computing vertical tune)
        size_type nzcross_m; //#crossings of zero-line in x- and z-direction

        /// Is the energy for which the closed orbit should be found
        value_type E_m;
168 169 170 171
        
        /// Is the potential energy [MeV]
        value_type E0_m;
        
172 173
        /// Is the nominal orbital frequency
        value_type wo_m;
adelmann's avatar
adelmann committed
174
        /// Number of integration steps
175 176 177 178 179 180 181 182 183 184 185 186 187
        size_type N_m;
        /// Is the angle step size
        value_type dtheta_m;

        /// Is the relativistic factor
        value_type gamma_m;

        /// Is the average radius
        value_type ravg_m;

        /// Is the phase
        value_type phase_m;

188 189 190
        /**
         * Boolean which tells if a closed orbit for this configuration could be found (get set by the function findOrbit)
         */
191 192 193 194 195 196 197
        bool converged_m;

        /// Minimum energy needed in cyclotron
        value_type Emin_m;

        /// Maximum energy reached in cyclotron
        value_type Emax_m;
198

adelmann's avatar
adelmann committed
199 200
        /// Number of sectors (symmetry)
        size_type nSector_m;
201 202

        /**
203 204 205 206
         * Stores the last orbit value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastOrbitVal_m to
         * compute the vertical oscillations)
         */
207 208
        value_type lastOrbitVal_m;

209 210 211 212 213
        /**
         * Stores the last momentum value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastMomentumVal_m to
         * compute the vertical oscillations)
         */
214
        value_type lastMomentumVal_m;
215 216

        /**
217 218 219
         * Boolean which is true if computeVerticalOscillations() executed, otherwise false. This is used for checking in
         * getTunes() and getFrequencyError().
         */
220 221
        bool vertOscDone_m;

222
        /**
223 224 225
         * Boolean which is true by default. "true": orbit integration over one sector only, "false": integration
         * over 2*pi
         */
adelmann's avatar
adelmann committed
226
        bool domain_m;
227

228 229 230
        /// Defines the stepper for integration of the ODE's
        Stepper stepper_m;

Andreas Adelmann's avatar
Andreas Adelmann committed
231 232
	/// a guesss for the clo finder
	value_type rguess_m;
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        
        /*!
         * This quantity is defined in the paper "Transverse-Longitudinal Coupling by Space Charge in Cyclotrons" 
         * of Dr. Christian Baumgarten (2012)
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ (also defined in paper) as input argument.
         */
        std::function<double(double)> acon_m = [](double wo) { return Physics::c / wo; };
        
        /// Cyclotron unit \f$ \left[T\right] \f$ (Tesla)
        /*!
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ as input argument.
         */
        std::function<double(double, double)> bcon_m = [](double e0, double wo) {
            return e0 * 1.0e7 / (/* physics::q0 */ 1.0 * Physics::c * Physics::c / wo);
        };
248
        
249
        MagneticField bField_m;
250 251 252 253 254 255
};

// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

256 257 258 259 260 261 262 263
template<typename Value_type, typename Size_type, class Stepper>
ClosedOrbitFinder<Value_type,
                  Size_type,
                  Stepper>::ClosedOrbitFinder(value_type E, value_type E0,
                                              value_type wo, size_type N,
                                              value_type accuracy, size_type maxit,
                                              value_type Emin, value_type Emax,
                                              size_type nSector, const std::string& fmapfn,
frey_m's avatar
frey_m committed
264 265
                                              value_type rguess, const std::string& type,
                                              value_type scaleFactor, bool domain)
266 267
: nxcross_m(0), nzcross_m(0), E_m(E), E0_m(E0), wo_m(wo), N_m(N), dtheta_m(Physics::two_pi/value_type(N)),
  gamma_m(E/E0+1.0), ravg_m(0), phase_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector),
268
  lastOrbitVal_m(0.0), lastMomentumVal_m(0.0),
frey_m's avatar
frey_m committed
269
  vertOscDone_m(false), domain_m(domain), stepper_m(), rguess_m(rguess), bField_m(fmapfn, nSector)
270
{
frey_m's avatar
frey_m committed
271 272 273 274 275 276 277 278
    
    if ( Emin_m > Emax_m )
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()",
                            "Incorrect cyclotron energy (MeV) bounds: Maximum cyclotron energy smaller than minimum cyclotron energy.");
    
//     // Even if the numbers are equal --> if statement is true.
//     if ( E_m < Emin_m )
//         throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Kinetic energy smaller than minimum cyclotron energy");
279
     
frey_m's avatar
frey_m committed
280 281
    if ( E_m > Emax_m )
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Kinetic energy exceeds cyclotron energy");
282

adelmann's avatar
adelmann committed
283 284
    // velocity: beta = v/c = sqrt(1-1/(gamma*gamma))
    if (gamma_m == 0)
285
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Relativistic factor equal zero.");
286

adelmann's avatar
adelmann committed
287 288 289 290
    // if domain_m = true --> integrate over a single sector
    if (domain_m) {
        N_m /=  nSector_m;
    }
291

292 293 294 295 296
    // reserve storage for the orbit and momentum (--> size = 0, capacity = N_m+1)
    /*
     * we need N+1 storage, since dtheta = 2pi/N (and not 2pi/(N-1)) that's why we need N+1 integration steps
     * to return to the origin (but the return size is N_m)
     */
adelmann's avatar
adelmann committed
297 298
    r_m.reserve(N_m + 1);
    pr_m.reserve(N_m + 1);
299

300
    // reserve memory of N_m for the properties (--> size = 0, capacity = N_m)
adelmann's avatar
adelmann committed
301 302 303
    h_m.reserve(N_m);
    ds_m.reserve(N_m);
    fidx_m.reserve(N_m);
304 305
    
    // read in magnetic fieldmap
frey_m's avatar
frey_m committed
306
    bField_m.read(type, scaleFactor);
307

308
    // compute closed orbit
309
    converged_m = findOrbit(accuracy, maxit);
310

311 312 313 314 315
    // compute h, ds, fidx, rav (average radius)
    computeOrbitProperties();
}

template<typename Value_type, typename Size_type, class Stepper>
316 317 318
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getInverseBendingRadius()
{
319
    return h_m;
320 321 322
}

template<typename Value_type, typename Size_type, class Stepper>
323
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
324
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getPathLength()
325
{
326
    return ds_m;
327 328 329
}

template<typename Value_type, typename Size_type, class Stepper>
330 331 332
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFieldIndex()
{
333
    return fidx_m;
334 335 336
}

template<typename Value_type, typename Size_type, class Stepper>
337 338 339
std::pair<Value_type,Value_type> ClosedOrbitFinder<Value_type, Size_type, Stepper>::getTunes() {
    // compute radial tune
    value_type nur = computeTune(x_m,px_m[1],nxcross_m);
340

341 342 343
    // compute nzcross_m
    if (!vertOscDone_m)
        computeVerticalOscillations();
344

345 346 347 348
    // compute vertical tune
    value_type nuz = computeTune(z_m,pz_m[1],nzcross_m);

    return std::make_pair(nur,nuz);
349 350 351
}

template<typename Value_type, typename Size_type, class Stepper>
352
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
353
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getOrbit(value_type angle)
354 355
{
    container_type r = r_m;
356

357 358 359
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
360

361 362
        // compute starting point
        size_type start = deg_step * angle;
363

364 365
        // copy end to start
        std::copy(r_m.begin() + start, r_m.end(), r.begin());
366

367 368 369
        // copy start to end
        std::copy_n(r_m.begin(), start, r.end() - start);
    }
370

371 372 373 374 375
    return r;
}

template<typename Value_type, typename Size_type, class Stepper>
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
376
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getMomentum(value_type angle)
377 378
{
    container_type pr = pr_m;
379

380 381 382
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
383

384 385 386 387
        // compute starting point
        size_type start = deg_step * angle;
        // copy end to start
        std::copy(pr_m.begin() + start, pr_m.end(), pr.begin());
388

389 390 391
        // copy start to end
        std::copy_n(pr_m.begin(), start, pr.end() - start);
    }
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    
    // change units from meters to \beta * \gamma
    /* in Gordon paper:
     * 
     * p = \gamma * \beta * a
     * 
     * where a = c / \omega_{0} with \omega_{0} = 2 * \pi * \nu_{0} = 2 * \pi * \nu_{rf} / h
     * 
     * c: speed of light
     * h: harmonic number
     * v_{rf}: nomial rf frequency
     * 
     * Units:
     * 
     * [a] = m --> [p] = m
     * 
408
     * The momentum in \beta * \gamma is obtained by dividing by "a"
409
     */
410
    value_type factor =  1.0 / acon_m(wo_m);
411 412
    std::for_each(pr.begin(), pr.end(), [factor](value_type p) { return p * factor; });
    
413
    return pr;
414 415 416
}

template<typename Value_type, typename Size_type, class Stepper>
417 418 419
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getGamma()
{
420
    return gamma_m;
421 422 423
}

template<typename Value_type, typename Size_type, class Stepper>
424 425 426
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getAverageRadius()
{
427
    return ravg_m;
428 429 430
}

template<typename Value_type, typename Size_type, class Stepper>
431 432
typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFrequencyError()
433
{
434 435 436
    // if the vertical oscillations aren't computed, we have to, since there we also compuote the frequency error.
    if(!vertOscDone_m)
        computeVerticalOscillations();
437

438
    return phase_m;
439 440 441 442
}

template<typename Value_type, typename Size_type, class Stepper>
inline bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::isConverged() {
443
    return converged_m;
444
}
445 446 447 448 449 450 451

// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

template<typename Value_type, typename Size_type, class Stepper>
bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::findOrbit(value_type accuracy, size_type maxit) {
452 453 454 455 456
    /* REMARK TO GORDON
     * q' = 1/b = 1/bcon
     * a' = a = acon
     */

adelmann's avatar
adelmann committed
457
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
458
    
459
    value_type bint, brint, btint;
460

461 462 463
    // resize vectors (--> size = N_m+1, capacity = N_m+1), note: we do N_m+1 integration steps
    r_m.resize(N_m+1);
    pr_m.resize(N_m+1);
464

465
    // store acon and bcon locally
466 467
    value_type acon = acon_m(wo_m);               // [acon] = m
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);        // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
468 469 470 471 472 473 474 475 476 477 478 479

    // helper constants
    value_type p2;                                      // p^2 = p*p
    value_type pr2;                                     // squared radial momentum (pr^2 = pr*pr)
    value_type ptheta, invptheta;                       // Gordon, formula (5c)
    value_type invdenom;                                // denominator for computing dr,dpr
    value_type xold = 0.0;                              // for counting nxcross

    // index for reaching next element of the arrays r and pr (no nicer way found yet)
    size_type idx = 0;
    // observer for storing the current value after each ODE step (e.g. Runge-Kutta step) into the containers of r and pr
    auto store = [&](state_type& y, const value_type t)
480
    {
481 482 483
        r_m[idx] = y[0];
        pr_m[idx] = y[1];

484
        // count number of crossings (excluding starting point --> idx>0)
485 486 487 488 489 490
        nxcross_m += (idx > 0) * (y[4] * xold < 0);
        xold = y[4];
        ++idx;
    };

    // define the six ODEs (using lambda function)
491 492 493 494
    std::function<void(const state_type&, state_type&, const double)> orbit_integration = [&](const state_type &y,
                                                                                              state_type &dydt,
                                                                                              const double theta)
    {
495 496
        pr2 = y[1] * y[1];
        if (p2 < pr2)
497
            throw OpalException("ClosedOrbitFinder::findOrbit()", "p_{r}^2 > p^{2} (defined in Gordon paper) --> Square root of negative number.");
498

499 500 501 502
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

503
        // interpolate values of magnetic field
504
        bField_m.interpolate(bint, brint, btint, y[0], theta * 180.0 / Physics::pi);
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        bint *= invbcon;
        brint *= invbcon;

        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;
        // Gordon, formulas (9a) and (9b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = (y[1] * y[i] + y[0] * p2 * y[i+1] * invptheta * invptheta) * invptheta;
            dydt[i+1] = - y[1] * y[i+1] * invptheta - (bint + y[0] * brint) * y[i];
        }
    };

    // define initial state container for integration: y = {r, pr, x1, px1, x2, px2}
    state_type y(6);
522

523 524 525 526 527 528 529 530
    // difference of last and first value of r (1. element) and pr (2. element)
    container_type err(2);
    // correction term for initial values: r = r + dr, pr = pr + dpr; Gordon, formula (17)
    container_type delta = {0.0, 0.0};
    // amplitude of error; Gordon, formula (18) (a = a')
    value_type error = std::numeric_limits<value_type>::max();
    // if niterations > maxit --> stop iteration
    size_type niterations = 0;
531 532 533 534

    /*
     * Christian:
     * N = 1440 ---> N = 720 ---> dtheta = 2PI/720 --> nsteps = 721
535
     *
536
     * 0, 2, 4, ... ---> jeden zweiten berechnene: 1, 3, 5, ... interpolieren --> 1440 Werte
537
     *
538 539
     * Matthias:
     * N = 1440 --> dtheta = 2PI/1440 --> nsteps = 1441
540
     *
541
     * 0, 1, 2, 3, 4, 5, ... --> 1440 Werte
542
     *
543
     */
544

Andreas Adelmann's avatar
Andreas Adelmann committed
545 546 547 548 549 550 551 552
    // step size of energy
    value_type dE; 

    if (Emin_m == Emax_m)
      dE = 0.0;
    else
      dE = (E_m - Emin_m) / (Emax_m - Emin_m);

553 554
    // iterate until suggested energy (start with minimum energy)
    value_type E = Emin_m;
555

adelmann's avatar
adelmann committed
556 557
    // energy increase not more than 0.25
    dE = (dE > 0.25) ? 0.25 : dE;
558 559

    // energy dependent values
560
    value_type en = E / E0_m;                      // en = E/E0 = E/(mc^2) (E0 is potential energy)
561 562 563 564 565 566 567 568 569
    value_type p = acon * std::sqrt(en * (2.0 + en));     // momentum [p] = m; Gordon, formula (3)
    value_type gamma2 = (1.0 + en) * (1.0 + en);          // = gamma^2
    value_type beta = std::sqrt(1.0 - 1.0 / gamma2);
    p2 = p * p;                                           // p^2 = p*p
    value_type invgamma4 = 1.0 / (gamma2 * gamma2);       // = 1/gamma^4

    // set initial values for radius and radial momentum for lowest energy Emin
    // orbit, [r] = m; Gordon, formula (20)
    // radial momentum; Gordon, formula (20)
Andreas Adelmann's avatar
Andreas Adelmann committed
570 571 572 573 574

    container_type init;
    if (rguess_m < 0)
      init = {beta * acon, 0.0};
    else
Andreas Adelmann's avatar
Andreas Adelmann committed
575
      init = {rguess_m/1000.0, 0.0};
576 577 578

    // store initial values for updating values for higher energies
    container_type previous_init = {0.0, 0.0};
579

580 581
    do {
        
582
        // (re-)set inital values for r and pr
583
        r_m[0] = init[0];
584
        pr_m[0] = init[1];
585

586 587 588 589 590 591 592 593 594 595 596 597
        // integrate until error smaller than user-define accuracy
        do {
            // (re-)set inital values
            x_m[0]  = 1.0;               // x1; Gordon, formula (10)
            px_m[0] = 0.0;               // px1; Gordon, formula (10)
            x_m[1]  = 0.0;               // x2; Gordon, formula (10)
            px_m[1] = 1.0;               // px2; Gordon, formula (10)
            nxcross_m = 0;               // counts the number of crossings of x-axis (excluding first step)
            idx = 0;                     // index for looping over r and pr arrays

            // fill container with initial states
            y = {init[0],init[1], x_m[0], px_m[0], x_m[1], px_m[1]};
598

599 600
            // integrate from 0 to 2*pi (one has to get back to the "origin")
            boost::numeric::odeint::integrate_n_steps(stepper_m,orbit_integration,y,0.0,dtheta_m,N_m,store);
601

602 603 604 605 606
            // write new state
            x_m[0] = y[2];
            px_m[0] = y[3];
            x_m[1] = y[4];
            px_m[1] = y[5];
607

608 609 610 611
            // compute error (compare values of orbit and momentum for theta = 0 and theta = 2*pi)
            // (Note: size = N_m+1 --> last entry is N_m)
            err[0] = r_m[N_m] - r_m[0];      // Gordon, formula (14)
            err[1] = pr_m[N_m] - pr_m[0];    // Gordon, formula (14)
612

613 614 615 616
            // correct inital values of r and pr
            invdenom = 1.0 / (x_m[0] + px_m[1] - 2.0);
            delta[0] = ((px_m[1] - 1.0) * err[0] - x_m[1] * err[1]) * invdenom; // dr; Gordon, formula (16a)
            delta[1] = ((x_m[0] - 1.0) * err[1] - px_m[0] * err[0]) * invdenom; // dpr; Gordon, formula (16b)
617

618 619 620
            // improved initial values; Gordon, formula (17) (here it's used for higher energies)
            init[0] += delta[0];
            init[1] += delta[1];
621

622 623 624
            // compute amplitude of the error
            error = std::sqrt(delta[0] * delta[0] + delta[1] * delta[1] * invgamma4) / r_m[0];
        } while (error > accuracy && niterations++ < maxit);
625

626 627
        // reset iteration counter
        niterations = 0;
628

629 630
        // reset correction term
        delta[0] = delta[1] = 0.0;
adelmann's avatar
adelmann committed
631 632 633 634 635 636

        // increase energy by dE
        if (E_m <= E + dE)
            E = E_m;
        else
            E += dE;
637

638
        // set constants for new energy E
639
        en = E / E0_m;                     // en = E/E0 = E/(mc^2) (E0 is potential energy)
640 641 642 643
        p = acon * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
        p2 = p * p;                               // p^2 = p*p
        gamma2 = (1.0 + en) * (1.0 + en);
        invgamma4 = 1.0 / (gamma2 * gamma2);
644 645


646
    } while (E != E_m);
647

648 649 650 651 652
    /* store last entry, since it is needed in computeVerticalOscillations(), because we have to do the same
     * number of integrations steps there.
     */
    lastOrbitVal_m = r_m[N_m];           // needed in computeVerticalOscillations()
    lastMomentumVal_m = pr_m[N_m];       // needed in computeVerticalOscillations()
653

654 655 656
    // remove last entry (since we don't have to store [0,2pi], but [0,2pi[)  --> size = N_m, capacity = N_m+1
    r_m.pop_back();
    pr_m.pop_back();
657

658

659 660 661
    // returns true if converged, otherwise false
    return error < accuracy;
}
662 663

template<typename Value_type, typename Size_type, class Stepper>
664 665 666
Value_type ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeTune(const std::array<value_type,2>& y,
                                                                          value_type py2, size_type ncross)
{
667
    // Y = [y1, y2; py1, py2]
668

669 670
    // cos(mu)
    value_type cos = 0.5 * (y[0] + py2);
671
    
672
    value_type mu;
673

674 675
    // sign of sin(mu) has to be equal to y2
    bool negative = std::signbit(y[1]);
676

677
    bool uneven = (ncross % 2);
678

679 680 681
    if (std::fabs(cos) > 1.0) {
        // store the number of crossings
        value_type n = ncross;
682

683 684
        if (uneven)
            n = ncross - 1;
685

686 687
        // Gordon, formula (36b)
        value_type muPrime = -std::acosh(std::fabs(cos));      // mu'
688
        mu = n * Physics::pi + muPrime;
689

690 691 692 693 694 695 696
    } else {
        value_type muPrime = (uneven) ? std::acos(-cos) : std::acos(cos);    // mu'
        /* It has to be fulfilled: 0<= mu' <= pi
        * But since |cos(mu)| <= 1, we have
        * -1 <= cos(mu) <= 1 --> 0 <= mu <= pi (using above programmed line), such
        * that condition is already fulfilled.
        */
697

698
        // Gordon, formula (36)
699
        mu = ncross * Physics::pi + muPrime;
700

701 702
        // if sign(y[1]) > 0 && sign(sin(mu)) < 0
        if (!negative && std::signbit(std::sin(mu))) {
703
            mu = ncross * Physics::pi - muPrime;
704
        } else if (negative && !std::signbit(std::sin(mu))) {
705
            mu = ncross * Physics::pi - muPrime + Physics::two_pi;
706 707
        }
    }
708

709
    // nu = mu/theta, where theta = integration domain
710

adelmann's avatar
adelmann committed
711 712 713 714 715
    /* domain_m = true --> only integrated over a single sector --> multiply by nSector_m to
     * get correct tune.
     */
    if (domain_m)
        mu *= nSector_m;
716

717
    return mu * Physics::u_two_pi;
718 719 720
}

template<typename Value_type, typename Size_type, class Stepper>
721
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeOrbitProperties() {
722
    /*
723 724 725 726 727
     * The formulas for h, fidx and ds are from the paper:
     * "Tranverse-Longitudinal Coupling by Space Charge in Cyclotrons"
     * written by Dr. Christian Baumgarten (2012, PSI)
     * p. 6
     */
728

adelmann's avatar
adelmann committed
729
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
730
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta
731

732 733 734
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) (E0 is potential energy)
    value_type p = acon_m(wo_m) * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
735 736 737
    value_type p2 = p * p;
    value_type theta = 0.0;                                             // angle for interpolating
    value_type ptheta;
738

739 740 741 742 743 744 745
    // resize of container (--> size = N_m, capacity = N_m)
    h_m.resize(N_m);
    fidx_m.resize(N_m);
    ds_m.resize(N_m);

    for (size_type i = 0; i < N_m; ++i) {
        // interpolate magnetic field
746
        bField_m.interpolate(bint, brint, btint, r_m[i], theta * 180.0 / Physics::pi);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;

        // inverse bending radius
        h_m[i] = bint / p;

        // local field index
        ptheta = std::sqrt(p2 - pr_m[i] * pr_m[i]);
        fidx_m[i] = (brint * ptheta - btint * pr_m[i] / r_m[i]) / p2; //(bint*bint);

        // path length element
        ds_m[i] = std::hypot(r_m[i] * pr_m[i] / ptheta,r_m[i]) * dtheta_m; // C++11 function

        // increase angle
        theta += dtheta_m;
763
    }
764 765 766

    // compute average radius
    ravg_m = std::accumulate(r_m.begin(),r_m.end(),0.0) / value_type(r_m.size());
767 768 769
}

template<typename Value_type, typename Size_type, class Stepper>
770
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeVerticalOscillations() {
771

772 773 774 775 776
    vertOscDone_m = true;

    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta

777 778
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) with potential energy E0
    value_type p = acon_m(wo_m) * std::sqrt(en *(en + 2.0));     // Gordon, formula (3)
779 780 781 782 783 784 785
    value_type p2 = p * p;                                              // p^2 = p*p
    size_type idx = 0;                                                  // index for going through container
    value_type pr2;                                                     // pr^2 = pr*pr
    value_type ptheta, invptheta;                                       // Gordon, formula (5c)
    value_type zold = 0.0;                                              // for counting nzcross

    // store bcon locally
786
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);     // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
787 788

    // define the ODEs (using lambda function)
789 790 791 792
    std::function<void(const state_type&, state_type&, const double)> vertical = [&](const state_type &y,
                                                                                     state_type &dydt,
                                                                                     const double theta)
    {
793
        pr2 = y[1] * y[1];
794
        if (p2 < pr2) {
795 796
            throw OpalException("ClosedOrbitFinder::computeVerticalOscillations()",
                                "p_{r}^2 > p^{2} (defined in Gordon paper) --> Square root of negative number.");
797
        }
798

799 800 801 802 803
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
804
        bField_m.interpolate(bint, brint, btint, y[0], theta * 180.0 / Physics::pi);
frey_m's avatar
frey_m committed
805
        
806 807 808
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        // We have to integrate r and pr again, otherwise we don't have the Runge-Kutta of the B-field
        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;

        // Gordon, formulas (22a) and (22b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = y[0] * y[i+1] * invptheta;
            dydt[i+1] = (y[0] * brint - y[1] * invptheta * btint) * y[i];
        }

        // integrate phase
        dydt[6] = y[0] * invptheta * gamma_m - 1;
    };

    // to get next index for r and pr (to iterate over container)
    auto next = [&](state_type& y, const value_type t) {
        // number of times z2 changes sign
        nzcross_m += (idx > 0) * (y[4] * zold < 0);
        zold = y[4];
        ++idx;
    };

    // set initial state container for integration: y = {r, pr, z1, pz1, z2, pz2, phase}
    state_type y = {r_m[0], pr_m[0], 1.0, 0.0, 0.0, 1.0, 0.0};

    // add last element for integration (since we have to return to the initial point (--> size = N_m+1, capacity = N_m+1)
    r_m.push_back(lastOrbitVal_m);
    pr_m.push_back(lastMomentumVal_m);
840

841 842
    // integrate: assume no imperfections --> only integrate over a single sector (dtheta_m = 2pi/N_m)
    boost::numeric::odeint::integrate_n_steps(stepper_m,vertical,y,0.0,dtheta_m,N_m,next);
843

844 845 846
    // remove last element again (--> size = N_m, capacity = N_m+1)
    r_m.pop_back();
    pr_m.pop_back();
847

848 849 850 851 852
    // write new state
    z_m[0] = y[2];
    pz_m[0] = y[3];
    z_m[1] = y[4];
    pz_m[1] = y[5];
853
    phase_m = y[6] * Physics::u_two_pi; // / (2.0 * Physics::pi);
854

adelmann's avatar
adelmann committed
855 856 857 858 859
    /* domain_m = true --> only integrated over a single sector
     * --> multiply by nSector_m to get correct phase_m
     */
    if (domain_m)
        phase_m *= nSector_m;
860 861
}

Andreas Adelmann's avatar
Andreas Adelmann committed
862
#endif