ClosedOrbitFinder.h 33 KB
Newer Older
1 2 3 4
/**
 * @file ClosedOrbitFinder.h
 * The algorithm is based on the paper of M. M. Gordon: "Computation of closed orbits and basic focusing properties for
 * sector-focused cyclotrons and the design of 'cyclops'" (1983)
5 6
 * As template arguments one chooses the type of the variables and the integrator for the ODEs. The supported steppers can
 * be found on
7 8 9 10 11 12
 * http://www.boost.org/ where it is part of the library Odeint.
 *
 * @author Matthias Frey
 * @version 1.0
 */

13 14 15
#ifndef CLOSEDORBITFINDER_H
#define CLOSEDORBITFINDER_H

16
#include <algorithm>
17 18 19
#include <array>
#include <cmath>
#include <functional>
adelmann's avatar
adelmann committed
20
#include <limits>
21
#include <numeric>
adelmann's avatar
adelmann committed
22
#include <string>
23
#include <utility>
24 25
#include <vector>

26
#include "Utilities/Options.h"
27 28 29
#include "Utilities/Options.h"
#include "Utilities/OpalException.h"

30
// #include "physics.h"
31

adelmann's avatar
adelmann committed
32
#include "MagneticField.h" // ONLY FOR STAND-ALONE PROGRAM
33 34 35 36 37 38 39


#include <fstream>

// include headers for integration
#include <boost/numeric/odeint/integrate/integrate_n_steps.hpp>

40
/// Finds a closed orbit of a cyclotron for a given energy
41 42 43
template<typename Value_type, typename Size_type, class Stepper>
class ClosedOrbitFinder
{
44 45 46 47 48 49 50 51 52 53 54 55 56
    public:
        /// Type of variables
        typedef Value_type value_type;
        /// Type for specifying sizes
        typedef Size_type size_type;
        /// Type of container for storing quantities (path length, orbit, etc.)
        typedef std::vector<value_type> container_type;
        /// Type for holding state of ODE values
        typedef std::vector<value_type> state_type;

        /// Sets the initial values for the integration and calls findOrbit().
        /*!
         * @param E is the energy [MeV] to which the closed orbit should be found
57
         * @param E0 is the potential energy (particle energy at rest) [MeV].
58 59
         * @param wo is the nominal orbital frequency (see paper of Dr. C. Baumgarten: "Transverse-Longitudinal
         * Coupling by Space Charge in Cyclotrons" (2012), formula (1))
adelmann's avatar
adelmann committed
60
         * @param N specifies the number of splits (2pi/N), i.e number of integration steps
61 62 63 64
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done. Program stops if closed orbit not found within this time.
         * @param Emin is the minimum energy [MeV] needed in cyclotron
         * @param Emax is the maximum energy [MeV] reached in cyclotron
adelmann's avatar
adelmann committed
65
         * @param nSector is the number of sectors (--> symmetry) of cyclotron
66
         * @param fmapfn is the location of the file that specifies the magnetic field
Andreas Adelmann's avatar
Andreas Adelmann committed
67
	 * @param guesss value of radius for closed orbit finder 
68 69
         * @param domain is a boolean (default: true). If "true" the closed orbit is computed over a single sector,
         * otherwise over 2*pi.
70
         */
71
        ClosedOrbitFinder(value_type, value_type, value_type, size_type, value_type, size_type, value_type, value_type, size_type,
72
                          const std::string&, value_type, bool = true);
73 74 75 76 77 78 79 80 81 82 83 84 85

        /// Returns the inverse bending radius (size of container N+1)
        container_type& getInverseBendingRadius();

        /// Returns the step lengths of the path (size of container N+1)
        container_type& getPathLength();

        /// Returns the field index (size of container N+1)
        container_type& getFieldIndex();

        /// Returns the radial and vertical tunes (in that order)
        std::pair<value_type,value_type> getTunes();

86 87 88 89 90 91 92
        /// Returns the closed orbit (size of container N+1) starting at specific angle (only makes sense when computing
        /// the closed orbit for a whole turn) (default value: 0°).
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the radius.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
93 94
        container_type getOrbit(value_type angle = 0);

95 96 97 98 99 100
        /// Returns the momentum of the orbit (size of container N+1)starting at specific angle (only makes sense when
        /// computing the closed orbit for a whole turn) (default value: 0°), \f$ \left[ p_{r} \right] = \si{m}\f$.
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the momentum.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
101
         * @returns the momentum in \f$ \beta * \gamma \f$ units
102
         */
103
        container_type getMomentum(value_type angle = 0);
104 105 106 107 108 109 110

        /// Returns the relativistic factor gamma
        value_type getGamma();

        /// Returns the average orbit radius
        value_type getAverageRadius();

adelmann's avatar
adelmann committed
111 112
        /// Returns the frequency error
        value_type getFrequencyError();
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        /// Returns true if a closed orbit could be found
        bool isConverged();

    private:
        /// Computes the closed orbit
        /*!
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done for finding the closed orbit
         */
        bool findOrbit(value_type, size_type);

        /// Fills in the values of h_m, ds_m, fidx_m. It gets called by in by constructor.
        void computeOrbitProperties();

        /// This function is called by the function getTunes().
        /*! Transfer matrix Y = [y11, y12; y21, y22] (see Gordon paper for more details).
         * @param y are the positions (elements y11 and y12 of Y)
         * @param py2 is the momentum of the second solution (element y22 of Y)
         * @param ncross is the number of sign changes (\#crossings of zero-line)
         */
        value_type computeTune(const std::array<value_type,2>&, value_type, size_type);

adelmann's avatar
adelmann committed
136
        /// This function computes nzcross_ which is used to compute the tune in z-direction and the frequency error
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        void computeVerticalOscillations();

        /// Stores current position in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> x_m; // x_m = [x1, x2]
        /// Stores current momenta in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> px_m; // px_m = [px1, px2]
        /// Stores current position in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> z_m; // z_m = [z1, z2]
        /// Stores current momenta in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> pz_m; // pz_m = [pz1, pz2]

        /// Stores the inverse bending radius
        container_type h_m;
        /// Stores the step length
        container_type ds_m;
        /// Stores the radial orbit (size: N_m+1)
        container_type r_m;
        /// Stores the radial momentum
        container_type pr_m;
        /// Stores the field index
        container_type fidx_m;

        /// Counts the number of zero-line crossings in horizontal direction (used for computing horizontal tune)
        size_type nxcross_m;
        /// Counts the number of zero-line crossings in vertical direction (used for computing vertical tune)
        size_type nzcross_m; //#crossings of zero-line in x- and z-direction

        /// Is the energy for which the closed orbit should be found
        value_type E_m;
166 167 168 169
        
        /// Is the potential energy [MeV]
        value_type E0_m;
        
170 171
        /// Is the nominal orbital frequency
        value_type wo_m;
adelmann's avatar
adelmann committed
172
        /// Number of integration steps
173 174 175 176 177 178 179 180 181 182 183 184 185
        size_type N_m;
        /// Is the angle step size
        value_type dtheta_m;

        /// Is the relativistic factor
        value_type gamma_m;

        /// Is the average radius
        value_type ravg_m;

        /// Is the phase
        value_type phase_m;

186 187 188
        /**
         * Boolean which tells if a closed orbit for this configuration could be found (get set by the function findOrbit)
         */
189 190 191 192 193 194 195
        bool converged_m;

        /// Minimum energy needed in cyclotron
        value_type Emin_m;

        /// Maximum energy reached in cyclotron
        value_type Emax_m;
196

adelmann's avatar
adelmann committed
197 198
        /// Number of sectors (symmetry)
        size_type nSector_m;
199 200

        /**
201 202 203 204
         * Stores the last orbit value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastOrbitVal_m to
         * compute the vertical oscillations)
         */
205 206
        value_type lastOrbitVal_m;

207 208 209 210 211
        /**
         * Stores the last momentum value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastMomentumVal_m to
         * compute the vertical oscillations)
         */
212
        value_type lastMomentumVal_m;
213 214

        /**
215 216 217
         * Boolean which is true if computeVerticalOscillations() executed, otherwise false. This is used for checking in
         * getTunes() and getFrequencyError().
         */
218 219
        bool vertOscDone_m;

220
        /**
221 222 223
         * Boolean which is true by default. "true": orbit integration over one sector only, "false": integration
         * over 2*pi
         */
adelmann's avatar
adelmann committed
224
        bool domain_m;
225

226 227 228
        /// Defines the stepper for integration of the ODE's
        Stepper stepper_m;

Andreas Adelmann's avatar
Andreas Adelmann committed
229 230
	/// a guesss for the clo finder
	value_type rguess_m;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        
        /*!
         * This quantity is defined in the paper "Transverse-Longitudinal Coupling by Space Charge in Cyclotrons" 
         * of Dr. Christian Baumgarten (2012)
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ (also defined in paper) as input argument.
         */
        std::function<double(double)> acon_m = [](double wo) { return Physics::c / wo; };
        
        /// Cyclotron unit \f$ \left[T\right] \f$ (Tesla)
        /*!
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ as input argument.
         */
        std::function<double(double, double)> bcon_m = [](double e0, double wo) {
            return e0 * 1.0e7 / (/* physics::q0 */ 1.0 * Physics::c * Physics::c / wo);
        };
246 247
        
        MagneticField<value_type> bField_m;
248 249 250 251 252 253
};

// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

254
    template<typename Value_type, typename Size_type, class Stepper>
255
ClosedOrbitFinder<Value_type, Size_type, Stepper>::ClosedOrbitFinder(value_type E, value_type E0, value_type wo, size_type N,
256 257
                                                                     value_type accuracy, size_type maxit,
                                                                     value_type Emin, value_type Emax, size_type nSector,
258
                                                                     const std::string& fmapfn,
Andreas Adelmann's avatar
Andreas Adelmann committed
259
								     value_type rguess,
260
                                                                     bool domain)
261 262
: nxcross_m(0), nzcross_m(0), E_m(E), E0_m(E0), wo_m(wo), N_m(N), dtheta_m(Physics::two_pi/value_type(N)),
  gamma_m(E/E0+1.0), ravg_m(0), phase_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector),
263 264
  lastOrbitVal_m(0.0), lastMomentumVal_m(0.0),
  vertOscDone_m(false), domain_m(domain), stepper_m(), rguess_m(rguess)
265
{
frey_m's avatar
frey_m committed
266 267 268 269 270 271 272 273
    
    if ( Emin_m > Emax_m )
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()",
                            "Incorrect cyclotron energy (MeV) bounds: Maximum cyclotron energy smaller than minimum cyclotron energy.");
    
//     // Even if the numbers are equal --> if statement is true.
//     if ( E_m < Emin_m )
//         throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Kinetic energy smaller than minimum cyclotron energy");
274
     
frey_m's avatar
frey_m committed
275 276
    if ( E_m > Emax_m )
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Kinetic energy exceeds cyclotron energy");
277

adelmann's avatar
adelmann committed
278 279
    // velocity: beta = v/c = sqrt(1-1/(gamma*gamma))
    if (gamma_m == 0)
280
        throw OpalException("ClosedOrbitFinder::ClosedOrbitFinder()", "Relativistic factor equal zero.");
281

adelmann's avatar
adelmann committed
282 283 284 285
    // if domain_m = true --> integrate over a single sector
    if (domain_m) {
        N_m /=  nSector_m;
    }
286

287 288 289 290 291
    // reserve storage for the orbit and momentum (--> size = 0, capacity = N_m+1)
    /*
     * we need N+1 storage, since dtheta = 2pi/N (and not 2pi/(N-1)) that's why we need N+1 integration steps
     * to return to the origin (but the return size is N_m)
     */
adelmann's avatar
adelmann committed
292 293
    r_m.reserve(N_m + 1);
    pr_m.reserve(N_m + 1);
294

295
    // reserve memory of N_m for the properties (--> size = 0, capacity = N_m)
adelmann's avatar
adelmann committed
296 297 298
    h_m.reserve(N_m);
    ds_m.reserve(N_m);
    fidx_m.reserve(N_m);
299 300 301
    
    // read in magnetic fieldmap
    bField_m.read(fmapfn);
302

303
    // compute closed orbit
304
    converged_m = findOrbit(accuracy, maxit);
305

306 307 308 309 310
    // compute h, ds, fidx, rav (average radius)
    computeOrbitProperties();
}

template<typename Value_type, typename Size_type, class Stepper>
311 312 313
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getInverseBendingRadius()
{
314
    return h_m;
315 316 317
}

template<typename Value_type, typename Size_type, class Stepper>
318
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
319
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getPathLength()
320
{
321
    return ds_m;
322 323 324
}

template<typename Value_type, typename Size_type, class Stepper>
325 326 327
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFieldIndex()
{
328
    return fidx_m;
329 330 331
}

template<typename Value_type, typename Size_type, class Stepper>
332 333 334
std::pair<Value_type,Value_type> ClosedOrbitFinder<Value_type, Size_type, Stepper>::getTunes() {
    // compute radial tune
    value_type nur = computeTune(x_m,px_m[1],nxcross_m);
335

336 337 338
    // compute nzcross_m
    if (!vertOscDone_m)
        computeVerticalOscillations();
339

340 341 342 343
    // compute vertical tune
    value_type nuz = computeTune(z_m,pz_m[1],nzcross_m);

    return std::make_pair(nur,nuz);
344 345 346
}

template<typename Value_type, typename Size_type, class Stepper>
347
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
348
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getOrbit(value_type angle)
349 350
{
    container_type r = r_m;
351

352 353 354
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
355

356 357
        // compute starting point
        size_type start = deg_step * angle;
358

359 360
        // copy end to start
        std::copy(r_m.begin() + start, r_m.end(), r.begin());
361

362 363 364
        // copy start to end
        std::copy_n(r_m.begin(), start, r.end() - start);
    }
365

366 367 368 369 370
    return r;
}

template<typename Value_type, typename Size_type, class Stepper>
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
371
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getMomentum(value_type angle)
372 373
{
    container_type pr = pr_m;
374

375 376 377
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
378

379 380 381 382
        // compute starting point
        size_type start = deg_step * angle;
        // copy end to start
        std::copy(pr_m.begin() + start, pr_m.end(), pr.begin());
383

384 385 386
        // copy start to end
        std::copy_n(pr_m.begin(), start, pr.end() - start);
    }
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    
    // change units from meters to \beta * \gamma
    /* in Gordon paper:
     * 
     * p = \gamma * \beta * a
     * 
     * where a = c / \omega_{0} with \omega_{0} = 2 * \pi * \nu_{0} = 2 * \pi * \nu_{rf} / h
     * 
     * c: speed of light
     * h: harmonic number
     * v_{rf}: nomial rf frequency
     * 
     * Units:
     * 
     * [a] = m --> [p] = m
     * 
403
     * The momentum in \beta * \gamma is obtained by dividing by "a"
404
     */
405
    value_type factor =  1.0 / acon_m(wo_m);
406 407
    std::for_each(pr.begin(), pr.end(), [factor](value_type p) { return p * factor; });
    
408
    return pr;
409 410 411
}

template<typename Value_type, typename Size_type, class Stepper>
412 413 414
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getGamma()
{
415
    return gamma_m;
416 417 418
}

template<typename Value_type, typename Size_type, class Stepper>
419 420 421
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getAverageRadius()
{
422
    return ravg_m;
423 424 425
}

template<typename Value_type, typename Size_type, class Stepper>
426 427
typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFrequencyError()
428
{
429 430 431
    // if the vertical oscillations aren't computed, we have to, since there we also compuote the frequency error.
    if(!vertOscDone_m)
        computeVerticalOscillations();
432

433
    return phase_m;
434 435 436 437
}

template<typename Value_type, typename Size_type, class Stepper>
inline bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::isConverged() {
438
    return converged_m;
439
}
440 441 442 443 444 445 446

// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

template<typename Value_type, typename Size_type, class Stepper>
bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::findOrbit(value_type accuracy, size_type maxit) {
447 448 449 450 451
    /* REMARK TO GORDON
     * q' = 1/b = 1/bcon
     * a' = a = acon
     */

adelmann's avatar
adelmann committed
452
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
453
    
454
    value_type bint, brint, btint;
455

456 457 458
    // resize vectors (--> size = N_m+1, capacity = N_m+1), note: we do N_m+1 integration steps
    r_m.resize(N_m+1);
    pr_m.resize(N_m+1);
459

460
    // store acon and bcon locally
461 462
    value_type acon = acon_m(wo_m);               // [acon] = m
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);        // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
463 464 465 466 467 468 469 470 471 472 473 474

    // helper constants
    value_type p2;                                      // p^2 = p*p
    value_type pr2;                                     // squared radial momentum (pr^2 = pr*pr)
    value_type ptheta, invptheta;                       // Gordon, formula (5c)
    value_type invdenom;                                // denominator for computing dr,dpr
    value_type xold = 0.0;                              // for counting nxcross

    // index for reaching next element of the arrays r and pr (no nicer way found yet)
    size_type idx = 0;
    // observer for storing the current value after each ODE step (e.g. Runge-Kutta step) into the containers of r and pr
    auto store = [&](state_type& y, const value_type t)
475
    {
476 477 478 479 480 481 482 483 484 485
        r_m[idx] = y[0];
        pr_m[idx] = y[1];

        // count number of crossings (excluding starting point --> idx>0)
        nxcross_m += (idx > 0) * (y[4] * xold < 0);
        xold = y[4];
        ++idx;
    };

    // define the six ODEs (using lambda function)
486 487 488 489
    std::function<void(const state_type&, state_type&, const double)> orbit_integration = [&](const state_type &y,
                                                                                              state_type &dydt,
                                                                                              const double theta)
    {
490 491
        pr2 = y[1] * y[1];
        if (p2 < pr2)
492
            throw OpalException("ClosedOrbitFinder::findOrbit()", "p_{r}^2 > p^{2} (defined in Gordon paper) --> Square root of negative number.");
493

494 495 496 497 498
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
499
        bField_m.interpolate(bint, brint, btint, y[0], theta * 180.0 / Physics::pi);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        bint *= invbcon;
        brint *= invbcon;

        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;
        // Gordon, formulas (9a) and (9b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = (y[1] * y[i] + y[0] * p2 * y[i+1] * invptheta * invptheta) * invptheta;
            dydt[i+1] = - y[1] * y[i+1] * invptheta - (bint + y[0] * brint) * y[i];
        }
    };

    // define initial state container for integration: y = {r, pr, x1, px1, x2, px2}
    state_type y(6);
516

517 518 519 520 521 522 523 524
    // difference of last and first value of r (1. element) and pr (2. element)
    container_type err(2);
    // correction term for initial values: r = r + dr, pr = pr + dpr; Gordon, formula (17)
    container_type delta = {0.0, 0.0};
    // amplitude of error; Gordon, formula (18) (a = a')
    value_type error = std::numeric_limits<value_type>::max();
    // if niterations > maxit --> stop iteration
    size_type niterations = 0;
525 526 527 528

    /*
     * Christian:
     * N = 1440 ---> N = 720 ---> dtheta = 2PI/720 --> nsteps = 721
529
     *
530
     * 0, 2, 4, ... ---> jeden zweiten berechnene: 1, 3, 5, ... interpolieren --> 1440 Werte
531
     *
532 533
     * Matthias:
     * N = 1440 --> dtheta = 2PI/1440 --> nsteps = 1441
534
     *
535
     * 0, 1, 2, 3, 4, 5, ... --> 1440 Werte
536
     *
537
     */
538

Andreas Adelmann's avatar
Andreas Adelmann committed
539 540 541 542 543 544 545 546
    // step size of energy
    value_type dE; 

    if (Emin_m == Emax_m)
      dE = 0.0;
    else
      dE = (E_m - Emin_m) / (Emax_m - Emin_m);

547 548
    // iterate until suggested energy (start with minimum energy)
    value_type E = Emin_m;
549

adelmann's avatar
adelmann committed
550 551
    // energy increase not more than 0.25
    dE = (dE > 0.25) ? 0.25 : dE;
552 553

    // energy dependent values
554
    value_type en = E / E0_m;                      // en = E/E0 = E/(mc^2) (E0 is potential energy)
555 556 557 558 559 560 561 562 563
    value_type p = acon * std::sqrt(en * (2.0 + en));     // momentum [p] = m; Gordon, formula (3)
    value_type gamma2 = (1.0 + en) * (1.0 + en);          // = gamma^2
    value_type beta = std::sqrt(1.0 - 1.0 / gamma2);
    p2 = p * p;                                           // p^2 = p*p
    value_type invgamma4 = 1.0 / (gamma2 * gamma2);       // = 1/gamma^4

    // set initial values for radius and radial momentum for lowest energy Emin
    // orbit, [r] = m; Gordon, formula (20)
    // radial momentum; Gordon, formula (20)
Andreas Adelmann's avatar
Andreas Adelmann committed
564 565 566 567 568

    container_type init;
    if (rguess_m < 0)
      init = {beta * acon, 0.0};
    else
Andreas Adelmann's avatar
Andreas Adelmann committed
569
      init = {rguess_m/1000.0, 0.0};
570 571 572

    // store initial values for updating values for higher energies
    container_type previous_init = {0.0, 0.0};
573

574
       do {
575 576

        // (re-)set inital values for r and pr
577
        r_m[0] = init[0];
578
        pr_m[0] = init[1];
579

580 581 582 583 584 585 586 587 588 589 590 591
        // integrate until error smaller than user-define accuracy
        do {
            // (re-)set inital values
            x_m[0]  = 1.0;               // x1; Gordon, formula (10)
            px_m[0] = 0.0;               // px1; Gordon, formula (10)
            x_m[1]  = 0.0;               // x2; Gordon, formula (10)
            px_m[1] = 1.0;               // px2; Gordon, formula (10)
            nxcross_m = 0;               // counts the number of crossings of x-axis (excluding first step)
            idx = 0;                     // index for looping over r and pr arrays

            // fill container with initial states
            y = {init[0],init[1], x_m[0], px_m[0], x_m[1], px_m[1]};
592

593 594
            // integrate from 0 to 2*pi (one has to get back to the "origin")
            boost::numeric::odeint::integrate_n_steps(stepper_m,orbit_integration,y,0.0,dtheta_m,N_m,store);
595

596 597 598 599 600
            // write new state
            x_m[0] = y[2];
            px_m[0] = y[3];
            x_m[1] = y[4];
            px_m[1] = y[5];
601

602 603 604 605
            // compute error (compare values of orbit and momentum for theta = 0 and theta = 2*pi)
            // (Note: size = N_m+1 --> last entry is N_m)
            err[0] = r_m[N_m] - r_m[0];      // Gordon, formula (14)
            err[1] = pr_m[N_m] - pr_m[0];    // Gordon, formula (14)
606

607 608 609 610
            // correct inital values of r and pr
            invdenom = 1.0 / (x_m[0] + px_m[1] - 2.0);
            delta[0] = ((px_m[1] - 1.0) * err[0] - x_m[1] * err[1]) * invdenom; // dr; Gordon, formula (16a)
            delta[1] = ((x_m[0] - 1.0) * err[1] - px_m[0] * err[0]) * invdenom; // dpr; Gordon, formula (16b)
611

612 613 614
            // improved initial values; Gordon, formula (17) (here it's used for higher energies)
            init[0] += delta[0];
            init[1] += delta[1];
615

616 617 618
            // compute amplitude of the error
            error = std::sqrt(delta[0] * delta[0] + delta[1] * delta[1] * invgamma4) / r_m[0];
        } while (error > accuracy && niterations++ < maxit);
619

620 621
        // reset iteration counter
        niterations = 0;
622

623 624
        // reset correction term
        delta[0] = delta[1] = 0.0;
adelmann's avatar
adelmann committed
625 626 627 628 629 630

        // increase energy by dE
        if (E_m <= E + dE)
            E = E_m;
        else
            E += dE;
631

632
        // set constants for new energy E
633
        en = E / E0_m;                     // en = E/E0 = E/(mc^2) (E0 is potential energy)
634 635 636 637
        p = acon * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
        p2 = p * p;                               // p^2 = p*p
        gamma2 = (1.0 + en) * (1.0 + en);
        invgamma4 = 1.0 / (gamma2 * gamma2);
638 639


640
	   } while (E != E_m);
641

642 643 644 645 646
    /* store last entry, since it is needed in computeVerticalOscillations(), because we have to do the same
     * number of integrations steps there.
     */
    lastOrbitVal_m = r_m[N_m];           // needed in computeVerticalOscillations()
    lastMomentumVal_m = pr_m[N_m];       // needed in computeVerticalOscillations()
647

648 649 650
    // remove last entry (since we don't have to store [0,2pi], but [0,2pi[)  --> size = N_m, capacity = N_m+1
    r_m.pop_back();
    pr_m.pop_back();
651

652

653 654 655
    // returns true if converged, otherwise false
    return error < accuracy;
}
656 657

template<typename Value_type, typename Size_type, class Stepper>
658 659 660
Value_type ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeTune(const std::array<value_type,2>& y,
                                                                          value_type py2, size_type ncross)
{
661
    // Y = [y1, y2; py1, py2]
662

663 664
    // cos(mu)
    value_type cos = 0.5 * (y[0] + py2);
665
    
666
    value_type mu;
667

668 669
    // sign of sin(mu) has to be equal to y2
    bool negative = std::signbit(y[1]);
670

671
    bool uneven = (ncross % 2);
672

673 674 675
    if (std::fabs(cos) > 1.0) {
        // store the number of crossings
        value_type n = ncross;
676

677 678
        if (uneven)
            n = ncross - 1;
679

680 681
        // Gordon, formula (36b)
        value_type muPrime = -std::acosh(std::fabs(cos));      // mu'
682
        mu = n * Physics::pi + muPrime;
683

684 685 686 687 688 689 690
    } else {
        value_type muPrime = (uneven) ? std::acos(-cos) : std::acos(cos);    // mu'
        /* It has to be fulfilled: 0<= mu' <= pi
        * But since |cos(mu)| <= 1, we have
        * -1 <= cos(mu) <= 1 --> 0 <= mu <= pi (using above programmed line), such
        * that condition is already fulfilled.
        */
691

692
        // Gordon, formula (36)
693
        mu = ncross * Physics::pi + muPrime;
694

695 696
        // if sign(y[1]) > 0 && sign(sin(mu)) < 0
        if (!negative && std::signbit(std::sin(mu))) {
697
            mu = ncross * Physics::pi - muPrime;
698
        } else if (negative && !std::signbit(std::sin(mu))) {
699
            mu = ncross * Physics::pi - muPrime + Physics::two_pi;
700 701
        }
    }
702

703
    // nu = mu/theta, where theta = integration domain
704

adelmann's avatar
adelmann committed
705 706 707 708 709
    /* domain_m = true --> only integrated over a single sector --> multiply by nSector_m to
     * get correct tune.
     */
    if (domain_m)
        mu *= nSector_m;
710

711
    return mu * Physics::u_two_pi;
712 713 714
}

template<typename Value_type, typename Size_type, class Stepper>
715
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeOrbitProperties() {
716
    /*
717 718 719 720 721
     * The formulas for h, fidx and ds are from the paper:
     * "Tranverse-Longitudinal Coupling by Space Charge in Cyclotrons"
     * written by Dr. Christian Baumgarten (2012, PSI)
     * p. 6
     */
722

adelmann's avatar
adelmann committed
723
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
724
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta
725

726 727 728
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) (E0 is potential energy)
    value_type p = acon_m(wo_m) * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
729 730 731
    value_type p2 = p * p;
    value_type theta = 0.0;                                             // angle for interpolating
    value_type ptheta;
732

733 734 735 736 737 738 739
    // resize of container (--> size = N_m, capacity = N_m)
    h_m.resize(N_m);
    fidx_m.resize(N_m);
    ds_m.resize(N_m);

    for (size_type i = 0; i < N_m; ++i) {
        // interpolate magnetic field
740
        bField_m.interpolate(bint, brint, btint, r_m[i], theta * 180.0 / Physics::pi);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;

        // inverse bending radius
        h_m[i] = bint / p;

        // local field index
        ptheta = std::sqrt(p2 - pr_m[i] * pr_m[i]);
        fidx_m[i] = (brint * ptheta - btint * pr_m[i] / r_m[i]) / p2; //(bint*bint);

        // path length element
        ds_m[i] = std::hypot(r_m[i] * pr_m[i] / ptheta,r_m[i]) * dtheta_m; // C++11 function

        // increase angle
        theta += dtheta_m;
757
    }
758 759 760

    // compute average radius
    ravg_m = std::accumulate(r_m.begin(),r_m.end(),0.0) / value_type(r_m.size());
761 762 763
}

template<typename Value_type, typename Size_type, class Stepper>
764
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeVerticalOscillations() {
765

766 767 768 769 770
    vertOscDone_m = true;

    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta

771 772
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) with potential energy E0
    value_type p = acon_m(wo_m) * std::sqrt(en *(en + 2.0));     // Gordon, formula (3)
773 774 775 776 777 778 779
    value_type p2 = p * p;                                              // p^2 = p*p
    size_type idx = 0;                                                  // index for going through container
    value_type pr2;                                                     // pr^2 = pr*pr
    value_type ptheta, invptheta;                                       // Gordon, formula (5c)
    value_type zold = 0.0;                                              // for counting nzcross

    // store bcon locally
780
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);     // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
781 782

    // define the ODEs (using lambda function)
783 784 785 786
    std::function<void(const state_type&, state_type&, const double)> vertical = [&](const state_type &y,
                                                                                     state_type &dydt,
                                                                                     const double theta)
    {
787
        pr2 = y[1] * y[1];
788
        if (p2 < pr2) {
789 790
            throw OpalException("ClosedOrbitFinder::computeVerticalOscillations()",
                                "p_{r}^2 > p^{2} (defined in Gordon paper) --> Square root of negative number.");
791
        }
792

793 794 795 796 797
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
798
        bField_m.interpolate(bint, brint, btint, y[0], theta * 180.0 / Physics::pi);
799 800 801
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        // We have to integrate r and pr again, otherwise we don't have the Runge-Kutta of the B-field
        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;

        // Gordon, formulas (22a) and (22b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = y[0] * y[i+1] * invptheta;
            dydt[i+1] = (y[0] * brint - y[1] * invptheta * btint) * y[i];
        }

        // integrate phase
        dydt[6] = y[0] * invptheta * gamma_m - 1;
    };

    // to get next index for r and pr (to iterate over container)
    auto next = [&](state_type& y, const value_type t) {
        // number of times z2 changes sign
        nzcross_m += (idx > 0) * (y[4] * zold < 0);
        zold = y[4];
        ++idx;
    };

    // set initial state container for integration: y = {r, pr, z1, pz1, z2, pz2, phase}
    state_type y = {r_m[0], pr_m[0], 1.0, 0.0, 0.0, 1.0, 0.0};

    // add last element for integration (since we have to return to the initial point (--> size = N_m+1, capacity = N_m+1)
    r_m.push_back(lastOrbitVal_m);
    pr_m.push_back(lastMomentumVal_m);
833

834 835
    // integrate: assume no imperfections --> only integrate over a single sector (dtheta_m = 2pi/N_m)
    boost::numeric::odeint::integrate_n_steps(stepper_m,vertical,y,0.0,dtheta_m,N_m,next);
836

837 838 839
    // remove last element again (--> size = N_m, capacity = N_m+1)
    r_m.pop_back();
    pr_m.pop_back();
840

841 842 843 844 845
    // write new state
    z_m[0] = y[2];
    pz_m[0] = y[3];
    z_m[1] = y[4];
    pz_m[1] = y[5];
846
    phase_m = y[6] * Physics::u_two_pi; // / (2.0 * Physics::pi);
847

adelmann's avatar
adelmann committed
848 849 850 851 852
    /* domain_m = true --> only integrated over a single sector
     * --> multiply by nSector_m to get correct phase_m
     */
    if (domain_m)
        phase_m *= nSector_m;
853 854
}

Andreas Adelmann's avatar
Andreas Adelmann committed
855
#endif