ClosedOrbitFinder.h 33.4 KB
Newer Older
1 2 3 4
/**
 * @file ClosedOrbitFinder.h
 * The algorithm is based on the paper of M. M. Gordon: "Computation of closed orbits and basic focusing properties for
 * sector-focused cyclotrons and the design of 'cyclops'" (1983)
5 6
 * As template arguments one chooses the type of the variables and the integrator for the ODEs. The supported steppers can
 * be found on
7 8 9 10 11 12
 * http://www.boost.org/ where it is part of the library Odeint.
 *
 * @author Matthias Frey
 * @version 1.0
 */

13 14 15
#ifndef CLOSEDORBITFINDER_H
#define CLOSEDORBITFINDER_H

16
#include <algorithm>
17 18 19
#include <array>
#include <cmath>
#include <functional>
adelmann's avatar
adelmann committed
20
#include <limits>
21
#include <numeric>
adelmann's avatar
adelmann committed
22
#include <stdexcept>
adelmann's avatar
adelmann committed
23
#include <string>
24
#include <utility>
25 26
#include <vector>

27
// #include "physics.h"
28

adelmann's avatar
adelmann committed
29
#include "MagneticField.h" // ONLY FOR STAND-ALONE PROGRAM
30 31 32 33 34 35 36


#include <fstream>

// include headers for integration
#include <boost/numeric/odeint/integrate/integrate_n_steps.hpp>

37
/// Finds a closed orbit of a cyclotron for a given energy
38 39 40
template<typename Value_type, typename Size_type, class Stepper>
class ClosedOrbitFinder
{
41 42 43 44 45 46 47 48 49 50 51 52 53
    public:
        /// Type of variables
        typedef Value_type value_type;
        /// Type for specifying sizes
        typedef Size_type size_type;
        /// Type of container for storing quantities (path length, orbit, etc.)
        typedef std::vector<value_type> container_type;
        /// Type for holding state of ODE values
        typedef std::vector<value_type> state_type;

        /// Sets the initial values for the integration and calls findOrbit().
        /*!
         * @param E is the energy [MeV] to which the closed orbit should be found
54
         * @param E0 is the potential energy (particle energy at rest) [MeV].
55 56
         * @param wo is the nominal orbital frequency (see paper of Dr. C. Baumgarten: "Transverse-Longitudinal
         * Coupling by Space Charge in Cyclotrons" (2012), formula (1))
adelmann's avatar
adelmann committed
57
         * @param N specifies the number of splits (2pi/N), i.e number of integration steps
58 59 60 61
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done. Program stops if closed orbit not found within this time.
         * @param Emin is the minimum energy [MeV] needed in cyclotron
         * @param Emax is the maximum energy [MeV] reached in cyclotron
adelmann's avatar
adelmann committed
62
         * @param nSector is the number of sectors (--> symmetry) of cyclotron
63
         * @param rmin is the minimal radius of the cyclotron, \f$ \left[r_{min}\right] = \si{m} \f$
adelmann's avatar
adelmann committed
64 65
         * @param ntheta is the number of angle splits (fieldmap variable)
         * @param nradial is the number of radial splits (fieldmap variable)
66
         * @param dr is the radial step size, \f$ \left[\Delta r\right] = \si{m} \f$
67
         * @param fieldmap is the location of the file that specifies the magnetic field
68 69
         * @param domain is a boolean (default: true). If "true" the closed orbit is computed over a single sector,
         * otherwise over 2*pi.
70
         */
71
        ClosedOrbitFinder(value_type, value_type, value_type, size_type, value_type, size_type, value_type, value_type, size_type,
72
                          value_type, size_type, size_type, value_type, const std::string&, bool = true);
73 74 75 76 77 78 79 80 81 82 83 84 85

        /// Returns the inverse bending radius (size of container N+1)
        container_type& getInverseBendingRadius();

        /// Returns the step lengths of the path (size of container N+1)
        container_type& getPathLength();

        /// Returns the field index (size of container N+1)
        container_type& getFieldIndex();

        /// Returns the radial and vertical tunes (in that order)
        std::pair<value_type,value_type> getTunes();

86 87 88 89 90 91 92
        /// Returns the closed orbit (size of container N+1) starting at specific angle (only makes sense when computing
        /// the closed orbit for a whole turn) (default value: 0°).
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the radius.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
         */
93 94
        container_type getOrbit(value_type angle = 0);

95 96 97 98 99 100
        /// Returns the momentum of the orbit (size of container N+1)starting at specific angle (only makes sense when
        /// computing the closed orbit for a whole turn) (default value: 0°), \f$ \left[ p_{r} \right] = \si{m}\f$.
        /// Attention: It computes the starting index of the array. If it's not an integer it just cuts the floating point
        /// part, i.e. it takes the next starting index below. There's no interpolation of the momentum.
        /*!
         * @param angle is the start angle for the output. Has to be within [0°,360°[ (default: 0°).
101
         * @returns the momentum in \f$ \beta * \gamma \f$ units
102
         */
103
        container_type getMomentum(value_type angle = 0);
104 105 106 107 108 109 110

        /// Returns the relativistic factor gamma
        value_type getGamma();

        /// Returns the average orbit radius
        value_type getAverageRadius();

adelmann's avatar
adelmann committed
111 112
        /// Returns the frequency error
        value_type getFrequencyError();
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        /// Returns true if a closed orbit could be found
        bool isConverged();

    private:
        /// Computes the closed orbit
        /*!
         * @param accuracy specifies the accuracy of the closed orbit
         * @param maxit is the maximal number of iterations done for finding the closed orbit
         */
        bool findOrbit(value_type, size_type);

        /// Fills in the values of h_m, ds_m, fidx_m. It gets called by in by constructor.
        void computeOrbitProperties();

        /// This function is called by the function getTunes().
        /*! Transfer matrix Y = [y11, y12; y21, y22] (see Gordon paper for more details).
         * @param y are the positions (elements y11 and y12 of Y)
         * @param py2 is the momentum of the second solution (element y22 of Y)
         * @param ncross is the number of sign changes (\#crossings of zero-line)
         */
        value_type computeTune(const std::array<value_type,2>&, value_type, size_type);

adelmann's avatar
adelmann committed
136
        /// This function computes nzcross_ which is used to compute the tune in z-direction and the frequency error
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        void computeVerticalOscillations();

        /// Stores current position in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> x_m; // x_m = [x1, x2]
        /// Stores current momenta in horizontal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> px_m; // px_m = [px1, px2]
        /// Stores current position in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> z_m; // z_m = [z1, z2]
        /// Stores current momenta in longitudinal direction for the solutions of the ODE with different initial values
        std::array<value_type,2> pz_m; // pz_m = [pz1, pz2]

        /// Stores the inverse bending radius
        container_type h_m;
        /// Stores the step length
        container_type ds_m;
        /// Stores the radial orbit (size: N_m+1)
        container_type r_m;
        /// Stores the radial momentum
        container_type pr_m;
        /// Stores the field index
        container_type fidx_m;

        /// Counts the number of zero-line crossings in horizontal direction (used for computing horizontal tune)
        size_type nxcross_m;
        /// Counts the number of zero-line crossings in vertical direction (used for computing vertical tune)
        size_type nzcross_m; //#crossings of zero-line in x- and z-direction

        /// Is the energy for which the closed orbit should be found
        value_type E_m;
166 167 168 169
        
        /// Is the potential energy [MeV]
        value_type E0_m;
        
170 171
        /// Is the nominal orbital frequency
        value_type wo_m;
adelmann's avatar
adelmann committed
172
        /// Number of integration steps
173 174 175 176 177 178 179 180 181 182 183 184 185
        size_type N_m;
        /// Is the angle step size
        value_type dtheta_m;

        /// Is the relativistic factor
        value_type gamma_m;

        /// Is the average radius
        value_type ravg_m;

        /// Is the phase
        value_type phase_m;

186 187 188
        /**
         * Boolean which tells if a closed orbit for this configuration could be found (get set by the function findOrbit)
         */
189 190 191 192 193 194 195
        bool converged_m;

        /// Minimum energy needed in cyclotron
        value_type Emin_m;

        /// Maximum energy reached in cyclotron
        value_type Emax_m;
196

adelmann's avatar
adelmann committed
197 198
        /// Number of sectors (symmetry)
        size_type nSector_m;
199

adelmann's avatar
adelmann committed
200 201
        /// Minimal radius of cyclotron, \f$ \left[r_{min}\right] = m \f$
        value_type rmin_m;
202

adelmann's avatar
adelmann committed
203 204
        /// Number of angle splits (fieldmap)
        size_type ntheta_m;
205

adelmann's avatar
adelmann committed
206 207
        /// Number of radial steps (fieldmap)
        size_type nradial_m;
208

adelmann's avatar
adelmann committed
209 210
        /// Radial step size, \f$ \left[\Delta r\right] = m \f$
        value_type dr_m;
211

212
        /**
213 214 215 216
         * Stores the last orbit value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastOrbitVal_m to
         * compute the vertical oscillations)
         */
217 218
        value_type lastOrbitVal_m;

219 220 221 222 223
        /**
         * Stores the last momentum value (since we have to return to the beginning to check the convergence in the
         * findOrbit() function. This last value is then deleted from the array but is stored in lastMomentumVal_m to
         * compute the vertical oscillations)
         */
224
        value_type lastMomentumVal_m;
225 226

        /**
227 228 229
         * Boolean which is true if computeVerticalOscillations() executed, otherwise false. This is used for checking in
         * getTunes() and getFrequencyError().
         */
230 231 232 233
        bool vertOscDone_m;

        /// Location of magnetic field
        std::string fieldmap_m;
234 235

        /**
236 237 238
         * Boolean which is true by default. "true": orbit integration over one sector only, "false": integration
         * over 2*pi
         */
adelmann's avatar
adelmann committed
239
        bool domain_m;
240

241 242 243 244 245
        /// Defines the stepper for integration of the ODE's
        Stepper stepper_m;

        /// ONLY FOR STAND-ALONE PROGRAM
        float** bmag_m;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        
        /*!
         * This quantity is defined in the paper "Transverse-Longitudinal Coupling by Space Charge in Cyclotrons" 
         * of Dr. Christian Baumgarten (2012)
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ (also defined in paper) as input argument.
         */
        std::function<double(double)> acon_m = [](double wo) { return Physics::c / wo; };
        
        /// Cyclotron unit \f$ \left[T\right] \f$ (Tesla)
        /*!
         * The lambda function takes the orbital frequency \f$ \omega_{o} \f$ as input argument.
         */
        std::function<double(double, double)> bcon_m = [](double e0, double wo) {
            return e0 * 1.0e7 / (/* physics::q0 */ 1.0 * Physics::c * Physics::c / wo);
        };
261 262 263 264 265 266
};

// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

267
    template<typename Value_type, typename Size_type, class Stepper>
268
ClosedOrbitFinder<Value_type, Size_type, Stepper>::ClosedOrbitFinder(value_type E, value_type E0, value_type wo, size_type N,
269 270 271 272
                                                                     value_type accuracy, size_type maxit,
                                                                     value_type Emin, value_type Emax, size_type nSector,
                                                                     value_type rmin, size_type ntheta, size_type nradial,
                                                                     value_type dr, const std::string& fieldmap,
273
                                                                     bool domain)
274 275
: nxcross_m(0), nzcross_m(0), E_m(E), E0_m(E0), wo_m(wo), N_m(N), dtheta_m(Physics::two_pi/value_type(N)),
  gamma_m(E/E0+1.0), ravg_m(0), phase_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector),
276 277
  rmin_m(rmin), ntheta_m(ntheta), nradial_m(nradial), dr_m(dr), lastOrbitVal_m(0.0), lastMomentumVal_m(0.0),
  vertOscDone_m(false), fieldmap_m(fieldmap), domain_m(domain), stepper_m()
278
{
279 280

    if (Emin_m > Emax_m || E_m < Emin_m || E > Emax_m)
adelmann's avatar
adelmann committed
281
        throw std::domain_error("Error in ClosedOrbitFinder: Emin <= E <= Emax and Emin < Emax");
282

adelmann's avatar
adelmann committed
283 284 285
    // velocity: beta = v/c = sqrt(1-1/(gamma*gamma))
    if (gamma_m == 0)
        throw std::invalid_argument("Error in ClosedOrbitFinder: Relativistic factor equal zero.");
286

adelmann's avatar
adelmann committed
287 288 289 290
    // if domain_m = true --> integrate over a single sector
    if (domain_m) {
        N_m /=  nSector_m;
    }
291

292 293 294 295 296
    // reserve storage for the orbit and momentum (--> size = 0, capacity = N_m+1)
    /*
     * we need N+1 storage, since dtheta = 2pi/N (and not 2pi/(N-1)) that's why we need N+1 integration steps
     * to return to the origin (but the return size is N_m)
     */
adelmann's avatar
adelmann committed
297 298
    r_m.reserve(N_m + 1);
    pr_m.reserve(N_m + 1);
299

300
    // reserve memory of N_m for the properties (--> size = 0, capacity = N_m)
adelmann's avatar
adelmann committed
301 302 303
    h_m.reserve(N_m);
    ds_m.reserve(N_m);
    fidx_m.reserve(N_m);
304

305
    // compute closed orbit
306
    converged_m = findOrbit(accuracy, maxit);
307

308 309 310 311 312
    // compute h, ds, fidx, rav (average radius)
    computeOrbitProperties();
}

template<typename Value_type, typename Size_type, class Stepper>
313 314 315
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getInverseBendingRadius()
{
316
    return h_m;
317 318 319
}

template<typename Value_type, typename Size_type, class Stepper>
320
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
321
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getPathLength()
322
{
323
    return ds_m;
324 325 326
}

template<typename Value_type, typename Size_type, class Stepper>
327 328 329
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type&
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFieldIndex()
{
330
    return fidx_m;
331 332 333
}

template<typename Value_type, typename Size_type, class Stepper>
334 335 336
std::pair<Value_type,Value_type> ClosedOrbitFinder<Value_type, Size_type, Stepper>::getTunes() {
    // compute radial tune
    value_type nur = computeTune(x_m,px_m[1],nxcross_m);
337

338 339 340
    // compute nzcross_m
    if (!vertOscDone_m)
        computeVerticalOscillations();
341

342 343 344 345
    // compute vertical tune
    value_type nuz = computeTune(z_m,pz_m[1],nzcross_m);

    return std::make_pair(nur,nuz);
346 347 348
}

template<typename Value_type, typename Size_type, class Stepper>
349
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
350
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getOrbit(value_type angle)
351 352
{
    container_type r = r_m;
353

354 355 356
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
357

358 359
        // compute starting point
        size_type start = deg_step * angle;
360

361 362
        // copy end to start
        std::copy(r_m.begin() + start, r_m.end(), r.begin());
363

364 365 366
        // copy start to end
        std::copy_n(r_m.begin(), start, r.end() - start);
    }
367

368 369 370 371 372
    return r;
}

template<typename Value_type, typename Size_type, class Stepper>
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::container_type
373
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getMomentum(value_type angle)
374 375
{
    container_type pr = pr_m;
376

377 378 379
    if (angle != 0.0) {
        // compute the number of steps per degree
        value_type deg_step = N_m / 360.0;
380

381 382 383 384
        // compute starting point
        size_type start = deg_step * angle;
        // copy end to start
        std::copy(pr_m.begin() + start, pr_m.end(), pr.begin());
385

386 387 388
        // copy start to end
        std::copy_n(pr_m.begin(), start, pr.end() - start);
    }
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    
    // change units from meters to \beta * \gamma
    /* in Gordon paper:
     * 
     * p = \gamma * \beta * a
     * 
     * where a = c / \omega_{0} with \omega_{0} = 2 * \pi * \nu_{0} = 2 * \pi * \nu_{rf} / h
     * 
     * c: speed of light
     * h: harmonic number
     * v_{rf}: nomial rf frequency
     * 
     * Units:
     * 
     * [a] = m --> [p] = m
     * 
405
     * The momentum in \beta * \gamma is obtained by dividing by "a"
406
     */
407
    value_type factor =  1.0 / acon_m(wo_m);
408 409
    std::for_each(pr.begin(), pr.end(), [factor](value_type p) { return p * factor; });
    
410
    return pr;
411 412 413
}

template<typename Value_type, typename Size_type, class Stepper>
414 415 416
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getGamma()
{
417
    return gamma_m;
418 419 420
}

template<typename Value_type, typename Size_type, class Stepper>
421 422 423
inline typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getAverageRadius()
{
424
    return ravg_m;
425 426 427
}

template<typename Value_type, typename Size_type, class Stepper>
428 429
typename ClosedOrbitFinder<Value_type, Size_type, Stepper>::value_type
    ClosedOrbitFinder<Value_type, Size_type, Stepper>::getFrequencyError()
430
{
431 432 433
    // if the vertical oscillations aren't computed, we have to, since there we also compuote the frequency error.
    if(!vertOscDone_m)
        computeVerticalOscillations();
434

435
    return phase_m;
436 437 438 439
}

template<typename Value_type, typename Size_type, class Stepper>
inline bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::isConverged() {
440
    return converged_m;
441
}
442 443 444 445 446 447 448

// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------

template<typename Value_type, typename Size_type, class Stepper>
bool ClosedOrbitFinder<Value_type, Size_type, Stepper>::findOrbit(value_type accuracy, size_type maxit) {
449 450 451 452 453
    /* REMARK TO GORDON
     * q' = 1/b = 1/bcon
     * a' = a = acon
     */

adelmann's avatar
adelmann committed
454 455 456 457
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    bmag_m = MagneticField::malloc2df(ntheta_m,nradial_m);
    MagneticField::ReadSectorMap(bmag_m,nradial_m,ntheta_m,1,fieldmap_m,0.0);
    MagneticField::MakeNFoldSymmetric(bmag_m,ntheta_m,nradial_m,ntheta_m/nSector_m,nSector_m);
458
    value_type bint, brint, btint;
459

460 461 462
    // resize vectors (--> size = N_m+1, capacity = N_m+1), note: we do N_m+1 integration steps
    r_m.resize(N_m+1);
    pr_m.resize(N_m+1);
463

464
    // store acon and bcon locally
465 466
    value_type acon = acon_m(wo_m);               // [acon] = m
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);        // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
467 468 469 470 471 472 473 474 475 476 477 478

    // helper constants
    value_type p2;                                      // p^2 = p*p
    value_type pr2;                                     // squared radial momentum (pr^2 = pr*pr)
    value_type ptheta, invptheta;                       // Gordon, formula (5c)
    value_type invdenom;                                // denominator for computing dr,dpr
    value_type xold = 0.0;                              // for counting nxcross

    // index for reaching next element of the arrays r and pr (no nicer way found yet)
    size_type idx = 0;
    // observer for storing the current value after each ODE step (e.g. Runge-Kutta step) into the containers of r and pr
    auto store = [&](state_type& y, const value_type t)
479
    {
480 481 482 483 484 485
        r_m[idx] = y[0];
        pr_m[idx] = y[1];

        // count number of crossings (excluding starting point --> idx>0)
        nxcross_m += (idx > 0) * (y[4] * xold < 0);
        xold = y[4];
486

487 488 489 490
        ++idx;
    };

    // define the six ODEs (using lambda function)
491 492 493 494
    std::function<void(const state_type&, state_type&, const double)> orbit_integration = [&](const state_type &y,
                                                                                              state_type &dydt,
                                                                                              const double theta)
    {
495 496
        pr2 = y[1] * y[1];
        if (p2 < pr2)
adelmann's avatar
adelmann committed
497
            throw std::domain_error("Error in ClosedOrbitFinder::findOrbit: p_{r} > p^{2} (defined in Gordon paper)");
498

499 500 501 502 503
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
504
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        bint *= invbcon;
        brint *= invbcon;

        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;
        // Gordon, formulas (9a) and (9b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = (y[1] * y[i] + y[0] * p2 * y[i+1] * invptheta * invptheta) * invptheta;
            dydt[i+1] = - y[1] * y[i+1] * invptheta - (bint + y[0] * brint) * y[i];
        }
    };

    // define initial state container for integration: y = {r, pr, x1, px1, x2, px2}
    state_type y(6);
521

522 523 524 525 526 527 528 529
    // difference of last and first value of r (1. element) and pr (2. element)
    container_type err(2);
    // correction term for initial values: r = r + dr, pr = pr + dpr; Gordon, formula (17)
    container_type delta = {0.0, 0.0};
    // amplitude of error; Gordon, formula (18) (a = a')
    value_type error = std::numeric_limits<value_type>::max();
    // if niterations > maxit --> stop iteration
    size_type niterations = 0;
530 531 532 533

    /*
     * Christian:
     * N = 1440 ---> N = 720 ---> dtheta = 2PI/720 --> nsteps = 721
534
     *
535
     * 0, 2, 4, ... ---> jeden zweiten berechnene: 1, 3, 5, ... interpolieren --> 1440 Werte
536
     *
537 538
     * Matthias:
     * N = 1440 --> dtheta = 2PI/1440 --> nsteps = 1441
539
     *
540
     * 0, 1, 2, 3, 4, 5, ... --> 1440 Werte
541
     *
542
     */
543

544 545
    // iterate until suggested energy (start with minimum energy)
    value_type E = Emin_m;
546 547

    // step size of energy
adelmann's avatar
adelmann committed
548
    value_type dE = (E_m - Emin_m) / (Emax_m - Emin_m);
549

adelmann's avatar
adelmann committed
550 551
    // energy increase not more than 0.25
    dE = (dE > 0.25) ? 0.25 : dE;
552 553

    // energy dependent values
554
    value_type en = E / E0_m;                      // en = E/E0 = E/(mc^2) (E0 is potential energy)
555 556 557 558 559 560 561 562 563 564 565 566 567
    value_type p = acon * std::sqrt(en * (2.0 + en));     // momentum [p] = m; Gordon, formula (3)
    value_type gamma2 = (1.0 + en) * (1.0 + en);          // = gamma^2
    value_type beta = std::sqrt(1.0 - 1.0 / gamma2);
    p2 = p * p;                                           // p^2 = p*p
    value_type invgamma4 = 1.0 / (gamma2 * gamma2);       // = 1/gamma^4

    // set initial values for radius and radial momentum for lowest energy Emin
    // orbit, [r] = m; Gordon, formula (20)
    // radial momentum; Gordon, formula (20)
    container_type init = {beta * acon, 0.0};

    // store initial values for updating values for higher energies
    container_type previous_init = {0.0, 0.0};
568

adelmann's avatar
adelmann committed
569
    do {
570 571

        // (re-)set inital values for r and pr
572
        r_m[0] = init[0];
573
        pr_m[0] = init[1];
574

575 576 577 578 579 580 581 582 583 584 585 586
        // integrate until error smaller than user-define accuracy
        do {
            // (re-)set inital values
            x_m[0]  = 1.0;               // x1; Gordon, formula (10)
            px_m[0] = 0.0;               // px1; Gordon, formula (10)
            x_m[1]  = 0.0;               // x2; Gordon, formula (10)
            px_m[1] = 1.0;               // px2; Gordon, formula (10)
            nxcross_m = 0;               // counts the number of crossings of x-axis (excluding first step)
            idx = 0;                     // index for looping over r and pr arrays

            // fill container with initial states
            y = {init[0],init[1], x_m[0], px_m[0], x_m[1], px_m[1]};
587

588 589
            // integrate from 0 to 2*pi (one has to get back to the "origin")
            boost::numeric::odeint::integrate_n_steps(stepper_m,orbit_integration,y,0.0,dtheta_m,N_m,store);
590

591 592 593 594 595
            // write new state
            x_m[0] = y[2];
            px_m[0] = y[3];
            x_m[1] = y[4];
            px_m[1] = y[5];
596

597 598 599 600
            // compute error (compare values of orbit and momentum for theta = 0 and theta = 2*pi)
            // (Note: size = N_m+1 --> last entry is N_m)
            err[0] = r_m[N_m] - r_m[0];      // Gordon, formula (14)
            err[1] = pr_m[N_m] - pr_m[0];    // Gordon, formula (14)
601

602 603 604 605
            // correct inital values of r and pr
            invdenom = 1.0 / (x_m[0] + px_m[1] - 2.0);
            delta[0] = ((px_m[1] - 1.0) * err[0] - x_m[1] * err[1]) * invdenom; // dr; Gordon, formula (16a)
            delta[1] = ((x_m[0] - 1.0) * err[1] - px_m[0] * err[0]) * invdenom; // dpr; Gordon, formula (16b)
606

607 608 609
            // improved initial values; Gordon, formula (17) (here it's used for higher energies)
            init[0] += delta[0];
            init[1] += delta[1];
610

611 612
            // compute amplitude of the error
            error = std::sqrt(delta[0] * delta[0] + delta[1] * delta[1] * invgamma4) / r_m[0];
613

614
        } while (error > accuracy && niterations++ < maxit);
615

616 617
        // reset iteration counter
        niterations = 0;
618

619 620
        // reset correction term
        delta[0] = delta[1] = 0.0;
adelmann's avatar
adelmann committed
621 622 623 624 625 626

        // increase energy by dE
        if (E_m <= E + dE)
            E = E_m;
        else
            E += dE;
627

628
        // set constants for new energy E
629
        en = E / E0_m;                     // en = E/E0 = E/(mc^2) (E0 is potential energy)
630 631 632 633
        p = acon * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
        p2 = p * p;                               // p^2 = p*p
        gamma2 = (1.0 + en) * (1.0 + en);
        invgamma4 = 1.0 / (gamma2 * gamma2);
634 635


adelmann's avatar
adelmann committed
636
    } while (E != E_m);
637

638 639 640 641 642
    /* store last entry, since it is needed in computeVerticalOscillations(), because we have to do the same
     * number of integrations steps there.
     */
    lastOrbitVal_m = r_m[N_m];           // needed in computeVerticalOscillations()
    lastMomentumVal_m = pr_m[N_m];       // needed in computeVerticalOscillations()
643

644 645 646
    // remove last entry (since we don't have to store [0,2pi], but [0,2pi[)  --> size = N_m, capacity = N_m+1
    r_m.pop_back();
    pr_m.pop_back();
647

648

649 650 651
    // returns true if converged, otherwise false
    return error < accuracy;
}
652 653

template<typename Value_type, typename Size_type, class Stepper>
654 655 656
Value_type ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeTune(const std::array<value_type,2>& y,
                                                                          value_type py2, size_type ncross)
{
657
    // Y = [y1, y2; py1, py2]
658

659 660
    // cos(mu)
    value_type cos = 0.5 * (y[0] + py2);
661
    
662
    value_type mu;
663

664 665
    // sign of sin(mu) has to be equal to y2
    bool negative = std::signbit(y[1]);
666

667
    bool uneven = (ncross % 2);
668

669 670 671
    if (std::fabs(cos) > 1.0) {
        // store the number of crossings
        value_type n = ncross;
672

673 674
        if (uneven)
            n = ncross - 1;
675

676 677
        // Gordon, formula (36b)
        value_type muPrime = -std::acosh(std::fabs(cos));      // mu'
678
        mu = n * Physics::pi + muPrime;
679

680 681 682 683 684 685 686
    } else {
        value_type muPrime = (uneven) ? std::acos(-cos) : std::acos(cos);    // mu'
        /* It has to be fulfilled: 0<= mu' <= pi
        * But since |cos(mu)| <= 1, we have
        * -1 <= cos(mu) <= 1 --> 0 <= mu <= pi (using above programmed line), such
        * that condition is already fulfilled.
        */
687

688
        // Gordon, formula (36)
689
        mu = ncross * Physics::pi + muPrime;
690

691 692
        // if sign(y[1]) > 0 && sign(sin(mu)) < 0
        if (!negative && std::signbit(std::sin(mu))) {
693
            mu = ncross * Physics::pi - muPrime;
694
        } else if (negative && !std::signbit(std::sin(mu))) {
695
            mu = ncross * Physics::pi - muPrime + Physics::two_pi;
696 697
        }
    }
698

699
    // nu = mu/theta, where theta = integration domain
700

adelmann's avatar
adelmann committed
701 702 703 704 705
    /* domain_m = true --> only integrated over a single sector --> multiply by nSector_m to
     * get correct tune.
     */
    if (domain_m)
        mu *= nSector_m;
706

707
    return mu * Physics::u_two_pi;
708 709 710
}

template<typename Value_type, typename Size_type, class Stepper>
711
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeOrbitProperties() {
712
    /*
713 714 715 716 717
     * The formulas for h, fidx and ds are from the paper:
     * "Tranverse-Longitudinal Coupling by Space Charge in Cyclotrons"
     * written by Dr. Christian Baumgarten (2012, PSI)
     * p. 6
     */
718

adelmann's avatar
adelmann committed
719
    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
720
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta
721

722 723 724
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) (E0 is potential energy)
    value_type p = acon_m(wo_m) * std::sqrt(en * (2.0 + en));    // momentum [p] = m; Gordon, formula (3)
725 726 727
    value_type p2 = p * p;
    value_type theta = 0.0;                                             // angle for interpolating
    value_type ptheta;
728

729 730 731 732 733 734 735
    // resize of container (--> size = N_m, capacity = N_m)
    h_m.resize(N_m);
    fidx_m.resize(N_m);
    ds_m.resize(N_m);

    for (size_type i = 0; i < N_m; ++i) {
        // interpolate magnetic field
736
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180.0 / Physics::pi,nradial_m,ntheta_m,r_m[i],rmin_m,dr_m,bmag_m);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;

        // inverse bending radius
        h_m[i] = bint / p;

        // local field index
        ptheta = std::sqrt(p2 - pr_m[i] * pr_m[i]);
        fidx_m[i] = (brint * ptheta - btint * pr_m[i] / r_m[i]) / p2; //(bint*bint);

        // path length element
        ds_m[i] = std::hypot(r_m[i] * pr_m[i] / ptheta,r_m[i]) * dtheta_m; // C++11 function

        // increase angle
        theta += dtheta_m;
753
    }
754 755 756

    // compute average radius
    ravg_m = std::accumulate(r_m.begin(),r_m.end(),0.0) / value_type(r_m.size());
757 758 759
}

template<typename Value_type, typename Size_type, class Stepper>
760
void ClosedOrbitFinder<Value_type, Size_type, Stepper>::computeVerticalOscillations() {
761

762 763 764 765 766
    vertOscDone_m = true;

    // READ IN MAGNETIC FIELD: ONLY FOR STAND-ALONE PROGRAM
    value_type bint, brint, btint; // B, dB/dr, dB/dtheta

767 768
    value_type en = E_m / E0_m;                                  // en = E/E0 = E/(mc^2) with potential energy E0
    value_type p = acon_m(wo_m) * std::sqrt(en *(en + 2.0));     // Gordon, formula (3)
769 770 771 772 773 774 775
    value_type p2 = p * p;                                              // p^2 = p*p
    size_type idx = 0;                                                  // index for going through container
    value_type pr2;                                                     // pr^2 = pr*pr
    value_type ptheta, invptheta;                                       // Gordon, formula (5c)
    value_type zold = 0.0;                                              // for counting nzcross

    // store bcon locally
776
    value_type invbcon = 1.0 / bcon_m(E0_m, wo_m);     // [bcon] = MeV*s/(C*m^2) = 10^6 T = 10^7 kG (kilo Gauss)
777 778

    // define the ODEs (using lambda function)
779 780 781 782
    std::function<void(const state_type&, state_type&, const double)> vertical = [&](const state_type &y,
                                                                                     state_type &dydt,
                                                                                     const double theta)
    {
783
        pr2 = y[1] * y[1];
784 785 786 787
        if (p2 < pr2) {
            throw std::domain_error("Error in ClosedOrbitFinder::computeVerticalOscillations: p_{r} > p^{2}"
            "(defined in Gordon paper)");
        }
788

789 790 791 792 793
        // Gordon, formula (5c)
        ptheta = std::sqrt(p2 - pr2);
        invptheta = 1.0 / ptheta;

        // intepolate values of magnetic field
794
        MagneticField::interpolate(&bint,&brint,&btint,theta * 180 / Physics::pi,nradial_m,ntheta_m,y[0],rmin_m,dr_m,bmag_m);
795 796 797
        bint *= invbcon;
        brint *= invbcon;
        btint *= invbcon;
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        // We have to integrate r and pr again, otherwise we don't have the Runge-Kutta of the B-field
        // Gordon, formula (5a)
        dydt[0] = y[0] * y[1] * invptheta;
        // Gordon, formula (5b)
        dydt[1] = ptheta - y[0] * bint;

        // Gordon, formulas (22a) and (22b)
        for (size_type i = 2; i < 5; i += 2) {
            dydt[i] = y[0] * y[i+1] * invptheta;
            dydt[i+1] = (y[0] * brint - y[1] * invptheta * btint) * y[i];
        }

        // integrate phase
        dydt[6] = y[0] * invptheta * gamma_m - 1;
    };

    // to get next index for r and pr (to iterate over container)
    auto next = [&](state_type& y, const value_type t) {
        // number of times z2 changes sign
        nzcross_m += (idx > 0) * (y[4] * zold < 0);
        zold = y[4];
        ++idx;
    };

    // set initial state container for integration: y = {r, pr, z1, pz1, z2, pz2, phase}
    state_type y = {r_m[0], pr_m[0], 1.0, 0.0, 0.0, 1.0, 0.0};

    // add last element for integration (since we have to return to the initial point (--> size = N_m+1, capacity = N_m+1)
    r_m.push_back(lastOrbitVal_m);
    pr_m.push_back(lastMomentumVal_m);
829

830 831
    // integrate: assume no imperfections --> only integrate over a single sector (dtheta_m = 2pi/N_m)
    boost::numeric::odeint::integrate_n_steps(stepper_m,vertical,y,0.0,dtheta_m,N_m,next);
832

833 834 835
    // remove last element again (--> size = N_m, capacity = N_m+1)
    r_m.pop_back();
    pr_m.pop_back();
836

837 838 839 840 841
    // write new state
    z_m[0] = y[2];
    pz_m[0] = y[3];
    z_m[1] = y[4];
    pz_m[1] = y[5];
842
    phase_m = y[6] * Physics::u_two_pi; // / (2.0 * Physics::pi);
843

adelmann's avatar
adelmann committed
844 845 846 847 848
    /* domain_m = true --> only integrated over a single sector
     * --> multiply by nSector_m to get correct phase_m
     */
    if (domain_m)
        phase_m *= nSector_m;
849 850
}

851
#endif