ParallelCyclotronTracker.cpp 124 KB
Newer Older
gsell's avatar
gsell committed
1
//
2 3
// Class ParallelCyclotronTracker
//   Tracker for OPAL-Cycl
gsell's avatar
gsell committed
4
//
5 6 7 8 9
// Copyright (c) 2007 - 2014, Jianjun Yang, Andreas Adelmann and Matthias Toggweiler,
//                            Paul Scherrer Institut, Villigen PSI, Switzerland
// Copyright (c) 2014,        Daniel Winklehner, MIT, Cambridge, MA, USA
// Copyright (c) 2012 - 2020, Paul Scherrer Institut, Villigen PSI, Switzerland
// All rights reserved
gsell's avatar
gsell committed
10
//
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Implemented as part of the PhD thesis
// "Beam dynamics in high intensity cyclotrons including neighboring bunch effects"
// and the paper
// "Beam dynamics in high intensity cyclotrons including neighboring bunch effects:
// Model, implementation, and application"
// (https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.13.064201)
//
// This file is part of OPAL.
//
// OPAL is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// You should have received a copy of the GNU General Public License
// along with OPAL. If not, see <https://www.gnu.org/licenses/>.
gsell's avatar
gsell committed
27
//
kraus's avatar
kraus committed
28
#include "Algorithms/ParallelCyclotronTracker.h"
29

gsell's avatar
gsell committed
30
#include <fstream>
31 32
#include <iostream>
#include <limits>
gsell's avatar
gsell committed
33
#include <vector>
frey_m's avatar
frey_m committed
34
#include <numeric>
35
#include <cmath>
36 37

#include "AbstractObjects/Element.h"
38
#include "AbstractObjects/OpalData.h"
gsell's avatar
gsell committed
39

40
#include "AbsBeamline/CCollimator.h"
gsell's avatar
gsell committed
41 42
#include "AbsBeamline/Corrector.h"
#include "AbsBeamline/Cyclotron.h"
adelmann's avatar
adelmann committed
43
#include "AbsBeamline/Degrader.h"
gsell's avatar
gsell committed
44 45 46 47
#include "AbsBeamline/Drift.h"
#include "AbsBeamline/Marker.h"
#include "AbsBeamline/Monitor.h"
#include "AbsBeamline/Multipole.h"
ext-rogers_c's avatar
ext-rogers_c committed
48
#include "AbsBeamline/MultipoleT.h"
49 50 51 52
#include "AbsBeamline/MultipoleTBase.h"
#include "AbsBeamline/MultipoleTStraight.h"
#include "AbsBeamline/MultipoleTCurvedConstRadius.h"
#include "AbsBeamline/MultipoleTCurvedVarRadius.h"
53
#include "AbsBeamline/Offset.h"
54
#include "AbsBeamline/PluginElement.h"
gsell's avatar
gsell committed
55 56 57
#include "AbsBeamline/Probe.h"
#include "AbsBeamline/RBend.h"
#include "AbsBeamline/RFCavity.h"
58
#include "AbsBeamline/Ring.h"
gsell's avatar
gsell committed
59
#include "AbsBeamline/SBend.h"
60
#include "AbsBeamline/SBend3D.h"
ext-rogers_c's avatar
ext-rogers_c committed
61
#include "AbsBeamline/ScalingFFAMagnet.h"
gsell's avatar
gsell committed
62 63 64
#include "AbsBeamline/Septum.h"
#include "AbsBeamline/Solenoid.h"
#include "AbsBeamline/Stripper.h"
65
#include "AbsBeamline/Vacuum.h"
66
#include "AbsBeamline/VariableRFCavity.h"
67
#include "AbsBeamline/VariableRFCavityFringeField.h"
68
#include "AbsBeamline/VerticalFFAMagnet.h"
69

70 71
#include "Algorithms/Ctunes.h"
#include "Algorithms/PolynomialTimeDependence.h"
gsell's avatar
gsell committed
72 73

#include "Beamlines/Beamline.h"
74
#include "Beamlines/FlaggedBeamline.h"
gsell's avatar
gsell committed
75

76
#include "Elements/OpalBeamline.h"
gsell's avatar
gsell committed
77 78 79 80

#include "Physics/Physics.h"

#include "Utilities/OpalException.h"
81
#include "Utilities/Options.h"
gsell's avatar
gsell committed
82

83
#include "BasicActions/DumpFields.h"
84
#include "BasicActions/DumpEMFields.h"
85

86
#include "Structure/BoundaryGeometry.h"
87
#include "Structure/DataSink.h"
Pedro Calvo Portela's avatar
Pedro Calvo Portela committed
88
#include "Structure/LossDataSink.h"
frey_m's avatar
frey_m committed
89

90

91
constexpr double c_mmtns = Physics::c * 1.0e-6; // m/s --> mm/ns
92

93 94 95
Vector_t const ParallelCyclotronTracker::xaxis = Vector_t(1.0, 0.0, 0.0);
Vector_t const ParallelCyclotronTracker::yaxis = Vector_t(0.0, 1.0, 0.0);
Vector_t const ParallelCyclotronTracker::zaxis = Vector_t(0.0, 0.0, 1.0);
gsell's avatar
gsell committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

extern Inform *gmsg;

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param bunch
 * @param ds
 * @param reference
 * @param revBeam
 * @param revTrack
 * @param maxSTEPS
 * @param timeIntegrator
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
frey_m's avatar
frey_m committed
112
                                                   PartBunchBase<double, 3> *bunch,
gsell's avatar
gsell committed
113 114 115
                                                   DataSink &ds,
                                                   const PartData &reference,
                                                   bool revBeam, bool revTrack,
frey_m's avatar
frey_m committed
116
                                                   int maxSTEPS, int timeIntegrator,
117 118 119 120 121
                                                   const int& numBunch,
                                                   const double& mbEta,
                                                   const double& mbPara,
                                                   const std::string& mbMode,
                                                   const std::string& mbBinning)
frey_m's avatar
frey_m committed
122 123 124 125 126 127 128 129 130 131
    : Tracker(beamline, bunch, reference, revBeam, revTrack)
    , bgf_m(nullptr)
    , maxSteps_m(maxSTEPS)
    , lastDumpedStep_m(0)
    , myNode_m(Ippl::myNode())
    , initialLocalNum_m(bunch->getLocalNum())
    , initialTotalNum_m(bunch->getTotalNum())
    , opalRing_m(nullptr)
    , itsStepper_mp(nullptr)
{
gsell's avatar
gsell committed
132 133 134
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
    itsDataSink = &ds;

135 136 137
    if ( numBunch > 1 ) {
        mbHandler_m = std::unique_ptr<MultiBunchHandler>(
            new MultiBunchHandler(bunch, numBunch, mbEta,
frey_m's avatar
frey_m committed
138
                                  mbPara, mbMode, mbBinning)
139 140 141
        );
    }

gsell's avatar
gsell committed
142 143 144 145
    IntegrationTimer_m = IpplTimings::getTimer("Integration");
    TransformTimer_m   = IpplTimings::getTimer("Frametransform");
    DumpTimer_m        = IpplTimings::getTimer("Dump");
    BinRepartTimer_m   = IpplTimings::getTimer("Binaryrepart");
146 147
    PluginElemTimer_m  = IpplTimings::getTimer("PluginElements");
    DelParticleTimer_m = IpplTimings::getTimer("DeleteParticles");
148

149 150 151 152 153 154 155 156 157
    // FIXME Change track command
    if ( initialTotalNum_m == 1 ) {
        mode_m = MODE::SINGLE;
    } else if ( initialTotalNum_m == 2 ) {
        mode_m = MODE::SEO;
    } else if ( initialTotalNum_m > 2 ) {
        mode_m = MODE::BUNCH;
    } else
        mode_m = MODE::UNDEFINED;
158

159 160 161 162 163 164 165 166
    if ( timeIntegrator == 0 ) {
        stepper_m = stepper::INTEGRATOR::RK4;
    } else if ( timeIntegrator == 1) {
        stepper_m = stepper::INTEGRATOR::LF2;
    } else if ( timeIntegrator == 2) {
        stepper_m = stepper::INTEGRATOR::MTS;
    } else
        stepper_m = stepper::INTEGRATOR::UNDEFINED;
gsell's avatar
gsell committed
167 168 169 170 171 172 173
}

/**
 * Destructor ParallelCyclotronTracker
 *
 */
ParallelCyclotronTracker::~ParallelCyclotronTracker() {
Pedro Calvo Portela's avatar
Pedro Calvo Portela committed
174 175
    if(bgf_m)
        lossDs_m->save();
176 177
    for(Component* component : myElements) {
        delete(component);
gsell's avatar
gsell committed
178
    }
179 180
    for(auto fd : FieldDimensions) {
        delete(fd);
gsell's avatar
gsell committed
181 182
    }
    delete itsBeamline;
183
    // delete opalRing_m;
gsell's avatar
gsell committed
184 185
}

frey_m's avatar
frey_m committed
186

187
void ParallelCyclotronTracker::bgf_main_collision_test() {
188
    if(!bgf_m) return;
189

190
    Inform msg("bgf_main_collision_test ");
191

192
    /**
193
     *Here we check if a particle is outside the domain, flag it for deletion
194
     */
195

196
    Vector_t intecoords = 0.0;
197

198
    // This has to match the dT in the rk4 pusher
frey_m's avatar
frey_m committed
199
    double dtime = itsBunch_m->getdT() * getHarmonicNumber();
200

201
    int triId = 0;
frey_m's avatar
frey_m committed
202
    for(size_t i = 0; i < itsBunch_m->getLocalNum(); i++) {
203 204
        int res = bgf_m->partInside(itsBunch_m->R[i], itsBunch_m->P[i],
                                    dtime, intecoords, triId);
205
        if(res >= 0) {
kraus's avatar
kraus committed
206 207 208 209 210
            lossDs_m->addParticle(OpalParticle(itsBunch_m->ID[i],
                                               itsBunch_m->R[i], itsBunch_m->P[i],
                                               itsBunch_m->getT()*1e9,
                                               itsBunch_m->Q[i], itsBunch_m->M[i]),
                                  std::make_pair(turnnumber_m, itsBunch_m->bunchNum[i]));
frey_m's avatar
frey_m committed
211
            itsBunch_m->Bin[i] = -1;
212
            Inform gmsgALL("OPAL", INFORM_ALL_NODES);
213 214
            gmsgALL << level4 << "* Particle " << itsBunch_m->ID[i]
                    << " lost on boundary geometry" << endl;
215
        }
216
    }
217 218
}

219
// only used for dumping into stat file
frey_m's avatar
frey_m committed
220 221
void ParallelCyclotronTracker::dumpAngle(const double& theta,
                                         double& prevAzimuth,
frey_m's avatar
frey_m committed
222 223
                                         double& azimuth,
                                         const short& bunchNr)
frey_m's avatar
frey_m committed
224 225
{
    if ( prevAzimuth < 0.0 ) { // only at first occurrence
frey_m's avatar
frey_m committed
226 227
        double plus = 0.0;
        if ( OpalData::getInstance()->inRestartRun() ) {
frey_m's avatar
frey_m committed
228
            plus = 360.0 * (turnnumber_m - bunchNr);
frey_m's avatar
frey_m committed
229
        }
frey_m's avatar
frey_m committed
230
        azimuth = theta + plus;
231
    } else {
frey_m's avatar
frey_m committed
232
        double dtheta = theta - prevAzimuth;
233 234 235 236 237 238
        if ( dtheta < 0 ) {
            dtheta += 360.0;
        }
        if ( dtheta > 180 ) { // rotating clockwise, reduce angle
            dtheta -= 360;
        }
frey_m's avatar
frey_m committed
239
        azimuth += dtheta;
240
    }
frey_m's avatar
frey_m committed
241
    prevAzimuth = theta;
242 243 244
}


frey_m's avatar
frey_m committed
245 246 247 248 249 250
double ParallelCyclotronTracker::computeRadius(const Vector_t& meanR) const {
    // New OPAL 2.0: m --> mm
    return 1000.0 * std::sqrt(meanR(0) * meanR(0) + meanR(1) * meanR(1));
}


frey_m's avatar
frey_m committed
251 252
void ParallelCyclotronTracker::computePathLengthUpdate(std::vector<double>& dl,
                                                       const double& dt)
253
{
frey_m's avatar
frey_m committed
254 255
    // the last element in dotP is the dot-product over all particles
    std::vector<double> dotP(dl.size());
256
    if ( Options::psDumpFrame == Options::BUNCH_MEAN || isMultiBunch()) {
257

frey_m's avatar
frey_m committed
258 259
        for(unsigned int i = 0; i < itsBunch_m->getLocalNum(); ++i) {
            dotP[itsBunch_m->bunchNum[i]] += dot(itsBunch_m->P[i], itsBunch_m->P[i]);
260 261
        }

frey_m's avatar
frey_m committed
262
        allreduce(dotP.data(), dotP.size(), std::plus<double>());
263

frey_m's avatar
frey_m committed
264 265 266
        // dot-product over all particles
        double sum = std::accumulate(dotP.begin(), dotP.end() - 1, 0);
        dotP.back() = sum / double(itsBunch_m->getTotalNum());
frey_m's avatar
frey_m committed
267

frey_m's avatar
frey_m committed
268 269 270 271
        // bunch specific --> multi-bunches only
        for (short b = 0; b < (short)dotP.size() - 1; ++b) {
            dotP[b] /= double(itsBunch_m->getTotalNumPerBunch(b));
        }
272 273

    } else if ( itsBunch_m->getLocalNum() == 0 ) {
274
        // here we are in Options::GLOBAL mode
frey_m's avatar
frey_m committed
275
        dotP[0] = 0.0;
276
    } else {
277
        // here we are in Options::GLOBAL mode
frey_m's avatar
frey_m committed
278
        dotP[0] = dot(itsBunch_m->P[0], itsBunch_m->P[0]);
279 280
    }

frey_m's avatar
frey_m committed
281 282 283 284 285
    for (size_t i = 0; i < dotP.size(); ++i) {
        double const gamma = std::sqrt(1.0 + dotP[i]);
        double const beta  = std::sqrt(dotP[i]) / gamma;
        dl[i] = c_mmtns * dt * 1.0e-3 * beta; // unit: m
    }
286 287 288
}


289

gsell's avatar
gsell committed
290 291 292 293 294
/**
 *
 *
 * @param fn Base file name
 */
295
void ParallelCyclotronTracker::openFiles(size_t numFiles, std::string SfileName) {
gsell's avatar
gsell committed
296

297
    for (unsigned int i=0; i<numFiles; i++) {
298 299 300 301 302 303 304 305
        std::string SfileName2 = SfileName;
        if (i<=2) {
            SfileName2 += std::string("-Angle" + std::to_string(int(i)) + ".dat");
        }
        else {
            // for single Particle Mode, output after each turn, to define matched initial phase ellipse.
            SfileName2 += std::string("-afterEachTurn.dat");
        }
gsell's avatar
gsell committed
306

307 308 309 310 311 312
        outfTheta_m.emplace_back(new std::ofstream(SfileName2.c_str()));
        outfTheta_m.back()->precision(8);
        outfTheta_m.back()->setf(std::ios::scientific, std::ios::floatfield);
        *outfTheta_m.back() << "# r [mm]        beta_r*gamma       "
                            << "theta [deg]     beta_theta*gamma        "
                            << "z [mm]          beta_z*gamma" << std::endl;
313
    }
gsell's avatar
gsell committed
314 315 316 317 318 319 320 321
}

/**
 * Close all files related to
 * special output in the Cyclotron
 * mode.
 */
void ParallelCyclotronTracker::closeFiles() {
322
    for (auto & file : outfTheta_m) {
323
        file->close();
324
    }
gsell's avatar
gsell committed
325 326 327 328 329 330 331 332 333 334
}


/**
 *
 *
 * @param cycl
 */
void ParallelCyclotronTracker::visitCyclotron(const Cyclotron &cycl) {

335
    *gmsg << "* -------------------------- Adding Cyclotron ---------------------------- *" << endl;
gsell's avatar
gsell committed
336

337 338
    cycl_m = dynamic_cast<Cyclotron *>(cycl.clone());
    myElements.push_back(cycl_m);
339

340
    // Is this a Spiral Inflector Simulation? If yes, we'll give the user some
341
    // useful information
342
    spiral_flag = cycl_m->getSpiralFlag();
343

ext-calvo_p's avatar
ext-calvo_p committed
344
    if (spiral_flag) {
345
        *gmsg << endl << "* This is a Spiral Inflector Simulation! This means the following:" << endl;
346
        *gmsg         << "* 1.) It is up to the user to provide appropriate geometry, electric and magnetic fields!" << endl;
347 348
        *gmsg         << "*     (Use BANDRF type cyclotron and use RFMAPFN to load both magnetic" << endl;
        *gmsg         << "*     and electric fields, setting SUPERPOSE to an array of TRUE values.)" << endl;
snuverink_j's avatar
snuverink_j committed
349
        *gmsg         << "* 2.) For high currents it is strongly recommended to use the SAAMG fieldsolver," << endl;
350 351
        *gmsg         << "*     FFT does not give the correct results (boundary conditions are missing)." << endl;
        *gmsg         << "* 3.) The whole geometry will be meshed and used for the fieldsolver." << endl;
352 353
        *gmsg         << "*     There will be no transformations of the bunch into a local frame und consequently," << endl;
        *gmsg         << "*     the problem will be treated non-relativistically!" << endl;
354 355 356
        *gmsg         << "*     (This is not an issue for spiral inflectors as they are typically < 100 keV/amu.)" << endl;
        *gmsg << endl << "* Note: For now, multi-bunch mode (MBM) needs to be de-activated for spiral inflector" << endl;
        *gmsg         << "* and space charge needs to be solved every time-step. numBunch_m and scSolveFreq are reset." << endl;
frey_m's avatar
frey_m committed
357 358 359
        if (isMultiBunch()) {
            mbHandler_m = nullptr;
        }
360 361
    }

362
    // Fresh run (no restart):
ext-calvo_p's avatar
ext-calvo_p committed
363
    if (!OpalData::getInstance()->inRestartRun()) {
364

365
        // Get reference values from cyclotron element
366
        // For now, these are still stored in mm. should be the only ones. -DW
367 368 369 370 371
        referenceR     = cycl_m->getRinit();
        referenceTheta = cycl_m->getPHIinit();
        referenceZ     = cycl_m->getZinit();
        referencePr    = cycl_m->getPRinit();
        referencePz    = cycl_m->getPZinit();
372

ext-calvo_p's avatar
ext-calvo_p committed
373
        if (referenceTheta <= -180.0 || referenceTheta > 180.0) {
374 375
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                "PHIINIT is out of [-180, 180)!");
376 377 378 379 380
        }

        referencePtot =  itsReference.getGamma() * itsReference.getBeta();

        // Calculate reference azimuthal (tangential) momentum from total-, z- and radial momentum:
381
        float insqrt = referencePtot * referencePtot - \
382
            referencePr * referencePr - referencePz * referencePz;
383

ext-calvo_p's avatar
ext-calvo_p committed
384
        if (insqrt < 0) {
385

ext-calvo_p's avatar
ext-calvo_p committed
386
            if (insqrt > -1.0e-10) {
387
                referencePt = 0.0;
388
            } else {
389
                throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
390
                                    "Pt imaginary!");
391 392 393
            }

        } else {
394
            referencePt = std::sqrt(insqrt);
395 396
        }

ext-calvo_p's avatar
ext-calvo_p committed
397
        if (referencePtot < 0.0) {
Daniel Winklehner's avatar
Daniel Winklehner committed
398
            referencePt *= -1.0;
ext-calvo_p's avatar
ext-calvo_p committed
399
        }
400 401
        // End calculate referencePt

402
        // Restart a run:
403 404
    } else {

405
        // If the user wants to save the restarted run in local frame,
406
        // make sure the previous h5 file was local too
ext-calvo_p's avatar
ext-calvo_p committed
407 408
        if (Options::psDumpFrame != Options::GLOBAL) {
            if (!previousH5Local) {
409 410
                throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                    "You are trying a local restart from a global h5 file!");
ext-calvo_p's avatar
ext-calvo_p committed
411
            }
412 413
            // Else, if the user wants to save the restarted run in global frame,
            // make sure the previous h5 file was global too
ext-calvo_p's avatar
ext-calvo_p committed
414 415
        } else {
            if (previousH5Local) {
416 417
                throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                    "You are trying a global restart from a local h5 file!");
418
            }
419
        }
420

421
        // Adjust some of the reference variables from the h5 file
422 423
        referencePhi *= Physics::deg2rad;
        referencePsi *= Physics::deg2rad;
424
        referencePtot = bega;
ext-calvo_p's avatar
ext-calvo_p committed
425
        if (referenceTheta <= -180.0 || referenceTheta > 180.0) {
426
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
427 428
                                "PHIINIT is out of [-180, 180)!");
        }
429 430
    }

431 432
    sinRefTheta_m = std::sin(referenceTheta * Physics::deg2rad);
    cosRefTheta_m = std::cos(referenceTheta * Physics::deg2rad);
433

434
    *gmsg << endl;
adelmann's avatar
adelmann committed
435
    *gmsg << "* Bunch global starting position:" << endl;
436 437
    *gmsg << "* RINIT = " << referenceR  << " [mm]" << endl;
    *gmsg << "* PHIINIT = " << referenceTheta << " [deg]" << endl;
438
    *gmsg << "* ZINIT = " << referenceZ << " [mm]" << endl;
439
    *gmsg << endl;
adelmann's avatar
adelmann committed
440
    *gmsg << "* Bunch global starting momenta:" << endl;
gsell's avatar
gsell committed
441 442
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
443
    *gmsg << "* Reference total momentum (beta * gamma) = " << referencePtot * 1000.0 << " [MCU]" << endl;
444 445 446
    *gmsg << "* Reference azimuthal momentum (Pt) = " << referencePt * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum (Pr) = " << referencePr * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference axial momentum (Pz) = " << referencePz * 1000.0 << " [MCU]" << endl;
447
    *gmsg << endl;
adelmann's avatar
adelmann committed
448

449
    double sym = cycl_m->getSymmetry();
snuverink_j's avatar
snuverink_j committed
450
    *gmsg << "* " << sym << "-fold field symmetry " << endl;
gsell's avatar
gsell committed
451

452
    // ckr: this just returned the default value as defined in Component.h
453
    // double rff = cycl_m->getRfFrequ(0);
454
    // *gmsg << "* Rf frequency= " << rff << " [MHz]" << endl;
gsell's avatar
gsell committed
455

456
    std::string fmfn = cycl_m->getFieldMapFN();
457
    *gmsg << "* Field map file name = " << fmfn << " " << endl;
gsell's avatar
gsell committed
458

459
    std::string type = cycl_m->getCyclotronType();
460
    *gmsg << "* Type of cyclotron = " << type << " " << endl;
461

462 463
    double rmin = cycl_m->getMinR();
    double rmax = cycl_m->getMaxR();
adelmann's avatar
adelmann committed
464
    *gmsg << "* Radial aperture = " << rmin << " ... " << rmax<<" [m] "<< endl;
465

466 467
    double zmin = cycl_m->getMinZ();
    double zmax = cycl_m->getMaxZ();
adelmann's avatar
adelmann committed
468
    *gmsg << "* Vertical aperture = " << zmin << " ... " << zmax<<" [m]"<< endl;
gsell's avatar
gsell committed
469

470 471
    double h = cycl_m->getCyclHarm();
    *gmsg << "* Number of trimcoils = " << cycl_m->getNumberOfTrimcoils() << endl;
472
    *gmsg << "* Harmonic number h = " << h << " " << endl;
473

474 475 476 477 478 479 480 481 482
    if (type == std::string("BANDRF")) {
        double escale = cycl_m->getEScale(0);
        *gmsg << "* RF field scale factor = " << escale << endl;
        double rfphi= cycl_m->getRfPhi(0);
        *gmsg << "* RF inital phase = " << rfphi * Physics::rad2deg << " [deg]" << endl;
        bool superpose = cycl_m->getSuperpose(0);
        *gmsg << std::boolalpha << "* Superpose electric field maps -> " << superpose << endl;
    }

kraus's avatar
kraus committed
483
    // Read in cyclotron field maps
ext-calvo_p's avatar
ext-calvo_p committed
484
    cycl_m->initialise(itsBunch_m, cycl_m->getBScale());
gsell's avatar
gsell committed
485

snuverink_j's avatar
snuverink_j committed
486
    double BcParameter[8] = {};
487

488 489
    BcParameter[0] = 0.001 * cycl_m->getRmin();
    BcParameter[1] = 0.001 * cycl_m->getRmax();
gsell's avatar
gsell committed
490

491
    // Store inner radius and outer radius of cyclotron field map in the list
492
    buildupFieldList(BcParameter, ElementBase::CYCLOTRON, cycl_m);
gsell's avatar
gsell committed
493 494 495 496 497 498 499
}

/**
 *
 *
 * @param coll
 */
500
void ParallelCyclotronTracker::visitCCollimator(const CCollimator &coll) {
gsell's avatar
gsell committed
501

502
    *gmsg << "* ------------------------------ Collimator ------------------------------" << endl;
gsell's avatar
gsell committed
503

504
    CCollimator* elptr = dynamic_cast<CCollimator *>(coll.clone());
505
    myElements.push_back(elptr);
gsell's avatar
gsell committed
506

507
    double xstart = elptr->getXStart();
508
    *gmsg << "* Xstart  = " << xstart << " [m]" << endl;
gsell's avatar
gsell committed
509

510
    double xend = elptr->getXEnd();
511
    *gmsg << "* Xend    = " << xend << " [m]" << endl;
gsell's avatar
gsell committed
512

513
    double ystart = elptr->getYStart();
514
    *gmsg << "* Ystart  = " << ystart << " [m]" << endl;
gsell's avatar
gsell committed
515

516
    double yend = elptr->getYEnd();
517
    *gmsg << "* Yend    = " << yend << " [m]" << endl;
gsell's avatar
gsell committed
518

519
    double zstart = elptr->getZStart();
520
    *gmsg << "* Zstart  = " << zstart << " [m]" << endl;
521 522

    double zend = elptr->getZEnd();
523
    *gmsg << "* Zend    = " << zend << " [m]" << endl;
524

525
    double width = elptr->getWidth();
526
    *gmsg << "* Width   = " << width << " [m]" << endl;
gsell's avatar
gsell committed
527

frey_m's avatar
frey_m committed
528
    elptr->initialise(itsBunch_m);
gsell's avatar
gsell committed
529

snuverink_j's avatar
snuverink_j committed
530
    double BcParameter[8] = {};
531

532 533 534 535 536
    BcParameter[0] = xstart;
    BcParameter[1] = xend;
    BcParameter[2] = ystart;
    BcParameter[3] = yend;
    BcParameter[4] = width;
537

538
    buildupFieldList(BcParameter, ElementBase::CCOLLIMATOR, elptr);
gsell's avatar
gsell committed
539 540 541 542 543 544 545 546 547 548 549 550
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitCorrector(const Corrector &corr) {
    *gmsg << "In Corrector; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Corrector *>(corr.clone()));
}

adelmann's avatar
adelmann committed
551 552 553 554 555 556 557 558 559 560 561
/**
 *
 *
 * @param degrader
 */
void ParallelCyclotronTracker::visitDegrader(const Degrader &deg) {
    *gmsg << "In Degrader; L= " << deg.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Degrader *>(deg.clone()));

}

gsell's avatar
gsell committed
562 563 564 565 566 567 568 569 570 571
/**
 *
 *
 * @param drift
 */
void ParallelCyclotronTracker::visitDrift(const Drift &drift) {
    *gmsg << "In drift L= " << drift.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Drift *>(drift.clone()));
}

572 573
/**
 *
574 575
 *
 *  @param
576 577 578 579 580
 */
void ParallelCyclotronTracker::visitFlexibleCollimator(const FlexibleCollimator &) {

}

581 582 583 584 585 586
/**
 *
 *
 * @param off
 */
void ParallelCyclotronTracker::visitOffset(const Offset& off) {
587 588
    if (opalRing_m == NULL)
        throw OpalException(
589 590
                            "ParallelCylcotronTracker::visitOffset",
                            "Attempt to place an offset when Ring not defined");
591 592
    Offset* offNonConst = const_cast<Offset*>(&off);
    offNonConst->updateGeometry(opalRing_m->getNextPosition(),
593
                                opalRing_m->getNextNormal());
594 595 596
    opalRing_m->appendElement(off);
}

gsell's avatar
gsell committed
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/**
 *
 *
 * @param marker
 */
void ParallelCyclotronTracker::visitMarker(const Marker &marker) {
    //   *gmsg << "In Marker; L= " << marker.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Marker *>(marker.clone()));
    // Do nothing.
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitMonitor(const Monitor &corr) {
    //   *gmsg << "In Monitor; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Monitor *>(corr.clone()));
    //   applyDrift(flip_s * corr.getElementLength());
}

/**
 *
 *
 * @param mult
 */
void ParallelCyclotronTracker::visitMultipole(const Multipole &mult) {
    *gmsg << "In Multipole; L= " << mult.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Multipole *>(mult.clone()));
}

ext-rogers_c's avatar
ext-rogers_c committed
629 630 631 632 633 634 635
/**
 *
 *
 * @param multT
 */
void ParallelCyclotronTracker::visitMultipoleT(const MultipoleT &multT) {
    *gmsg << "Adding MultipoleT" << endl;
636
    if (opalRing_m != NULL) {
ext-rogers_c's avatar
ext-rogers_c committed
637
        opalRing_m->appendElement(multT);
638
    } else {
ext-rogers_c's avatar
ext-rogers_c committed
639 640
        throw OpalException("ParallelCyclotronTracker::visitMultipoleT",
                            "Need to define a RINGDEFINITION to use MultipoleT element");
641
    }
ext-rogers_c's avatar
ext-rogers_c committed
642 643 644
    myElements.push_back(dynamic_cast<MultipoleT *>(multT.clone()));
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/**
 *
 *
 * @param multTstraight
 */
void ParallelCyclotronTracker::visitMultipoleTStraight(const MultipoleTStraight &multTstraight) {
    *gmsg << "Adding MultipoleTStraight" << endl;
    if (opalRing_m != NULL) {
        opalRing_m->appendElement(multTstraight);
    } else {
        throw OpalException("ParallelCyclotronTracker::visitMultipoleTStraight",
                            "Need to define a RINGDEFINITION to use MultipoleTStraight element");
    }
    myElements.push_back(dynamic_cast<MultipoleTStraight *>(multTstraight.clone()));
}

/**
 *
 *
 * @param multTccurv
 */
void ParallelCyclotronTracker::visitMultipoleTCurvedConstRadius(const MultipoleTCurvedConstRadius &multTccurv) {
    *gmsg << "Adding MultipoleTCurvedConstRadius" << endl;
    if (opalRing_m != NULL) {
        opalRing_m->appendElement(multTccurv);
    } else {
        throw OpalException("ParallelCyclotronTracker::visitMultipoleTCurvedConstRadius",
                            "Need to define a RINGDEFINITION to use MultipoleTCurvedConstRadius element");
    }
    myElements.push_back(dynamic_cast<MultipoleTCurvedConstRadius *>(multTccurv.clone()));
}

/**
 *
 *
 * @param multTvcurv
 */
void ParallelCyclotronTracker::visitMultipoleTCurvedVarRadius(const MultipoleTCurvedVarRadius &multTvcurv) {
    *gmsg << "Adding MultipoleTCurvedVarRadius" << endl;
    if (opalRing_m != NULL) {
        opalRing_m->appendElement(multTvcurv);
    } else {
        throw OpalException("ParallelCyclotronTracker::visitMultipoleTCurvedVarRadius",
                            "Need to define a RINGDEFINITION to use MultipoleTCurvedVarRadius element");
    }
    myElements.push_back(dynamic_cast<MultipoleTCurvedVarRadius *>(multTvcurv.clone()));
}

gsell's avatar
gsell committed
693 694 695 696 697 698
/**
 *
 *
 * @param prob
 */
void ParallelCyclotronTracker::visitProbe(const Probe &prob) {
699
    *gmsg << "* ------------------------------  Probe ------------------------------" << endl;
700 701
    Probe *elptr = dynamic_cast<Probe *>(prob.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
702

703 704
    *gmsg << "* Name    = " << elptr->getName() << endl;

705
    double xstart = elptr->getXStart();
706
    *gmsg << "* XStart  = " << xstart << " [m]" << endl;
gsell's avatar
gsell committed
707

708
    double xend = elptr->getXEnd();
709
    *gmsg << "* XEnd    = " << xend << " [m]" << endl;
gsell's avatar
gsell committed
710

711
    double ystart = elptr->getYStart();
712
    *gmsg << "* YStart  = " << ystart << " [m]" << endl;
gsell's avatar
gsell committed
713

714
    double yend = elptr->getYEnd();
715
    *gmsg << "* YEnd    = " << yend << " [m]" << endl;
gsell's avatar
gsell committed
716 717

    // initialise, do nothing
frey_m's avatar
frey_m committed
718
    elptr->initialise(itsBunch_m);
gsell's avatar
gsell committed
719

snuverink_j's avatar
snuverink_j committed
720
    double BcParameter[8] = {};
721

722 723 724 725 726
    BcParameter[0] = xstart;
    BcParameter[1] = xend;
    BcParameter[2] = ystart;
    BcParameter[3] = yend;
    BcParameter[4] = 1 ; // width
gsell's avatar
gsell committed
727 728

    // store probe parameters in the list
729
    buildupFieldList(BcParameter, ElementBase::PROBE, elptr);
gsell's avatar
gsell committed
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitRBend(const RBend &bend) {
    *gmsg << "In RBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RBend *>(bend.clone()));
}

/**
 *
 *
 * @param as
 */
void ParallelCyclotronTracker::visitRFCavity(const RFCavity &as) {

749
    *gmsg << "* ------------------------------ RFCavity ------------------------------" << endl;
750

751 752
    RFCavity *elptr = dynamic_cast<RFCavity *>(as.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
753

754
    if ( elptr->getComponentType() != "SINGLEGAP" ) {
gsell's avatar
gsell committed
755 756 757 758 759
        *gmsg << (elptr->getComponentType()) << endl;
        throw OpalException("ParallelCyclotronTracker::visitRFCavity",
                            "The ParallelCyclotronTracker can only play with cyclotron type RF system currently ...");
    }

760
    double rmin = elptr->getRmin();
gsell's avatar
gsell committed
761 762
    *gmsg << "* Minimal radius of cavity= " << rmin << " [mm]" << endl;

763
    double rmax = elptr->getRmax();
gsell's avatar
gsell committed
764 765
    *gmsg << "* Maximal radius of cavity= " << rmax << " [mm]" << endl;

766
    double rff = elptr->getCycFrequency();
gsell's avatar
gsell committed
767 768
    *gmsg << "* RF frequency (2*pi*f)= " << rff << " [rad/s]" << endl;

769
    std::string fmfn = elptr->getFieldMapFN();
gsell's avatar
gsell committed
770
    *gmsg << "* RF Field map file name= " << fmfn << endl;
771

772
    double angle = elptr->getAzimuth();
gsell's avatar
gsell committed
773 774
    *gmsg << "* Cavity azimuth position= " << angle << " [deg] " << endl;

775
    double gap = elptr->getGapWidth();
gsell's avatar
gsell committed
776 777
    *gmsg << "* Cavity gap width= " << gap << " [mm] " << endl;

778
    double pdis = elptr->getPerpenDistance();
gsell's avatar
gsell committed
779 780
    *gmsg << "* Cavity Shift distance= " << pdis << " [mm] " << endl;

781
    double phi0 = elptr->getPhi0();
gsell's avatar
gsell committed
782 783
    *gmsg << "* Initial RF phase (t=0)= " << phi0 << " [deg] " << endl;

784 785 786
    /*
      Setup time dependence and in case of no
      timedependence use a polynom with  a_0 = 1 and a_k = 0, k = 1,2,3.
787
    */
788

789 790 791 792
    std::shared_ptr<AbstractTimeDependence> freq_atd = nullptr;
    std::shared_ptr<AbstractTimeDependence> ampl_atd = nullptr;
    std::shared_ptr<AbstractTimeDependence> phase_atd = nullptr;

793
    dvector_t  unityVec;
794 795 796 797
    unityVec.push_back(1.);
    unityVec.push_back(0.);
    unityVec.push_back(0.);
    unityVec.push_back(0.);
798

799
    if (elptr->getFrequencyModelName() != "") {
800 801
        freq_atd = AbstractTimeDependence::getTimeDependence(elptr->getFrequencyModelName());
        *gmsg << "* Variable frequency RF Model name " << elptr->getFrequencyModelName() << endl;
802
    }
803 804
    else
        freq_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
805 806

    if (elptr->getAmplitudeModelName() != "") {
807 808
        ampl_atd = AbstractTimeDependence::getTimeDependence(elptr->getAmplitudeModelName());
        *gmsg << "* Variable amplitude RF Model name " << elptr->getAmplitudeModelName() << endl;
809
    }
810 811
    else
        ampl_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
812 813

    if (elptr->getPhaseModelName() != "") {
814 815
        phase_atd = AbstractTimeDependence::getTimeDependence(elptr->getPhaseModelName());
        *gmsg << "* Variable phase RF Model name " << elptr->getPhaseModelName() << endl;
816
    }
817 818
    else
        phase_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
819

gsell's avatar
gsell committed
820
    // read cavity voltage profile data from file.
frey_m's avatar
frey_m committed
821
    elptr->initialise(itsBunch_m, freq_atd, ampl_atd, phase_atd);
gsell's avatar
gsell committed
822

snuverink_j's avatar
snuverink_j committed
823
    double BcParameter[8] = {};
824

825 826
    BcParameter[0] = 0.001 * rmin;
    BcParameter[1] = 0.001 * rmax;
827
    BcParameter[2] = 0.001 * pdis;
gsell's avatar
gsell committed
828 829
    BcParameter[3] = angle;

830
    buildupFieldList(BcParameter, ElementBase::RFCAVITY, elptr);
gsell's avatar
gsell committed
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/**
 *
 * @param ring
 */
void ParallelCyclotronTracker::visitRing(const Ring &ring) {

    *gmsg << "* ----------------------------- Adding Ring ------------------------------ *" << endl;

    delete opalRing_m;

    opalRing_m = dynamic_cast<Ring*>(ring.clone());

    myElements.push_back(opalRing_m);

    opalRing_m->initialise(itsBunch_m);

    referenceR = opalRing_m->getBeamRInit();
    referencePr = opalRing_m->getBeamPRInit();
    referenceTheta = opalRing_m->getBeamPhiInit();

    if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
        throw OpalException("Error in ParallelCyclotronTracker::visitRing",
                            "PHIINIT is out of [-180, 180)!");
    }

    referenceZ = 0.0;
    referencePz = 0.0;

    referencePtot = itsReference.getGamma() * itsReference.getBeta();
    referencePt = std::sqrt(referencePtot * referencePtot - referencePr * referencePr);

    if(referencePtot < 0.0)
        referencePt *= -1.0;

    sinRefTheta_m = std::sin(referenceTheta * Physics::deg2rad);
    cosRefTheta_m = std::cos(referenceTheta * Physics::deg2rad);

    double BcParameter[8] = {}; // zero initialise array

    buildupFieldList(BcParameter, ElementBase::RING, opalRing_m);

    // Finally print some diagnostic
    *gmsg << "* Initial beam radius = " << referenceR << " [mm] " << endl;
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
    *gmsg << "* Total reference momentum   = " << referencePtot * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference azimuthal momentum  = " << referencePt * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum     = " << referencePr * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* " << opalRing_m->getSymmetry() << " fold field symmetry "
          << endl;
    *gmsg << "* Harmonic number h= " << opalRing_m->getHarmonicNumber() << " "
          << endl;
}

gsell's avatar
gsell committed
890 891 892 893 894 895
/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitSBend(const SBend &bend) {