ArbitraryDomain.cpp 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// ------------------------------------------------------------------------
// $Version: 1.2.1 $
// ------------------------------------------------------------------------
// Copyright & License: See Copyright.readme in src directory
// ------------------------------------------------------------------------
// Class ArbitraryDomain
//   Interface to iterative solver and boundary geometry 
//   for space charge calculation
//
// ------------------------------------------------------------------------
// $Author: kaman $
// $Date: 2014 $
// ------------------------------------------------------------------------
14
#define DEBUG_INTERSECT_RAY_BOUNDARY
15

16
#ifdef HAVE_SAAMG_SOLVER
17 18 19 20
#include <map>
#include <cmath>
#include <iostream>
#include <assert.h>
gsell's avatar
gsell committed
21 22

#include "ArbitraryDomain.h"
23

24 25 26 27 28 29 30 31 32
ArbitraryDomain::ArbitraryDomain(
	BoundaryGeometry * bgeom, 
	Vector_t nr, 
	Vector_t hr, 
	std::string interpl) {

    	bgeom_m  = bgeom;
    	Geo_mincoords_m = bgeom->getmincoords();
    	Geo_maxcoords_m = bgeom->getmaxcoords();
33

34 35
    	setNr(nr);
    	setHr(hr);
36

37 38 39 40 41 42 43 44
   	startId = 0;

	if(interpl == "CONSTANT")
        	interpolationMethod = CONSTANT;
	else if(interpl == "LINEAR")
        	interpolationMethod = LINEAR;
	else if(interpl == "QUADRATIC")
        	interpolationMethod = QUADRATIC;
gsell's avatar
gsell committed
45 46
}

47 48
ArbitraryDomain::~ArbitraryDomain() {
    //nothing so far
gsell's avatar
gsell committed
49 50
}

51 52 53 54 55 56
void ArbitraryDomain::Compute(Vector_t hr) {

    setHr(hr);
}


57
void ArbitraryDomain::Compute(Vector_t hr, NDIndex<3> localId) {
gsell's avatar
gsell committed
58 59 60

    setHr(hr);

61 62 63 64 65 66 67
    int zGhostOffsetLeft  = (localId[2].first()== 0) ? 0 : 1;
    int zGhostOffsetRight = (localId[2].last() == nr[2] - 1) ? 0 : 1;
    int yGhostOffsetLeft  = (localId[1].first()== 0) ? 0 : 1;
    int yGhostOffsetRight = (localId[1].last() == nr[1] - 1) ? 0 : 1;
    int xGhostOffsetLeft  = (localId[0].first()== 0) ? 0 : 1;
    int xGhostOffsetRight = (localId[0].last() == nr[0] - 1) ? 0 : 1;
    
68 69
    hasGeometryChanged_m = true;

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    IntersectLoX.clear();
    IntersectHiX.clear();
    IntersectLoY.clear();
    IntersectHiY.clear();
    IntersectLoZ.clear();
    IntersectHiZ.clear();


    //calculate intersection 
    Vector_t P, dir, I;
    for (int idz = localId[2].first()-zGhostOffsetLeft; idz <= localId[2].last()+zGhostOffsetRight; idz++) {
	 P[2] = (idz - (nr[2]-1)/2.0)*hr[2];

	 for (int idy = localId[1].first()-yGhostOffsetLeft; idy <= localId[1].last()+yGhostOffsetRight; idy++) {
	     P[1] = (idy - (nr[1]-1)/2.0)*hr[1];

    	     for (int idx = localId[0].first()-xGhostOffsetLeft; idx <= localId[0].last()+xGhostOffsetRight; idx++) {
	       	  P[0] = (idx - (nr[0]-1)/2.0)*hr[0];

       			std::tuple<int, int, int> pos(idx, idy, idz);

	        	dir = Vector_t(0,0,1);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectHiZ.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[2]));

	        	dir = Vector_t(0,0,-1);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectLoZ.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[2]));

	        	dir = Vector_t(0,1,0);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectHiY.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[1]));

	        	dir = Vector_t(0,-1,0);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectLoY.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[1]));

	        	dir = Vector_t(1,0,0);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectHiX.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[0]));

	        	dir = Vector_t(-1,0,0);
		        if (bgeom_m->intersectRayBoundary(P, dir, I))
       	      		 IntersectLoX.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[0]));
		}
	 }
     }

    //number of ghost nodes to the right 
    int znumGhostNodesRight = 0;
    if(zGhostOffsetRight != 0) {
        for(int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for(int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
                if(isInside(idx, idy, localId[2].last() + zGhostOffsetRight))
                    znumGhostNodesRight++;
gsell's avatar
gsell committed
125 126
            }
        }
127
    }
gsell's avatar
gsell committed
128

129 130 131 132 133 134 135
    //number of ghost nodes to the left 
    int znumGhostNodesLeft = 0;
    if(zGhostOffsetLeft != 0) {
        for(int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for(int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
                if(isInside(idx, idy, localId[2].first() - zGhostOffsetLeft))
                    znumGhostNodesLeft++;
gsell's avatar
gsell committed
136 137
            }
        }
138
    }
gsell's avatar
gsell committed
139

140 141 142 143 144 145 146
    //number of ghost nodes to the right 
    int ynumGhostNodesRight = 0;
    if(yGhostOffsetRight != 0) {
        for(int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for(int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if(isInside(idx, localId[1].last() + yGhostOffsetRight, idz))
                    ynumGhostNodesRight++;
gsell's avatar
gsell committed
147 148 149 150
            }
        }
    }

151 152 153 154 155 156 157 158 159 160
    //number of ghost nodes to the left 
    int ynumGhostNodesLeft = 0;
    if(yGhostOffsetLeft != 0) {
        for(int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for(int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if(isInside(idx, localId[1].first() - yGhostOffsetLeft, idz))
                    ynumGhostNodesLeft++;
            }
        }
    }
gsell's avatar
gsell committed
161 162


163 164 165 166 167 168 169
    //number of ghost nodes to the right 
    int xnumGhostNodesRight = 0;
    if(xGhostOffsetRight != 0) {
	for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
            for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if(isInside(localId[0].last() + xGhostOffsetRight, idy, idz))
                    xnumGhostNodesRight++;
gsell's avatar
gsell committed
170 171 172 173
            }
        }
    }

174 175 176 177 178 179 180 181 182 183
    //number of ghost nodes to the left 
    int xnumGhostNodesLeft = 0;
    if(xGhostOffsetLeft != 0) {
       	for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
            for(int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if(isInside(localId[0].first() - xGhostOffsetLeft, idy, idz))
                    xnumGhostNodesLeft++;
            }
        }
    }
gsell's avatar
gsell committed
184
    //xy points in z plane
185 186
    int numxy; 
    int numtotalxy = 0;
gsell's avatar
gsell committed
187

188
    numXY.clear();
gsell's avatar
gsell committed
189

190 191 192 193 194 195
    for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
	numxy =0;
        for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
            for (int idx =localId[0].first(); idx <= localId[0].last(); idx++) {
                if (isInside(idx, idy, idz))
                   numxy++;
gsell's avatar
gsell committed
196 197
            }
        }
198
        numtotalxy += numxy;
gsell's avatar
gsell committed
199 200
    }

201 202
    startId = 0;
    MPI_Scan(&numtotalxy, &startId, 1, MPI_INTEGER, MPI_SUM, Ippl::getComm());
gsell's avatar
gsell committed
203

204
    startId -= numtotalxy;
gsell's avatar
gsell committed
205 206 207 208

    //build up index and coord map
    IdxMap.clear();
    CoordMap.clear();
209 210 211 212 213 214 215 216 217 218 219 220 221
    
    register int id = startId - xnumGhostNodesLeft - ynumGhostNodesLeft - znumGhostNodesLeft;
     for (int idz = localId[2].first()-zGhostOffsetLeft; idz <= localId[2].last()+zGhostOffsetRight; idz++) {
    	 for (int idy = localId[1].first()-yGhostOffsetLeft; idy <= localId[1].last()+yGhostOffsetRight; idy++) {
    	     for (int idx = localId[0].first()-xGhostOffsetLeft; idx <= localId[0].last()+xGhostOffsetRight; idx++) {
	            if (isInside(idx, idy, idz)) {
                    IdxMap[toCoordIdx(idx, idy, idz)] = id;
                    CoordMap[id] = toCoordIdx(idx, idy, idz);
                    id++;
                 }
             }
         }
     }
gsell's avatar
gsell committed
222 223
}

224 225 226 227 228 229
void ArbitraryDomain::Compute(Vector_t hr, NDIndex<3> localId, Vector_t globalMeanR, Vektor<double, 4> globalToLocalQuaternion){

    setHr(hr);

    globalMeanR_m = globalMeanR;
    globalToLocalQuaternion_m = globalToLocalQuaternion;	
230
    localToGlobalQuaternion_m[0] = globalToLocalQuaternion[0];
231
    for (int i=1; i<4; i++)
232
		localToGlobalQuaternion_m[i] = -globalToLocalQuaternion[i];	
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    int zGhostOffsetLeft  = (localId[2].first()== 0) ? 0 : 1;
    int zGhostOffsetRight = (localId[2].last() == nr[2] - 1) ? 0 : 1;
    int yGhostOffsetLeft  = (localId[1].first()== 0) ? 0 : 1;
    int yGhostOffsetRight = (localId[1].last() == nr[1] - 1) ? 0 : 1;
    int xGhostOffsetLeft  = (localId[0].first()== 0) ? 0 : 1;
    int xGhostOffsetRight = (localId[0].last() == nr[0] - 1) ? 0 : 1;
    
    hasGeometryChanged_m = true;

    IntersectLoX.clear();
    IntersectHiX.clear();
    IntersectLoY.clear();
    IntersectHiY.clear();
    IntersectLoZ.clear();
    IntersectHiZ.clear();

    //calculate intersection 
    Vector_t P, saveP, dir, I;
252
    Vector_t P0 = Vector_t(0,0,Geo_mincoords_m[2]+hr[2]); //Reference Point inside the boundary
253 254 255 256 257 258 259

    for (int idz = localId[2].first()-zGhostOffsetLeft; idz <= localId[2].last()+zGhostOffsetRight; idz++) {
	 saveP[2] = (idz - (nr[2]-1)/2.0)*hr[2];
	 for (int idy = localId[1].first()-yGhostOffsetLeft; idy <= localId[1].last()+yGhostOffsetRight; idy++) {
	     saveP[1] = (idy - (nr[1]-1)/2.0)*hr[1];
    	     for (int idx = localId[0].first()-xGhostOffsetLeft; idx <= localId[0].last()+xGhostOffsetRight; idx++) {
	       	  saveP[0] = (idx - (nr[0]-1)/2.0)*hr[0];
260 261 262 263 264
		  P = saveP;
		  rotateWithQuaternion(P, localToGlobalQuaternion_m); 
		  P += globalMeanR_m;

		  if (bgeom_m->fastIsInside(P0, P) % 2 == 0) {
265
		     P0 = P;
266 267
       		     
                     std::tuple<int, int, int> pos(idx, idy, idz);
268 269 270 271 272 273 274

		     rotateZAxisWithQuaternion(dir, localToGlobalQuaternion_m);
		     if (bgeom_m->intersectRayBoundary(P, dir, I)) {
			I -= globalMeanR_m;
			rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		IntersectHiZ.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[2]));
		     } else {
275
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
276 277 278 279 280 281 282 283 284
			   *gmsg << "zdir=+1 " << dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif
		     }

		     if (bgeom_m->intersectRayBoundary(P, -dir, I)) {
		        I -= globalMeanR_m;
			rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		 IntersectLoZ.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[2]));
		     } else {
285
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
286 287 288 289 290 291 292 293 294 295
			   *gmsg << "zdir=-1 " << -dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif
	  	     }
	
	             rotateYAxisWithQuaternion(dir, localToGlobalQuaternion_m);
		     if (bgeom_m->intersectRayBoundary(P, dir, I)) {
			 I -= globalMeanR_m;
			 rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		 IntersectHiY.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[1]));
	   	     } else {
296
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
297 298 299 300 301 302 303 304 305
			   *gmsg << "ydir=+1 " << dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif
		     }

		     if (bgeom_m->intersectRayBoundary(P, -dir, I)) {
		   	I -= globalMeanR_m;
			rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		IntersectLoY.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[1]));
		     } else {
306
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
307 308 309 310 311 312 313 314 315 316
			   *gmsg << "ydir=-1" << -dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif
		     }

	             rotateXAxisWithQuaternion(dir, localToGlobalQuaternion_m);
		     if (bgeom_m->intersectRayBoundary(P, dir, I)) {
			I -= globalMeanR_m;
			rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		IntersectHiX.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[0]));
		     } else {
317
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
318 319 320 321 322 323 324 325 326
			   *gmsg << "xdir=+1 " << dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif	
		     }

		     if (bgeom_m->intersectRayBoundary(P, -dir, I)){
			I -= globalMeanR_m;
			rotateWithQuaternion(I, globalToLocalQuaternion_m); 
       	      		IntersectLoX.insert(std::pair< std::tuple<int, int, int>, double >(pos, I[0]));
		     } else {
327
#ifdef DEBUG_INTERSECT_RAY_BOUNDARY
328 329 330 331 332 333
			   *gmsg << "xdir=-1 " << -dir << " x,y,z= " << idx << "," << idy << "," << idz << " P=" << P <<" I=" << I << endl;
#endif		
		     }
		  } else
	 	     continue;
	     }
334 335 336 337 338
	 }
     }

    //number of ghost nodes to the right 
    int znumGhostNodesRight = 0;
339 340 341 342 343 344 345
    if (zGhostOffsetRight != 0) {
       for (int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
           for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
                if (isInside(idx, idy, localId[2].last() + zGhostOffsetRight))
                   znumGhostNodesRight++;
           }
       }
346 347 348 349
    }

    //number of ghost nodes to the left 
    int znumGhostNodesLeft = 0;
350 351 352 353 354
    if (zGhostOffsetLeft != 0) {
        for (int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
                if (isInside(idx, idy, localId[2].first() - zGhostOffsetLeft))
                   znumGhostNodesLeft++;
355 356 357 358 359 360
            }
        }
    }

    //number of ghost nodes to the right 
    int ynumGhostNodesRight = 0;
361 362 363 364
    if (yGhostOffsetRight != 0) {
        for (int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if (isInside(idx, localId[1].last() + yGhostOffsetRight, idz))
365 366 367 368 369 370 371
                    ynumGhostNodesRight++;
            }
        }
    }

    //number of ghost nodes to the left 
    int ynumGhostNodesLeft = 0;
372 373 374 375 376
    if (yGhostOffsetLeft != 0) {
        for (int idx = localId[0].first(); idx <= localId[0].last(); idx++) {
            for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if (isInside(idx, localId[1].first() - yGhostOffsetLeft, idz))
                   ynumGhostNodesLeft++;
377 378 379 380 381 382 383
            }
        }
    }


    //number of ghost nodes to the right 
    int xnumGhostNodesRight = 0;
384
    if (xGhostOffsetRight != 0) {
385 386
	for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
            for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
387 388
                if (isInside(localId[0].last() + xGhostOffsetRight, idy, idz))
                   xnumGhostNodesRight++;
389 390 391 392 393 394
            }
        }
    }

    //number of ghost nodes to the left 
    int xnumGhostNodesLeft = 0;
395
    if (xGhostOffsetLeft != 0) {
396
       	for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
397 398 399
            for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
                if (isInside(localId[0].first() - xGhostOffsetLeft, idy, idz))
                   xnumGhostNodesLeft++;
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
            }
        }
    }
    //xy points in z plane
    int numxy; 
    int numtotalxy = 0;

    numXY.clear();

    for (int idz = localId[2].first(); idz <= localId[2].last(); idz++) {
	numxy =0;
        for (int idy = localId[1].first(); idy <= localId[1].last(); idy++) {
            for (int idx =localId[0].first(); idx <= localId[0].last(); idx++) {
                if (isInside(idx, idy, idz))
                   numxy++;
            }
        }
        numtotalxy += numxy;
    }

    startId = 0;
    MPI_Scan(&numtotalxy, &startId, 1, MPI_INTEGER, MPI_SUM, Ippl::getComm());

    startId -= numtotalxy;

    //build up index and coord map
    IdxMap.clear();
    CoordMap.clear();
    
    register int id = startId - xnumGhostNodesLeft - ynumGhostNodesLeft - znumGhostNodesLeft;
     for (int idz = localId[2].first()-zGhostOffsetLeft; idz <= localId[2].last()+zGhostOffsetRight; idz++) {
    	 for (int idy = localId[1].first()-yGhostOffsetLeft; idy <= localId[1].last()+yGhostOffsetRight; idy++) {
    	     for (int idx = localId[0].first()-xGhostOffsetLeft; idx <= localId[0].last()+xGhostOffsetRight; idx++) {
433
	         if (isInside(idx, idy, idz)) {
434
                    IdxMap[toCoordIdx(idx, idy, idz)] = id;
435
                    CoordMap[id++] = toCoordIdx(idx, idy, idz);
436 437 438 439 440
                 }
             }
         }
     }
}
441 442 443
// Conversion from (x,y,z) to index in xyz plane
inline int ArbitraryDomain::toCoordIdx(int idx, int idy, int idz) {
	return (idz * nr[1] + idy) * nr[0]  + idx;
gsell's avatar
gsell committed
444 445
}

446 447
// Conversion from (x,y,z) to index on the 3D grid
int ArbitraryDomain::getIdx(int idx, int idy, int idz) {
448 449
	if (isInside(idx, idy, idz) && idx>=0 && idy >=0 && idz >=0 )
       	   return IdxMap[toCoordIdx(idx, idy, idz)];
450
    	else
451
           return -1;
452
} 
gsell's avatar
gsell committed
453

454 455
// Conversion from a 3D index to (x,y,z)
inline void ArbitraryDomain::getCoord(int idxyz, int &idx, int &idy, int &idz) {
gsell's avatar
gsell committed
456

457
    int id = CoordMap[idxyz];
gsell's avatar
gsell committed
458

459 460 461 462 463
    idx = id % (int)nr[0];
    id /= nr[0];
    idy = id % (int)nr[1];
    id /= nr[1];
    idz = id;
gsell's avatar
gsell committed
464 465
}

466 467
inline bool ArbitraryDomain::isInside(int idx, int idy, int idz) {
 /* Expensive computation to check */
468 469 470 471 472 473 474 475 476 477 478 479
     Vector_t P0, P;

     P0 = Vector_t(0, 0, Geo_mincoords_m[2]+hr[2]); //Reference Point inside the boundary

     P[0] = (idx - (nr[0]-1)/2.0)*hr[0];
     P[1] = (idy - (nr[1]-1)/2.0)*hr[1];
     P[2] = (idz - (nr[2]-1)/2.0)*hr[2];
     rotateWithQuaternion(P, localToGlobalQuaternion_m); 
     P += globalMeanR_m;

    return (bgeom_m->fastIsInside(P0, P) % 2 == 0); 
/*
gsell's avatar
gsell committed
480
    bool ret = false;
481 482 483
    double cx = (idx - (nr[0]-1)/2.0)*hr[0];
    double cy = (idy - (nr[1]-1)/2.0)*hr[1];
    double cz = (idz - (nr[2]-1)/2.0)*hr[2];
gsell's avatar
gsell committed
484

485 486
    int    countH, countL;
    std::multimap < std::tuple<int, int, int>, double >::iterator itrH, itrL;
gsell's avatar
gsell committed
487

488 489
    std::tuple<int, int, int> coordxyz(idx, idy, idz);
             
gsell's avatar
gsell committed
490
    //check if z is inside with x,y coords
491 492
    itrH = IntersectHiZ.find(coordxyz);
    itrL = IntersectLoZ.find(coordxyz);
493

494 495 496 497 498
    countH = IntersectHiZ.count(coordxyz);
    countL = IntersectLoZ.count(coordxyz);

    if(countH == 1 && countL == 1)
        ret = (cz <= itrH->second) && (cz >= itrL->second);
499 500

     //check if y is inside with x,z coords
501 502 503 504 505
    itrH = IntersectHiY.find(coordxyz);
    itrL = IntersectLoY.find(coordxyz);

    countH = IntersectHiY.count(coordxyz);
    countL = IntersectLoY.count(coordxyz);
gsell's avatar
gsell committed
506

507 508
    if(countH == 1 && countL == 1)
        ret = ret && (cy <= itrH->second) && (cy >= itrL->second);
gsell's avatar
gsell committed
509

510
    //check if x is inside with y,z coords
511 512 513 514 515 516 517 518
    itrH = IntersectHiX.find(coordxyz);
    itrL = IntersectLoX.find(coordxyz);

    countH = IntersectHiX.count(coordxyz);
    countL = IntersectLoX.count(coordxyz);

    if(countH == 1 && countL == 1)
        ret = ret && (cx <= itrH->second) && (cx >= itrL->second);
519 520
       
    return ret; 
521
*/
gsell's avatar
gsell committed
522 523 524
}

int ArbitraryDomain::getNumXY(int z) {
525 526 527
    
	return numXY[z];
}
gsell's avatar
gsell committed
528 529


530
void ArbitraryDomain::getBoundaryStencil(int idxyz, double &W, double &E, double &S, double &N, double &F, double &B, double &C, double &scaleFactor) {
531
    int idx = 0, idy = 0, idz = 0;
532

533 534
    getCoord(idxyz, idx, idy, idz);
    getBoundaryStencil(idx, idy, idz, W, E, S, N, F, B, C, scaleFactor);
gsell's avatar
gsell committed
535 536
}

537
void ArbitraryDomain::getBoundaryStencil(int idx, int idy, int idz, double &W, double &E, double &S, double &N, double &F, double &B, double &C, double &scaleFactor) {
gsell's avatar
gsell committed
538

539
    scaleFactor = 1.0;
540
   // determine which interpolation method we use for points near the boundary
541 542
    switch(interpolationMethod){
    	case CONSTANT:
543
        	ConstantInterpolation(idx,idy,idz,W,E,S,N,F,B,C,scaleFactor);
544 545
        	break;
    	case LINEAR:
546
//        	LinearInterpolation(idx,idy,idz,W,E,S,N,F,B,C,scaleFactor);
547 548
        	break;
    	case QUADRATIC:
549
	    //  QuadraticInterpolation(idx,idy,idz,W,E,S,N,F,B,C,scaleFactor);
550
        	break;
551 552 553 554 555 556
    }

    // stencil center value has to be positive!
    assert(C > 0);
}

557
void ArbitraryDomain::ConstantInterpolation(int idx, int idy, int idz, double& W, double& E, double& S, double& N, double& F, double& B, double& C, double &scaleFactor) {
558 559 560 561 562 563 564 565 566

    W = -1/(hr[0]*hr[0]);
    E = -1/(hr[0]*hr[0]);
    N = -1/(hr[1]*hr[1]);
    S = -1/(hr[1]*hr[1]);
    F = -1/(hr[2]*hr[2]);
    B = -1/(hr[2]*hr[2]);
    C = 2/(hr[0]*hr[0]) + 2/(hr[1]*hr[1]) + 2/(hr[2]*hr[2]);

567
    if(!isInside(idx+1,idy,idz)) 
568 569
        E = 0.0;

570
    if(!isInside(idx-1,idy,idz))
571 572
        W = 0.0;

573
    if(!isInside(idx,idy+1,idz))
574 575
        N = 0.0;

576
    if(!isInside(idx,idy-1,idz)) 
577
        S = 0.0;
578
    
579
    if(!isInside(idx,idy,idz-1)) 
580
	F = 0.0;	
581

582
    if(!isInside(idx,idy,idz+1)) 
583
	B = 0.0;	
584 585 586

}
/*
587
void ArbitraryDomain::LinearInterpolation(int idx, int idy, int idz, double& W, double& E, double& S, double& N, double& F, double& B, double& C, double &scaleFactor) 
588 589 590 591
{

    scaleFactor = 1.0;

592 593
    double dx=-1, dy=-1, dz=-1;

594 595 596
    double cx = (idx - (nr[0]-1)/2.0)*hr[0];
    double cy = (idy - (nr[1]-1)/2.0)*hr[1];
    double cz = (idz - (nr[2]-1)/2.0)*hr[2];
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

    int    countH, countL;
    std::multimap < std::tuple<int, int, int>, double >::iterator itrH, itrL;

    std::tuple<int, int, int> coordxyz(idx, idy, idz);
             
    //check if z is inside with x,y coords
    itrH = IntersectHiZ.find(coordxyz);
    itrL = IntersectLoZ.find(coordxyz);

    countH = IntersectHiZ.count(coordxyz);
    countL = IntersectLoZ.count(coordxyz);

    if(countH == 1 && countL == 1)
        ret = (cz <= itrH->second) && (cz >= itrL->second);

613 614 615 616 617


    std::multimap< std::pair<int, int>, double >::iterator it;
    std::pair< std::multimap< std::pair<int, int>, double>::iterator, std::multimap< std::pair<int, int>, double>::iterator > ret;

618
    std::pair<int, int> coordyz(idy, idz);
619 620 621 622 623 624 625 626
    ret = IntersectXDir.equal_range(coordyz);
    for(it = ret.first; it != ret.second; ++it) {
        if(fabs(it->second - cx) < hr[0]) {
            dx = it->second;
            break;
        }
    }

627
    std::pair<int, int> coordxz(idx, idz);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    ret = IntersectYDir.equal_range(coordxz);
    for(it = ret.first; it != ret.second; ++it) {
        if(fabs(it->second - cy) < hr[1]) {
            dy = it->second;
            break;
        }
    }


    double dw=hr[0];
    double de=hr[0];
    double dn=hr[1];
    double ds=hr[1];
    C = 0.0;

    // we are a right boundary point
    if(dx >= 0 && dx > cx)
    {	
        C += 1/((dx-cx)*de);
        E = 0.0;
    } else {
        C += 1/(de*de);
        E = -1/(de*de);
    }

    // we are a left boundary point
    if(dx <= 0 && dx < cx)
    {
        C += 1/((cx-dx)*dw);
        W = 0.0;
    } else {
        C += 1/(dw*dw);
        W = -1/(dw*dw);
    }

    // we are a upper boundary point
    if(dy >= 0 && dy > cy)
    {
        C += 1/((dy-cy)*dn);
        N = 0.0;
    } else {
        C += 1/(dn*dn);
        N = -1/(dn*dn);
    }

    // we are a lower boundary point
    if(dy <= 0 && dy < cy)
    {
        C += 1/((cy-dy)*ds);
        S = 0.0;
    } else {
        C += 1/(ds*ds);
        S = -1/(ds*ds);
    }

    F = -1/(hr[2]*hr[2]); 
    B = -1/(hr[2]*hr[2]);

    //XXX: In stand-alone only Dirichlet for validation purposes
    if(z == 0 || z == nr[2]-1) {

        // Dirichlet
        C += 2/hr[2]*1/hr[2];

        //C += 1/hr[2]*1/hr[2];

        // case where we are on the Neumann BC in Z-direction
        // where we distinguish two cases  
        if(z == 0)
            F = 0.0;
        else 
            B = 0.0;

        //for test no neumann 
        //C += 2/((hr[2]*nr[2]/2.0) * hr[2]);
703 704
        //
        //   double d = hr[2]*(nr[2])/2;
705 706 707
        //   C += 2/(d * hr[2]);


708 709 710 711 712
        ////neumann stuff
        //W /= 2.0;
        //E /= 2.0;
        //N /= 2.0;
        //S /= 2.0;
713 714
        //C /= 2.0;

715
        scaleFactor *= 0.5;
716 717 718 719

    } else 
        C += 2*1/hr[2]*1/hr[2];
}
720
*/        
gsell's avatar
gsell committed
721

722
void ArbitraryDomain::getNeighbours(int id, int &W, int &E, int &S, int &N, int &F, int &B) {
gsell's avatar
gsell committed
723

724
    int idx = 0, idy = 0, idz = 0;
gsell's avatar
gsell committed
725

726 727
    getCoord(id, idx, idy, idz);
    getNeighbours(idx, idy, idz, W, E, S, N, F, B);
gsell's avatar
gsell committed
728 729
}

730
void ArbitraryDomain::getNeighbours(int idx, int idy, int idz, int &W, int &E, int &S, int &N, int &F, int &B) {
gsell's avatar
gsell committed
731

732 733
    if(idx > 0)
        W = getIdx(idx - 1, idy, idz);
gsell's avatar
gsell committed
734 735
    else
        W = -1;
736 737 738

    if(idx < nr[0] - 1)
        E = getIdx(idx + 1, idy, idz);
gsell's avatar
gsell committed
739 740 741
    else
        E = -1;

742 743
    if(idy < nr[1] - 1)
        N = getIdx(idx, idy + 1, idz);
gsell's avatar
gsell committed
744 745
    else
        N = -1;
746 747 748

    if(idy > 0)
        S = getIdx(idx, idy - 1, idz);
gsell's avatar
gsell committed
749 750 751
    else
        S = -1;

752 753
    if(idz > 0)
        F = getIdx(idx, idy, idz - 1);
gsell's avatar
gsell committed
754 755
    else
        F = -1;
756 757 758

    if(idz < nr[2] - 1)
        B = getIdx(idx, idy, idz + 1);
gsell's avatar
gsell committed
759 760 761 762 763 764 765 766 767 768 769 770
    else
        B = -1;

}


inline void ArbitraryDomain::crossProduct(double A[], double B[], double C[]) {
    C[0] = A[1] * B[2] - A[2] * B[1];
    C[1] = A[2] * B[0] - A[0] * B[2];
    C[2] = A[0] * B[1] - A[1] * B[0];
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
inline void ArbitraryDomain::rotateWithQuaternion(Vector_t & v, Vektor<double, 4> const quaternion) {
    // rotates a Vector_t (3 elements) using a quaternion.
    // Flip direction of rotation by quaternionVectorcomponent *= -1

    Vector_t const quaternionVectorComponent = Vector_t(quaternion(1), quaternion(2), quaternion(3));
    double const quaternionScalarComponent = quaternion(0);
        
    v = 2.0 * dot(quaternionVectorComponent, v) * quaternionVectorComponent 
        + (quaternionScalarComponent * quaternionScalarComponent  
        -  dot(quaternionVectorComponent, quaternionVectorComponent)) * v 
        + 2.0 * quaternionScalarComponent * cross(quaternionVectorComponent, v);
}

inline void ArbitraryDomain::rotateXAxisWithQuaternion(Vector_t & v, Vektor<double, 4> const quaternion) {
    // rotates the positive xaxis using a quaternion.
   
    v(0) = quaternion(0) * quaternion(0) 
         + quaternion(1) * quaternion(1) 
         - quaternion(2) * quaternion(2) 
         - quaternion(3) * quaternion(3);
 
    v(1) = 2.0 * (quaternion(1) * quaternion(2) + quaternion(0) * quaternion(3));
    v(2) = 2.0 * (quaternion(1) * quaternion(3) - quaternion(0) * quaternion(2));
}

inline void ArbitraryDomain::rotateYAxisWithQuaternion(Vector_t & v, Vektor<double, 4> const quaternion) {
    // rotates the positive yaxis using a quaternion.
    
    v(0) = 2.0 * (quaternion(1) * quaternion(2) - quaternion(0) * quaternion(3));
      
    v(1) = quaternion(0) * quaternion(0) 
         - quaternion(1) * quaternion(1)
         + quaternion(2) * quaternion(2)
         - quaternion(3) * quaternion(3);

    v(2) = 2.0 * (quaternion(2) * quaternion(3) + quaternion(0) * quaternion(1));
}

inline void ArbitraryDomain::rotateZAxisWithQuaternion(Vector_t & v, Vektor<double, 4> const quaternion) {
    // rotates the positive zaxis using a quaternion.
    v(0) = 2.0 * (quaternion(1) * quaternion(3) + quaternion(0) * quaternion(2));
    v(1) = 2.0 * (quaternion(2) * quaternion(3) - quaternion(0) * quaternion(1));    

    v(2) = quaternion(0) * quaternion(0) 
         - quaternion(1) * quaternion(1)
         - quaternion(2) * quaternion(2)
         + quaternion(3) * quaternion(3);

}
820
#endif //#ifdef HAVE_SAAMG_SOLVER