IpplTypeComputations.h 22.3 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// -*- C++ -*-
/***************************************************************************
 *
 * The IPPL Framework
 * 
 *
 * Visit http://people.web.psi.ch/adelmann/ for more details
 *
 ***************************************************************************/


///////////////////////////////////////////////////////////////////////////
//
// FILE NAME
//    IpplTypeComputations.h
//
// CREATED
//    July 11, 1997
//
// DESCRIPTION
//    PETE: Portable Expression Template Engine.
//
//    This header file contains IPPL-specific type computations.
//
///////////////////////////////////////////////////////////////////////////

#ifndef IPPL_TYPE_COMPUTATIONS_H
#define IPPL_TYPE_COMPUTATIONS_H


// include files
#include "PETE/TypeComputations.h"
gsell's avatar
gsell committed
33
#include <complex>
gsell's avatar
gsell committed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


// forward declarations
template<class T, unsigned D> class Vektor;
template<class T, unsigned D> class Tenzor;
template<class T, unsigned D> class AntiSymTenzor;
template<class T, unsigned D> class SymTenzor;
class RNGBitReverse;
template <class T> class RNGLattice;
class RNGSimple;
class RNGRand;
class RNGXDiv;
class RNGXCI;


// definition of global sign function
template<class T>
inline int sign(T a) { return ((a > 0) ? 1 : (a == 0 ? 0 : -1)); }


///////////////////////////////////////////////////////////////////////////
//
// PETE_Type2Index FOR USER TYPES
//
///////////////////////////////////////////////////////////////////////////

// Complex numbers.

gsell's avatar
gsell committed
62
template<> struct PETE_Type2Index<std::complex<double>> {
gsell's avatar
gsell committed
63 64 65 66 67 68 69 70
  enum { val = 8 };
};

// Return types for scalar ops with RNGs.

#define _SCALAR_RNG_OP_RETURNS_(GEN,SCA,OP)                             \
template <>                                                             \
struct PETEBinaryReturn<GEN,SCA,OP> {                                   \
71
  typedef PETEBinaryReturn<double,SCA,OP>::type type;                   \
gsell's avatar
gsell committed
72 73 74
};                                                                      \
template <>                                                             \
struct PETEBinaryReturn<SCA,GEN,OP> {                                   \
75
  typedef PETEBinaryReturn<SCA,double,OP>::type type;                   \
gsell's avatar
gsell committed
76 77 78 79 80 81 82 83 84 85 86
};

#define _SCALAR_RNG_RETURNS_(GEN,SCA)                                   \
_SCALAR_RNG_OP_RETURNS_(GEN,SCA,OpAdd)                                  \
_SCALAR_RNG_OP_RETURNS_(GEN,SCA,OpSubtract)                             \
_SCALAR_RNG_OP_RETURNS_(GEN,SCA,OpMultipply)                             \
_SCALAR_RNG_OP_RETURNS_(GEN,SCA,OpDivide)

#define _PETE_RNG_RETURNS_(GEN)                                         \
                                                                        \
template <> struct PETE_Type2Index< GEN > {                             \
87
  enum { val = PETE_Type2Index<double>::val };                          \
gsell's avatar
gsell committed
88 89 90 91 92 93 94
};                                                                      \
                                                                        \
_SCALAR_RNG_RETURNS_(GEN,short)                                         \
_SCALAR_RNG_RETURNS_(GEN,int)                                           \
_SCALAR_RNG_RETURNS_(GEN,long)                                          \
_SCALAR_RNG_RETURNS_(GEN,float)                                         \
_SCALAR_RNG_RETURNS_(GEN,double)                                        \
gsell's avatar
gsell committed
95
_SCALAR_RNG_RETURNS_(GEN,std::complex<double>)
gsell's avatar
gsell committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

_PETE_RNG_RETURNS_(RNGBitReverse)
_PETE_RNG_RETURNS_(RNGLattice<float>)
_PETE_RNG_RETURNS_(RNGLattice<double>)
_PETE_RNG_RETURNS_(RNGSimple)
_PETE_RNG_RETURNS_(RNGRand)
_PETE_RNG_RETURNS_(RNGXDiv)
_PETE_RNG_RETURNS_(RNGXCI)

// Life is way easier with this feature.

template<class T, unsigned Dim>
struct PETE_Type2Index< Vektor<T, Dim> > {
  enum { val = 20 + 10 * Dim + PETE_Type2Index<T>::val };
};

template<class T, unsigned Dim>
struct PETE_Type2Index< SymTenzor<T, Dim> > {
  enum { val = 120 + 10 * Dim + PETE_Type2Index<T>::val };
};

template<class T, unsigned Dim>
struct PETE_Type2Index< Tenzor<T, Dim> > {
  enum { val = 220 + 10 * Dim + PETE_Type2Index<T>::val };
};

template<class T, unsigned Dim>
struct PETE_Type2Index< AntiSymTenzor<T, Dim> > {
  enum { val = 320 + 10 * Dim + PETE_Type2Index<T>::val };
};


///////////////////////////////////////////////////////////////////////////
//
// SPECIAL CASES FOR UNARY FUNCTIONS
//
///////////////////////////////////////////////////////////////////////////

// Abs function: special return for complex numbers.

struct FnAbs {
  enum { tag = PETE_UnaryPassThruTag };
};

gsell's avatar
gsell committed
140
template<> struct PETEUnaryReturn<std::complex<double>, FnAbs> {
gsell's avatar
gsell committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154
  typedef double type;
};

// The conj, norm, arg, real, and imag functions for complex numbers.

struct FnConj {
  enum { tag = PETE_UnaryPassThruTag };
};

struct FnNorm {
  typedef double type;
  enum { tag = PETE_Type2Index<double>::val };
};

gsell's avatar
gsell committed
155
template<> struct PETEUnaryReturn<std::complex<double>, FnNorm> {
gsell's avatar
gsell committed
156 157 158 159 160 161 162 163
  typedef double type;
};

struct FnArg {
  typedef double type;
  enum { tag = PETE_Type2Index<double>::val };
};

gsell's avatar
gsell committed
164
template<> struct PETEUnaryReturn<std::complex<double>, FnArg> {
gsell's avatar
gsell committed
165 166 167 168 169 170 171 172
  typedef double type;
};

struct FnReal {
  typedef double type;
  enum { tag = PETE_Type2Index<double>::val };
};

gsell's avatar
gsell committed
173
template<> struct PETEUnaryReturn<std::complex<double>, FnReal> {
gsell's avatar
gsell committed
174 175 176 177 178 179 180 181
  typedef double type;
};

struct FnImag {
  typedef double type;
  enum { tag = PETE_Type2Index<double>::val };
};

gsell's avatar
gsell committed
182
template<> struct PETEUnaryReturn<std::complex<double>, FnImag> {
gsell's avatar
gsell committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
  typedef double type;
};

// The sign function.

struct FnSign {
  typedef int type;
  enum { tag = PETE_Type2Index<int>::val };
};

template<class TP>
struct OpParens
{
  enum { tag = PETE_UnaryPassThruTag };
  TP Arg;
  OpParens() { Arg = TP(); }
  OpParens(const TP& a) : Arg(a) {}
};

// Tensor functions: trace, det (determinant),  and transpose

struct FnTrace {
  enum { tag = PETE_UnaryPassThruTag };
};

struct FnDet {
  enum { tag = PETE_UnaryPassThruTag };
};

struct FnTranspose {
  enum { tag = PETE_UnaryPassThruTag };
};

struct FnCofactors {
  enum { tag = PETE_UnaryPassThruTag };
};

// Life is pretty simple if we have partial specialization.

template<class T, unsigned Dim>
struct PETEUnaryReturn<Tenzor<T,Dim>, FnTrace> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<SymTenzor<T,Dim>, FnTrace> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<AntiSymTenzor<T,Dim>, FnTrace> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<Tenzor<T,Dim>, FnDet> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<SymTenzor<T,Dim>, FnDet> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<AntiSymTenzor<T,Dim>, FnDet> {
  typedef T type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<Tenzor<T,Dim>, FnTranspose> {
  typedef Tenzor<T,Dim> type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<SymTenzor<T,Dim>, FnTranspose> {
  typedef SymTenzor<T,Dim> type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<AntiSymTenzor<T,Dim>, FnTranspose> {
  typedef AntiSymTenzor<T,Dim> type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<Tenzor<T,Dim>, FnCofactors> {
  typedef Tenzor<T,Dim> type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<SymTenzor<T,Dim>, FnCofactors> {
  typedef SymTenzor<T,Dim> type;
};

template<class T, unsigned Dim>
struct PETEUnaryReturn<AntiSymTenzor<T,Dim>, FnCofactors> {
  typedef AntiSymTenzor<T,Dim> type;
};


///////////////////////////////////////////////////////////////////////////
//
// SPECIAL CASES FOR BINARY FUNCTIONS
//
///////////////////////////////////////////////////////////////////////////

// Min and Max functions.

struct FnMin {
  enum { tag = PETE_BinaryPromoteTag };
};

struct FnMax {
  enum { tag = PETE_BinaryPromoteTag };
};

// Dot, dot-dot, and outerProduct functions.

struct FnDot {
  enum { tag = PETE_BinaryPromoteTag };
};

struct FnDotDot {
  enum { tag = PETE_BinaryPromoteTag };
};

struct FnOuterProduct {
  enum { tag = PETE_BinaryPromoteTag };
};

// Cross-product:

struct FnCross {
  enum { tag = PETE_BinaryPromoteTag };
};

// Involving Vektors:

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,Vektor<T2,Dim>, FnCross> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,Vektor<T2,Dim>, FnOuterProduct> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,Vektor<T2,Dim>, FnDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

// Involving Tenzors, but no combination with SymTenzors or AntiSymTenzors:

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,Tenzor<T2,Dim>,FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,Tenzor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,Vektor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,Tenzor<T2,Dim>,FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

// Involving SymTenzors, possibly combined with Tenzors:

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,SymTenzor<T2,Dim>, FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> 
    type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,SymTenzor<T2,Dim>, FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,SymTenzor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Vektor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,SymTenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,SymTenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,SymTenzor<T2,Dim>,OpMultipply> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,SymTenzor<T2,Dim>, FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,SymTenzor<T2,Dim>, FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Tenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Tenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Tenzor<T2,Dim>,FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Tenzor<T2,Dim>,FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

// Involving AntiSymTenzors, possibly combined with Tenzors or SymTenzors:

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> 
    type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDotDot>
{
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Vektor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Vektor<T2,Dim>, FnDot> {
  typedef Vektor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpMultipply> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<Tenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Tenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Tenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Tenzor<T2,Dim>,FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Tenzor<T2,Dim>,FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>,OpMultipply> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<SymTenzor<T1,Dim>,AntiSymTenzor<T2,Dim>, FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,SymTenzor<T2,Dim>,OpAdd> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpAdd>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,SymTenzor<T2,Dim>,OpSubtract> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpSubtract>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,SymTenzor<T2,Dim>,FnDot> {
  typedef Tenzor<typename PETEBinaryReturn<T1,T2,OpMultipply>::type,Dim> type;
};

template<class T1, class T2, unsigned Dim>
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,SymTenzor<T2,Dim>,FnDotDot> {
  typedef typename PETEBinaryReturn<T1,T2,OpMultipply>::type type;
};

// Need to specify scalar operations directly.

#define _SCALAR_VST_RETURNS_(Sca)                                           \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<Vektor<T1,Dim>,Sca,OpMultipply> {                    \
  typedef Vektor<typename PETEBinaryReturn<T1,Sca,OpMultipply>::type,Dim>    \
    type;                                                                   \
};                                                                          \
template<class T2, unsigned Dim>                                            \
struct PETEBinaryReturn<Sca,Vektor<T2,Dim>,OpMultipply> {                    \
  typedef Vektor<typename PETEBinaryReturn<Sca,T2,OpMultipply>::type,Dim>    \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<Vektor<T1,Dim>,Sca,OpDivide> {                      \
  typedef Vektor<typename PETEBinaryReturn<T1,Sca,OpDivide>::type,Dim>      \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<Tenzor<T1,Dim>,Sca,OpMultipply> {                    \
  typedef Tenzor<typename PETEBinaryReturn<T1,Sca,OpMultipply>::type,Dim>    \
    type;                                                                   \
};                                                                          \
template<class T2, unsigned Dim>                                            \
struct PETEBinaryReturn<Sca,Tenzor<T2,Dim>,OpMultipply> {                    \
  typedef Tenzor<typename PETEBinaryReturn<Sca,T2,OpMultipply>::type,Dim>    \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<Tenzor<T1,Dim>,Sca,OpDivide> {                      \
  typedef Tenzor<typename PETEBinaryReturn<T1,Sca,OpDivide>::type,Dim>      \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Sca,OpMultipply> {                 \
  typedef SymTenzor<typename PETEBinaryReturn<T1,Sca,OpMultipply>::type,Dim> \
    type;                                                                   \
};                                                                          \
template<class T2, unsigned Dim>                                            \
struct PETEBinaryReturn<Sca,SymTenzor<T2,Dim>,OpMultipply> {                 \
  typedef SymTenzor<typename PETEBinaryReturn<Sca,T2,OpMultipply>::type,Dim> \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<SymTenzor<T1,Dim>,Sca,OpDivide> {                   \
  typedef SymTenzor<typename PETEBinaryReturn<T1,Sca,OpDivide>::type,Dim>   \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Sca,OpMultipply> {             \
  typedef                                                                   \
  AntiSymTenzor<typename PETEBinaryReturn<T1,Sca,OpMultipply>::type,Dim>     \
    type;                                                                   \
};                                                                          \
template<class T2, unsigned Dim>                                            \
struct PETEBinaryReturn<Sca,AntiSymTenzor<T2,Dim>,OpMultipply> {             \
  typedef                                                                   \
  AntiSymTenzor<typename PETEBinaryReturn<Sca,T2,OpMultipply>::type,Dim>     \
    type;                                                                   \
};                                                                          \
template<class T1, unsigned Dim>                                            \
struct PETEBinaryReturn<AntiSymTenzor<T1,Dim>,Sca,OpDivide> {               \
  typedef                                                                   \
  AntiSymTenzor<typename PETEBinaryReturn<T1,Sca,OpDivide>::type,Dim>       \
    type;                                                                   \
};

_SCALAR_VST_RETURNS_(short)
_SCALAR_VST_RETURNS_(int)
_SCALAR_VST_RETURNS_(long)
_SCALAR_VST_RETURNS_(float)
_SCALAR_VST_RETURNS_(double)
gsell's avatar
gsell committed
612
_SCALAR_VST_RETURNS_(std::complex<double>)
gsell's avatar
gsell committed
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

#undef _SCALAR_VST_RETURNS_


///////////////////////////////////////////////////////////////////////////
//
// ASSIGNMENT OPERATORS: min=, max=, &&=, ||=
//
///////////////////////////////////////////////////////////////////////////

struct OpMinAssign {
  enum { tag = PETE_BinaryUseLeftTag };
};

struct OpMaxAssign {
  enum { tag = PETE_BinaryUseLeftTag };
};

struct OpAndAssign {
  enum { tag = PETE_BinaryUseLeftTag };
};

struct OpOrAssign {
  enum { tag = PETE_BinaryUseLeftTag };
};


///////////////////////////////////////////////////////////////////////////
//
// OPERATOR()
//
///////////////////////////////////////////////////////////////////////////

template<class T, class TP, unsigned Dim>
struct PETEUnaryReturn< Vektor<T, Dim>, OpParens<TP> > {
  typedef T type;
};

template<class T, class TP, unsigned Dim>
struct PETEUnaryReturn< AntiSymTenzor<T, Dim>, OpParens<TP> > {
  typedef T type;
};

template<class T, class TP, unsigned Dim>
struct PETEUnaryReturn< SymTenzor<T, Dim>, OpParens<TP> > {
  typedef T type;
};

template<class T, class TP, unsigned Dim>
struct PETEUnaryReturn< Tenzor<T, Dim>, OpParens<TP> > {
  typedef T type;
};

#endif // IPPL_TYPE_COMPUTATIONS_H