ParallelCyclotronTracker.cpp 226 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// ------------------------------------------------------------------------
// $RCSfile: ParallelCyclotronTracker.cpp,v $
// ------------------------------------------------------------------------
// $Revision: 1.1 $initialLocalNum_m
// ------------------------------------------------------------------------
// Copyright: see Copyright.readme
// ------------------------------------------------------------------------
//
// Class: ParallelCyclotronTracker
//   The class for tracking particles with 3D space charge in Cyclotrons and FFAG's
//
// ------------------------------------------------------------------------
//
// $Date: 2007/10/17 04:00:08 $
15
// $Author: adelmann, yang, winklehner $
gsell's avatar
gsell committed
16 17
//
// ------------------------------------------------------------------------
kraus's avatar
kraus committed
18

19
#include <Algorithms/Ctunes.hpp>
kraus's avatar
kraus committed
20
#include "Algorithms/ParallelCyclotronTracker.h"
21 22
#include "Algorithms/PolynomialTimeDependence.h"
#include "Elements/OpalPolynomialTimeDependence.h"
gsell's avatar
gsell committed
23 24 25 26
#include <cfloat>
#include <iostream>
#include <fstream>
#include <vector>
27
#include "AbstractObjects/OpalData.h"
gsell's avatar
gsell committed
28 29 30 31

#include "AbsBeamline/Collimator.h"
#include "AbsBeamline/Corrector.h"
#include "AbsBeamline/Cyclotron.h"
adelmann's avatar
adelmann committed
32
#include "AbsBeamline/Degrader.h"
gsell's avatar
gsell committed
33 34 35 36
#include "AbsBeamline/Diagnostic.h"
#include "AbsBeamline/Drift.h"
#include "AbsBeamline/ElementBase.h"
#include "AbsBeamline/Lambertson.h"
37
#include "AbsBeamline/Offset.h"
gsell's avatar
gsell committed
38 39 40 41 42 43 44 45
#include "AbsBeamline/Marker.h"
#include "AbsBeamline/Monitor.h"
#include "AbsBeamline/Multipole.h"
#include "AbsBeamline/Probe.h"
#include "AbsBeamline/RBend.h"
#include "AbsBeamline/RFCavity.h"
#include "AbsBeamline/RFQuadrupole.h"
#include "AbsBeamline/SBend.h"
46
#include "AbsBeamline/SBend3D.h"
gsell's avatar
gsell committed
47 48 49 50 51
#include "AbsBeamline/Separator.h"
#include "AbsBeamline/Septum.h"
#include "AbsBeamline/Solenoid.h"
#include "AbsBeamline/CyclotronValley.h"
#include "AbsBeamline/Stripper.h"
52
#include "AbsBeamline/VariableRFCavity.h"
53

54 55
#include "AbstractObjects/Element.h"

56
#include "Elements/OpalBeamline.h"
kraus's avatar
kraus committed
57
#include "AbsBeamline/Ring.h"
gsell's avatar
gsell committed
58 59 60

#include "BeamlineGeometry/Euclid3D.h"
#include "BeamlineGeometry/PlanarArcGeometry.h"
Jianjun Yang's avatar
Jianjun Yang committed
61
#include "BeamlineGeometry/RBendGeometry.h"
gsell's avatar
gsell committed
62 63 64 65 66 67 68 69 70 71 72 73
#include "Beamlines/Beamline.h"

#include "Fields/BMultipoleField.h"
#include "FixedAlgebra/FTps.h"
#include "FixedAlgebra/FTpsMath.h"
#include "FixedAlgebra/FVps.h"

#include "Physics/Physics.h"

#include "Utilities/NumToStr.h"
#include "Utilities/OpalException.h"

74 75
#include "BasicActions/DumpFields.h"

76
#include "Structure/H5PartWrapperForPC.h"
77
#include "Structure/BoundaryGeometry.h"
78
#include "Utilities/Options.h"
gsell's avatar
gsell committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

#include "Ctunes.h"
#include <cassert>

#include <hdf5.h>
#include "H5hut.h"

class Beamline;
class PartData;
using Physics::c;
using Physics::m_p; // GeV
using Physics::PMASS;
using Physics::PCHARGE;
using Physics::pi;
using Physics::q_e;

const double c_mmtns = c * 1.0e-6; // m/s --> mm/ns
const double mass_coeff = 1.0e18 * q_e / c / c; // from GeV/c^2 to basic unit: GV*C*s^2/m^2
97
const double PIOVER180 = pi / 180.0;
98

99 100 101
Vector_t const ParallelCyclotronTracker::xaxis = Vector_t(1.0, 0.0, 0.0);
Vector_t const ParallelCyclotronTracker::yaxis = Vector_t(0.0, 1.0, 0.0);
Vector_t const ParallelCyclotronTracker::zaxis = Vector_t(0.0, 0.0, 1.0);
gsell's avatar
gsell committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

#define PSdim 6

extern Inform *gmsg;

// typedef FVector<double, PSdim> Vector;

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param reference
 * @param revBeam
 * @param revTrack
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
        const PartData &reference,
        bool revBeam, bool revTrack):
    Tracker(beamline, reference, revBeam, revTrack),
121
    eta_m(0.01),
gsell's avatar
gsell committed
122 123
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(0),
124
    initialTotalNum_m(0),
125 126
    opalRing_m(NULL),
    lastDumpedStep_m(0) {
gsell's avatar
gsell committed
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
}

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param bunch
 * @param ds
 * @param reference
 * @param revBeam
 * @param revTrack
 * @param maxSTEPS
 * @param timeIntegrator
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
                                                   PartBunch &bunch,
                                                   DataSink &ds,
                                                   const PartData &reference,
                                                   bool revBeam, bool revTrack,
147
                                                   int maxSTEPS, int timeIntegrator):
gsell's avatar
gsell committed
148 149 150
    Tracker(beamline, reference, revBeam, revTrack),
    maxSteps_m(maxSTEPS),
    timeIntegrator_m(timeIntegrator),
151
    eta_m(0.01),
gsell's avatar
gsell committed
152 153
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(bunch.getLocalNum()),
154
    initialTotalNum_m(bunch.getTotalNum()),
155
    opalRing_m(NULL),
156
    lastDumpedStep_m(0) {
gsell's avatar
gsell committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
    itsBunch = &bunch;
    itsDataSink = &ds;
    //  scaleFactor_m = itsBunch->getdT() * c;
    scaleFactor_m = 1;
    multiBunchMode_m = 0;

    IntegrationTimer_m = IpplTimings::getTimer("Integration");
    TransformTimer_m   = IpplTimings::getTimer("Frametransform");
    DumpTimer_m        = IpplTimings::getTimer("Dump");
    BinRepartTimer_m   = IpplTimings::getTimer("Binaryrepart");
}

/**
 * Destructor ParallelCyclotronTracker
 *
 */
ParallelCyclotronTracker::~ParallelCyclotronTracker() {
175
    for(std::list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
gsell's avatar
gsell committed
176 177 178 179 180 181
        delete(*compindex);
    }
    for(beamline_list::iterator fdindex = FieldDimensions.begin(); fdindex != FieldDimensions.end(); fdindex++) {
        delete(*fdindex);
    }
    delete itsBeamline;
182 183 184
    if (opalRing_m != NULL) {
        // delete opalRing_m;
    }
gsell's avatar
gsell committed
185 186
}

187 188 189 190 191 192
/**
 * AAA
 *
 * @param none
 */
void ParallelCyclotronTracker::initializeBoundaryGeometry() {
193
  for(std::list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
194
    bgf_m = dynamic_cast<ElementBase *>(*compindex)->getBoundaryGeometry();
195
    if(!bgf_m)
196 197 198 199
      continue;
    else
      break;
  }
adelmann's avatar
adelmann committed
200
  if (bgf_m) {
201
    itsDataSink->writeGeomToVtk(*bgf_m, std::string("data/testGeometry-00000.vtk"));
adelmann's avatar
adelmann committed
202 203 204
    OpalData::getInstance()->setGlobalGeometry(bgf_m);
    *gmsg << "* Boundary geometry initialized " << endl;
  }
205
}
206

207 208 209 210 211 212 213 214 215
/**
 *
 *
 * @param fn Base file name
 */
void ParallelCyclotronTracker::bgf_main_collision_test() {
  if(!bgf_m) return;

  Inform msg("bgf_main_collision_test ");
216 217

  /**
218 219 220
   *Here we check if a particles is outside the domain, flag it for deletion
   */

gsell's avatar
gsell committed
221
  Vector_t intecoords = 0.0;
222 223 224 225 226

  // This has to match the dT in the rk4 pusher! -DW
  //double dtime = 0.5 * itsBunch->getdT();  // Old
  double dtime = itsBunch->getdT() * getHarmonicNumber();  // New

227
  int triId = 0;
228 229
  size_t Nimpact = 0;
  for(size_t i = 0; i < itsBunch->getLocalNum(); i++) {
230
    int res = bgf_m->PartInside(itsBunch->R[i]*1.0e-3, itsBunch->P[i], dtime, itsBunch->PType[i], itsBunch->Q[i], intecoords, triId);
231
    if(res >= 0) {
232 233
      itsBunch->Bin[i] = -1;
      Nimpact++;
234
    }
235 236 237 238
  }
}


gsell's avatar
gsell committed
239 240 241 242 243
/**
 *
 *
 * @param fn Base file name
 */
244
void ParallelCyclotronTracker::openFiles(std::string SfileName) {
gsell's avatar
gsell committed
245

246
    std::string  SfileName2 = SfileName + std::string("-Angle0.dat");
gsell's avatar
gsell committed
247 248

    outfTheta0_m.precision(8);
249
    outfTheta0_m.setf(std::ios::scientific, std::ios::floatfield);
gsell's avatar
gsell committed
250
    outfTheta0_m.open(SfileName2.c_str());
251
    outfTheta0_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma" << std::endl;
gsell's avatar
gsell committed
252

253
    SfileName2 = SfileName + std::string("-Angle1.dat");
gsell's avatar
gsell committed
254
    outfTheta1_m.precision(8);
255
    outfTheta1_m.setf(std::ios::scientific, std::ios::floatfield);
gsell's avatar
gsell committed
256
    outfTheta1_m.open(SfileName2.c_str());
257
    outfTheta1_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << std::endl;
gsell's avatar
gsell committed
258

259
    SfileName2 = SfileName + std::string("-Angle2.dat");
gsell's avatar
gsell committed
260
    outfTheta2_m.precision(8);
261
    outfTheta2_m.setf(std::ios::scientific, std::ios::floatfield);
gsell's avatar
gsell committed
262
    outfTheta2_m.open(SfileName2.c_str());
263
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << std::endl;
gsell's avatar
gsell committed
264 265 266

    // for single Particle Mode, output after each turn, to define matched initial phase ellipse.

267
    SfileName2 = SfileName + std::string("-afterEachTurn.dat");
gsell's avatar
gsell committed
268 269

    outfThetaEachTurn_m.precision(8);
270
    outfThetaEachTurn_m.setf(std::ios::scientific, std::ios::floatfield);
gsell's avatar
gsell committed
271 272

    outfThetaEachTurn_m.open(SfileName2.c_str());
273
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << std::endl;
gsell's avatar
gsell committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
}

/**
 * Close all files related to
 * special output in the Cyclotron
 * mode.
 */
void ParallelCyclotronTracker::closeFiles() {

    outfTheta0_m.close();
    outfTheta1_m.close();
    outfTheta2_m.close();
    outfThetaEachTurn_m.close();
}

289
/**
290 291 292
 *
 * @param ring
 */
kraus's avatar
kraus committed
293
void ParallelCyclotronTracker::visitRing(const Ring &ring) {
Daniel Winklehner's avatar
Daniel Winklehner committed
294

295
    *gmsg << "* ----------------------------- Adding Ring ------------------------------ *" << endl;
Daniel Winklehner's avatar
Daniel Winklehner committed
296 297

    if (opalRing_m != NULL)
298
        delete opalRing_m;
Daniel Winklehner's avatar
Daniel Winklehner committed
299

kraus's avatar
kraus committed
300
    opalRing_m = dynamic_cast<Ring*>(ring.clone());
Daniel Winklehner's avatar
Daniel Winklehner committed
301

302
    myElements.push_back(opalRing_m);
Daniel Winklehner's avatar
Daniel Winklehner committed
303

304 305 306 307 308
    opalRing_m->initialise(itsBunch);

    referenceR = opalRing_m->getBeamRInit();
    referencePr = opalRing_m->getBeamPRInit();
    referenceTheta = opalRing_m->getBeamPhiInit();
Daniel Winklehner's avatar
Daniel Winklehner committed
309

310
    if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
kraus's avatar
kraus committed
311
        throw OpalException("Error in ParallelCyclotronTracker::visitRing",
312 313
                            "PHIINIT is out of [-180, 180)!");
    }
Daniel Winklehner's avatar
Daniel Winklehner committed
314 315

    referenceZ = 0.0;
316
    referencePz = 0.0;
Daniel Winklehner's avatar
Daniel Winklehner committed
317 318 319 320

    referencePtot = itsReference.getGamma() * itsReference.getBeta();
    referencePt = sqrt(referencePtot * referencePtot - referencePr * referencePr);

321 322
    if(referencePtot < 0.0)
        referencePt *= -1.0;
Daniel Winklehner's avatar
Daniel Winklehner committed
323

324 325
    sinRefTheta_m = sin(referenceTheta * PIOVER180);
    cosRefTheta_m = cos(referenceTheta * PIOVER180);
gsell's avatar
gsell committed
326

327
    double BcParameter[8];
Daniel Winklehner's avatar
Daniel Winklehner committed
328

329
    for(int i = 0; i < 8; i++)
Daniel Winklehner's avatar
Daniel Winklehner committed
330 331
        BcParameter[i] = 0.0;

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    buildupFieldList(BcParameter, "OPALRING", opalRing_m);

    // Finally print some diagnostic
    *gmsg << "* Initial beam radius = " << referenceR << " [mm] " << endl;
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
    *gmsg << "* Total reference momentum   = " << referencePtot * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference azimuthal momentum  = " << referencePt * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum     = " << referencePr * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* " << opalRing_m->getSymmetry() << " fold field symmetry "
          << endl;
    *gmsg << "* Harmonic number h= " << opalRing_m->getHarmonicNumber() << " "
          << endl;
}
gsell's avatar
gsell committed
349 350 351 352 353 354 355 356

/**
 *
 *
 * @param cycl
 */
void ParallelCyclotronTracker::visitCyclotron(const Cyclotron &cycl) {

357
    *gmsg << "* -------------------------- Adding Cyclotron ---------------------------- *" << endl;
gsell's avatar
gsell committed
358

359 360
    Cyclotron *elptr = dynamic_cast<Cyclotron *>(cycl.clone());
    myElements.push_back(elptr);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    // Is this a Spiral Inflector Simulation? If yes, we'll give the user some 
    // useful information
    spiral_flag = elptr->getSpiralFlag();

    if(spiral_flag) {

        *gmsg << endl << "* This is a Spiral Inflector Simulation! This means the following:" << endl;
        *gmsg         << "* 1.) It is up to the user to provide appropriate geometry, electric and magnetic fields!" << endl;        
        *gmsg         << "*     (Use BANDRF type cyclotron and use RFMAPFN to load both magnetic" << endl;
        *gmsg         << "*     and electric fields, setting SUPERPOSE to an array of TRUE values.)" << endl;
        *gmsg         << "* 2.) It is strongly recommended to use the SAAMG fieldsolver," << endl; 
        *gmsg         << "*     FFT does not give the correct results (boundaty conditions are missing)." << endl;
        *gmsg         << "* 3.) The whole geometry will be meshed and used for the fieldsolve." << endl;
        *gmsg         << "*     There will be no transformations of the bunch into a local frame und consequently," << endl; 
        *gmsg         << "*     the problem will be treated non-relativistically!" << endl; 
        *gmsg         << "*     (This is not an issue for spiral inflectors as they are typically < 100 keV/amu.)" << endl;
        *gmsg << endl << "* Note: For now, multi-bunch mode (MBM) needs to be de-activated for spiral inflector" << endl;
        *gmsg         << "* and space charge needs to be solved every time-step. numBunch_m and scSolveFreq are reset." << endl;
        numBunch_m = 1;

    }

384
    // Fresh run (no restart):
385
    if(!OpalData::getInstance()->inRestartRun()) {
386

387 388 389 390 391
        // Get reference values from cyclotron element
        referenceR     = elptr->getRinit();
        referenceTheta = elptr->getPHIinit();
        referenceZ     = elptr->getZinit();
        referencePr    = elptr->getPRinit();
392 393
        referencePz    = elptr->getPZinit();

394
        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
395 396
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                "PHIINIT is out of [-180, 180)!");
397 398 399 400 401
        }

        referencePtot =  itsReference.getGamma() * itsReference.getBeta();

        // Calculate reference azimuthal (tangential) momentum from total-, z- and radial momentum:
402 403
        float insqrt = referencePtot * referencePtot - \
                       referencePr * referencePr - referencePz * referencePz;
404 405 406 407 408 409 410 411 412

        if(insqrt < 0) {

            if(insqrt > -1.0e-10) {

	        referencePt = 0.0;

            } else {

413
	        throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
414
                                    "Pt imaginary!");
415 416 417 418 419 420 421
            }

        } else {

            referencePt = sqrt(insqrt);
        }

422
        if(referencePtot < 0.0)
Daniel Winklehner's avatar
Daniel Winklehner committed
423
            referencePt *= -1.0;
424 425 426 427 428
        // End calculate referencePt

    // Restart a run:
    } else {

429
        // If the user wants to save the restarted run in local frame,
430 431
        // make sure the previous h5 file was local too
        if (Options::psDumpLocalFrame) {
432

433
	    if (!previousH5Local) {
434

435 436
                throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                    "You are trying a local restart from a global h5 file!");
437 438
	    }
	// Else, if the user wants to save the restarted run in global frame,
439 440
        // make sure the previous h5 file was global too
        } else {
441

442
	    if (previousH5Local) {
443

444 445
                throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
                                    "You are trying a global restart from a local h5 file!");
446
            }
447
        }
448

449 450 451 452
        // Adjust some of the reference variables from the h5 file
        referencePhi *= PIOVER180;
        referencePsi *= PIOVER180;
        referencePtot = bega;
453 454 455

        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {

456
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron",
457 458
                                "PHIINIT is out of [-180, 180)!");
        }
459 460
    }

461
    sinRefTheta_m = sin(referenceTheta * PIOVER180);
462 463
    cosRefTheta_m = cos(referenceTheta * PIOVER180);

464
    *gmsg << endl;
adelmann's avatar
adelmann committed
465
    *gmsg << "* Bunch global starting position:" << endl;
466 467
    *gmsg << "* RINIT = " << referenceR  << " [mm]" << endl;
    *gmsg << "* PHIINIT = " << referenceTheta << " [deg]" << endl;
468
    *gmsg << "* ZINIT = " << referenceZ << " [mm]" << endl;
469
    *gmsg << endl;
adelmann's avatar
adelmann committed
470
    *gmsg << "* Bunch global starting momenta:" << endl;
gsell's avatar
gsell committed
471 472
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
473
    *gmsg << "* Reference total momentum (beta * gamma) = " << referencePtot * 1000.0 << " [MCU]" << endl;
474 475 476
    *gmsg << "* Reference azimuthal momentum (Pt) = " << referencePt * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum (Pr) = " << referencePr * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference axial momentum (Pz) = " << referencePz * 1000.0 << " [MCU]" << endl;
477
    *gmsg << endl;
adelmann's avatar
adelmann committed
478

gsell's avatar
gsell committed
479
    double sym = elptr->getSymmetry();
480
    *gmsg << "* " << sym << "-fold field symmerty " << endl;
gsell's avatar
gsell committed
481

482 483 484
    // ckr: this just returned the default value as defined in Component.h
    // double rff = elptr->getRfFrequ();
    // *gmsg << "* Rf frequency= " << rff << " [MHz]" << endl;
gsell's avatar
gsell committed
485

486
    std::string fmfn = elptr->getFieldMapFN();
487
    *gmsg << "* Field map file name = " << fmfn << " " << endl;
gsell's avatar
gsell committed
488

489
    std::string type = elptr->getCyclotronType();
490
    *gmsg << "* Type of cyclotron = " << type << " " << endl;
491

492 493
    double rmin = elptr->getMinR();
    double rmax = elptr->getMaxR();
494
    *gmsg << "* Radial aperture = " << rmin << " ... " << rmax<<" [mm] "<< endl;
495 496 497

    double zmin = elptr->getMinZ();
    double zmax = elptr->getMaxZ();
498
    *gmsg << "* Vertical aperture = " << zmin << " ... " << zmax<<" [mm]"<< endl;
gsell's avatar
gsell committed
499

500
    /**
501
    bool Sflag = elptr->getSuperpose();
502
    std::string flagsuperposed;
503 504 505 506
    if (Sflag)
      flagsuperposed="yes";
    else
      flagsuperposed="no";
507
    *gmsg << "* Electric field maps are superposed? " << flagsuperposed << " " << endl;
508
    */
509

gsell's avatar
gsell committed
510
    double h = elptr->getCyclHarm();
511
    *gmsg << "* Number of trimcoils = " << elptr->getNumberOfTrimcoils() << endl;
512
    *gmsg << "* Harmonic number h = " << h << " " << endl;
513
    /**
adelmann's avatar
adelmann committed
514
    if (elptr->getSuperpose())
515
        *gmsg << "* Fields are superposed " << endl;
516
    */
adelmann's avatar
adelmann committed
517

gsell's avatar
gsell committed
518 519 520 521 522 523 524 525 526 527 528
    /**
     * To ease the initialise() function, set a integral parameter fieldflag internally.
     * Its value is  by the option "TYPE" of the element  "CYCLOTRON"
     * fieldflag = 1, readin PSI format measured field file (default)
     * fieldflag = 2, readin carbon cyclotron field file created by Jianjun Yang, TYPE=CARBONCYCL
     * fieldflag = 3, readin ANSYS format file for CYCIAE-100 created by Jianjun Yang, TYPE=CYCIAE
     * fieldflag = 4, readin AVFEQ format file for Riken cyclotrons
     * fieldflag = 5, readin FFAG format file for MSU/FNAL FFAG
     * fieldflag = 6, readin both median plane B field map and 3D E field map of RF cavity for compact cyclotron
     */
    int  fieldflag;
529
    if(type == std::string("CARBONCYCL")) {
gsell's avatar
gsell committed
530
        fieldflag = 2;
531
    } else if(type == std::string("CYCIAE")) {
gsell's avatar
gsell committed
532
        fieldflag = 3;
533
    } else if(type == std::string("AVFEQ")) {
gsell's avatar
gsell committed
534
        fieldflag = 4;
535
    } else if(type == std::string("FFAG")) {
gsell's avatar
gsell committed
536
        fieldflag = 5;
537
    } else if(type == std::string("BANDRF")) {
gsell's avatar
gsell committed
538
        fieldflag = 6;
539 540
    } else if(type == std::string("SYNCHROCYCLOTRON")) {
	fieldflag = 7;
541
    } else //(type == "RING")
gsell's avatar
gsell committed
542 543 544 545
        fieldflag = 1;

    // read field map on the  middle plane of cyclotron.
    // currently scalefactor is set to 1.0
546
    // TEMP changed 1.0 to getBScale() to test if we can scale the midplane field -DW
547
    elptr->initialise(itsBunch, fieldflag, elptr->getBScale());
gsell's avatar
gsell committed
548 549

    double BcParameter[8];
550

551
    for(int i = 0; i < 8; i++)
adelmann's avatar
adelmann committed
552
      BcParameter[i] = 0.0;
553

gsell's avatar
gsell committed
554 555 556
    BcParameter[0] = elptr->getRmin();
    BcParameter[1] = elptr->getRmax();

557 558
    // Store inner radius and outer radius of cyclotron field map in the list
    buildupFieldList(BcParameter, "CYCLOTRON", elptr);
gsell's avatar
gsell committed
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
}

/**
 * Not implemented and most probable never used
 *
 */
void ParallelCyclotronTracker::visitBeamBeam(const BeamBeam &) {
    *gmsg << "In BeamBeam tracker is missing " << endl;
}

/**
 *
 *
 * @param coll
 */
void ParallelCyclotronTracker::visitCollimator(const Collimator &coll) {

576
    *gmsg << "* --------- Collimator -----------------------------" << endl;
gsell's avatar
gsell committed
577

578 579
    Collimator* elptr = dynamic_cast<Collimator *>(coll.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
580

581
    double xstart = elptr->getXStart();
adelmann's avatar
adelmann committed
582
    *gmsg << "* Xstart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
583

584
    double xend = elptr->getXEnd();
adelmann's avatar
adelmann committed
585
    *gmsg << "* Xend= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
586

587
    double ystart = elptr->getYStart();
adelmann's avatar
adelmann committed
588
    *gmsg << "* Ystart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
589

590
    double yend = elptr->getYEnd();
591
    *gmsg << "* Yend= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
592

593
    double zstart = elptr->getZStart();
adelmann's avatar
adelmann committed
594
    *gmsg << "* Zstart= " << zstart << " [mm]" << endl;
595 596

    double zend = elptr->getZEnd();
597
    *gmsg << "* Zend= " << zend << " [mm]" << endl;
598

599
    double width = elptr->getWidth();
adelmann's avatar
adelmann committed
600
    *gmsg << "* Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
601 602 603 604 605 606

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
607
    std::string ElementType = "CCOLLIMATOR";
608 609 610 611
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
gsell's avatar
gsell committed
612 613 614 615 616 617 618 619 620 621 622 623 624 625
    BcParameter[4] = width ;
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitCorrector(const Corrector &corr) {
    *gmsg << "In Corrector; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Corrector *>(corr.clone()));
}

adelmann's avatar
adelmann committed
626 627 628 629 630 631 632 633 634 635 636 637
/**
 *
 *
 * @param degrader
 */
void ParallelCyclotronTracker::visitDegrader(const Degrader &deg) {
    *gmsg << "In Degrader; L= " << deg.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Degrader *>(deg.clone()));

}


gsell's avatar
gsell committed
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 *
 *
 * @param diag
 */
void ParallelCyclotronTracker::visitDiagnostic(const Diagnostic &diag) {
    *gmsg << "In Diagnostic; L= " << diag.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Diagnostic *>(diag.clone()));
}

/**
 *
 *
 * @param drift
 */
void ParallelCyclotronTracker::visitDrift(const Drift &drift) {
    *gmsg << "In drift L= " << drift.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Drift *>(drift.clone()));
}

/**
 *
 *
 * @param lamb
 */
void ParallelCyclotronTracker::visitLambertson(const Lambertson &lamb) {
    *gmsg << "In Lambertson; L= " << lamb.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Lambertson *>(lamb.clone()));
}

668 669 670 671
void ParallelCyclotronTracker::visitOffset(const Offset & off) {
    if (opalRing_m == NULL)
        throw OpalException(
                        "ParallelCylcotronTracker::visitOffset",
kraus's avatar
kraus committed
672
                        "Attempt to place an offset when Ring not defined");
673 674 675 676 677 678
    Offset* offNonConst = const_cast<Offset*>(&off);
    offNonConst->updateGeometry(opalRing_m->getNextPosition(),
                       opalRing_m->getNextNormal());
    opalRing_m->appendElement(off);
}

gsell's avatar
gsell committed
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 *
 *
 * @param marker
 */
void ParallelCyclotronTracker::visitMarker(const Marker &marker) {
    //   *gmsg << "In Marker; L= " << marker.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Marker *>(marker.clone()));
    // Do nothing.
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitMonitor(const Monitor &corr) {
    //   *gmsg << "In Monitor; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Monitor *>(corr.clone()));
    //   applyDrift(flip_s * corr.getElementLength());
}

701

gsell's avatar
gsell committed
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
/**
 *
 *
 * @param mult
 */
void ParallelCyclotronTracker::visitMultipole(const Multipole &mult) {
    *gmsg << "In Multipole; L= " << mult.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Multipole *>(mult.clone()));
}

/**
 *
 *
 * @param prob
 */
void ParallelCyclotronTracker::visitProbe(const Probe &prob) {
718
    *gmsg << "* -----------  Probe -------------------------------" << endl;
719 720
    Probe *elptr = dynamic_cast<Probe *>(prob.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
721

722
    double xstart = elptr->getXstart();
723
    *gmsg << "XStart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
724

725
    double xend = elptr->getXend();
726
    *gmsg << "XEnd= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
727

728
    double ystart = elptr->getYstart();
729
    *gmsg << "YStart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
730

731
    double yend = elptr->getYend();
732
    *gmsg << "YEnd= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
733

734
    double width = elptr->getWidth();
735
    *gmsg << "Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
736 737 738 739 740 741 742 743


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
744
    std::string ElementType = "PROBE";
gsell's avatar
gsell committed
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store probe parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitRBend(const RBend &bend) {
    *gmsg << "In RBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RBend *>(bend.clone()));
}

765 766 767 768 769 770 771 772 773
void ParallelCyclotronTracker::visitSBend3D(const SBend3D &bend) {
    *gmsg << "Adding SBend3D" << endl;
    if (opalRing_m != NULL)
        opalRing_m->appendElement(bend);
    else
        throw OpalException("ParallelCyclotronTracker::visitSBend3D",
                      "Need to define a RINGDEFINITION to use SBend3D element");
}

774 775 776 777 778 779 780 781 782
void ParallelCyclotronTracker::visitVariableRFCavity(const VariableRFCavity &cav) {
    *gmsg << "Adding Variable RF Cavity" << endl;
    if (opalRing_m != NULL)
        opalRing_m->appendElement(cav);
    else
        throw OpalException("ParallelCyclotronTracker::visitVariableRFCavity",
            "Need to define a RINGDEFINITION to use VariableRFCavity element");
}

gsell's avatar
gsell committed
783 784 785 786 787 788 789 790
/**
 *
 *
 * @param as
 */
void ParallelCyclotronTracker::visitRFCavity(const RFCavity &as) {

    *gmsg << "* --------- RFCavity ------------------------------" << endl;
791

792 793
    RFCavity *elptr = dynamic_cast<RFCavity *>(as.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
794 795 796 797 798 799 800

    if((elptr->getComponentType() != "SINGLEGAP") && (elptr->getComponentType() != "DOUBLEGAP")) {
        *gmsg << (elptr->getComponentType()) << endl;
        throw OpalException("ParallelCyclotronTracker::visitRFCavity",
                            "The ParallelCyclotronTracker can only play with cyclotron type RF system currently ...");
    }

801
    double rmin = elptr->getRmin();
gsell's avatar
gsell committed
802 803
    *gmsg << "* Minimal radius of cavity= " << rmin << " [mm]" << endl;

804
    double rmax = elptr->getRmax();
gsell's avatar
gsell committed
805 806
    *gmsg << "* Maximal radius of cavity= " << rmax << " [mm]" << endl;

807
    double rff = elptr->getCycFrequency();
gsell's avatar
gsell committed
808 809
    *gmsg << "* RF frequency (2*pi*f)= " << rff << " [rad/s]" << endl;

810
    std::string fmfn = elptr->getFieldMapFN();
gsell's avatar
gsell committed
811
    *gmsg << "* RF Field map file name= " << fmfn << endl;
812
    double angle = elptr->getAzimuth();
gsell's avatar
gsell committed
813 814
    *gmsg << "* Cavity azimuth position= " << angle << " [deg] " << endl;

815
    double gap = elptr->getGapWidth();
gsell's avatar
gsell committed
816 817
    *gmsg << "* Cavity gap width= " << gap << " [mm] " << endl;

818
    double pdis = elptr->getPerpenDistance();
gsell's avatar
gsell committed
819 820
    *gmsg << "* Cavity Shift distance= " << pdis << " [mm] " << endl;

821
    double phi0 = elptr->getPhi0();
gsell's avatar
gsell committed
822 823
    *gmsg << "* Initial RF phase (t=0)= " << phi0 << " [deg] " << endl;

824 825 826 827 828 829

    /*
      Setup time dependence and in case of no
      timedependence use a polynom with  a_0 = 1 and a_k = 0, k = 1,2,3.
     */

830 831 832 833
    std::shared_ptr<AbstractTimeDependence> freq_atd = nullptr;
    std::shared_ptr<AbstractTimeDependence> ampl_atd = nullptr;
    std::shared_ptr<AbstractTimeDependence> phase_atd = nullptr;

834 835 836 837 838 839
    std::vector<double>  unityVec;
    unityVec.push_back(1.);
    unityVec.push_back(0.);
    unityVec.push_back(0.);
    unityVec.push_back(0.);
    
840 841 842 843
    if (elptr->getFrequencyModelName() != "") {
      freq_atd = AbstractTimeDependence::getTimeDependence(elptr->getFrequencyModelName());
      *gmsg << "* Variable frequency RF Model name " << elptr->getFrequencyModelName() << endl;
    }
844 845
    else
        freq_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
846 847 848 849 850

    if (elptr->getAmplitudeModelName() != "") {
      ampl_atd = AbstractTimeDependence::getTimeDependence(elptr->getAmplitudeModelName());
      *gmsg << "* Variable amplitude RF Model name " << elptr->getAmplitudeModelName() << endl;
    }
851 852
    else
        ampl_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
853 854 855 856 857

    if (elptr->getPhaseModelName() != "") {
      phase_atd = AbstractTimeDependence::getTimeDependence(elptr->getPhaseModelName());
      *gmsg << "* Variable phase RF Model name " << elptr->getPhaseModelName() << endl;
    }
858 859
    else
        phase_atd = std::shared_ptr<AbstractTimeDependence>(new PolynomialTimeDependence(unityVec));
860

gsell's avatar
gsell committed
861
    // read cavity voltage profile data from file.
862 863 864
    elptr->initialise(itsBunch, 1.0, freq_atd, ampl_atd, phase_atd);

//    elptr->initialise(itsBunch, 1.0); 
gsell's avatar
gsell committed
865 866 867 868

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
869
    std::string ElementType = "CAVITY";
gsell's avatar
gsell committed
870 871 872 873 874 875 876 877 878 879 880 881 882 883
    BcParameter[0] = rmin;
    BcParameter[1] = rmax;
    BcParameter[2] = pdis;
    BcParameter[3] = angle;

    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param rfq
 */
void ParallelCyclotronTracker::visitRFQuadrupole(const RFQuadrupole &rfq) {
884
    *gmsg << "In RFQuadrupole; L = " << rfq.getElementLength() << " however the element is missing " << endl;
gsell's avatar
gsell committed
885 886 887 888 889 890 891 892 893
    myElements.push_back(dynamic_cast<RFQuadrupole *>(rfq.clone()));
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitSBend(const SBend &bend) {
894
    *gmsg << "In SBend; L = " << bend.getElementLength() << " however the element is missing " << endl;
gsell's avatar
gsell committed
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    myElements.push_back(dynamic_cast<SBend *>(bend.clone()));
}

/**
 *
 *
 * @param sep
 */
void ParallelCyclotronTracker::visitSeparator(const Separator &sep) {
    *gmsg << "In Seapator L= " << sep.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Separator *>(sep.clone()));
}

/**
 *
 *
 * @param sept
 */
void ParallelCyclotronTracker::visitSeptum(const Septum &sept) {
914

915
    *gmsg << endl << "* -----------------------------  Septum ------------------------------- *" << endl;
gsell's avatar
gsell committed
916

917 918
    Septum *elptr = dynamic_cast<Septum *>(sept.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
919

920
    double xstart = elptr->getXstart();
921
    *gmsg << "XStart = " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
922

923
    double xend = elptr->getXend();
924
    *gmsg << "XEnd = " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
925

926
    double ystart = elptr->getYstart();
927
    *gmsg << "YStart = " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
928

929
    double yend = elptr->getYend();
930
    *gmsg << "YEnd = " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
931

932
    double width = elptr->getWidth();
933
    *gmsg << "Width = " << width << " [mm]" << endl;
gsell's avatar
gsell committed
934 935 936 937 938 939 940 941


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
942
    std::string ElementType = "SEPTUM";
gsell's avatar
gsell committed
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store septum parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param solenoid
 */
void ParallelCyclotronTracker::visitSolenoid(const Solenoid &solenoid) {
    myElements.push_back(dynamic_cast<Solenoid *>(solenoid.clone()));
    Component *elptr = *(--myElements.end());
    if(!elptr->hasAttribute("ELEMEDGE")) {
        *gmsg << "Solenoid: no position of the element given!" << endl;
        return;
    }
}

/**
 *
 *
 * @param pplate
 */
void ParallelCyclotronTracker::visitParallelPlate(const ParallelPlate &pplate) {//do nothing

    //*gmsg << "ParallelPlate: not in use in ParallelCyclotronTracker!" << endl;

    //buildupFieldList(startField, endField, elptr);

}

/**
 *
 *
 * @param cv
 */
void ParallelCyclotronTracker::visitCyclotronValley(const CyclotronValley &cv) {
    // Do nothing here.
}
/**
 * not used
 *
 * @param angle
 * @param curve
 * @param field
 * @param scale
 */
void ParallelCyclotronTracker::applyEntranceFringe(double angle, double curve,
        const BMultipoleField &field, double scale) {

}

/**
 *
 *
 * @param stripper
 */

void ParallelCyclotronTracker::visitStripper(const Stripper &stripper) {

    *gmsg << "* ---------Stripper------------------------------" << endl;

1011 1012 1013 1014
    Stripper *elptr = dynamic_cast<Stripper *>(stripper.clone());
    myElements.push_back(elptr);

    double xstart = elptr->getXstart();
gsell's avatar
gsell committed
1015 1016
    *gmsg << "XStart= " << xstart << " [mm]" << endl;

1017
    double xend = elptr->getXend();
gsell's avatar
gsell committed
1018 1019
    *gmsg << "XEnd= " << xend << " [mm]" << endl;

1020
    double ystart = elptr->getYstart();
gsell's avatar
gsell committed
1021 1022
    *gmsg << "YStart= " << ystart << " [mm]" << endl;

1023
    double yend = elptr->getYend();
gsell's avatar
gsell committed
1024 1025
    *gmsg << "YEnd= " << yend << " [mm]" << endl;

1026
    double width = elptr->getWidth();
gsell's avatar
gsell committed
1027 1028
    *gmsg << "Width= " << width << " [mm]" << endl;

1029
    double opcharge = elptr->getOPCharge();
1030
    *gmsg << "Charge of outcoming particle = +e * " << opcharge << endl;
gsell's avatar
gsell committed
1031

1032
    double opmass = elptr->getOPMass();
1033
    *gmsg << "* Mass of the outcoming particle = " << opmass << " [GeV/c^2]" << endl;
gsell's avatar
gsell committed
1034 1035 1036 1037 1038 1039

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8;