ParallelCyclotronTracker.cpp 179 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// ------------------------------------------------------------------------
// $RCSfile: ParallelCyclotronTracker.cpp,v $
// ------------------------------------------------------------------------
// $Revision: 1.1 $initialLocalNum_m
// ------------------------------------------------------------------------
// Copyright: see Copyright.readme
// ------------------------------------------------------------------------
//
// Class: ParallelCyclotronTracker
//   The class for tracking particles with 3D space charge in Cyclotrons and FFAG's
//
// ------------------------------------------------------------------------
//
// $Date: 2007/10/17 04:00:08 $
// $Author: adelmann, yang $
//
// ------------------------------------------------------------------------
#include <cfloat>
#include <iostream>
#include <fstream>
#include <vector>
22
#include "AbstractObjects/OpalData.h"
gsell's avatar
gsell committed
23 24 25 26 27
#include "Algorithms/ParallelCyclotronTracker.h"

#include "AbsBeamline/Collimator.h"
#include "AbsBeamline/Corrector.h"
#include "AbsBeamline/Cyclotron.h"
adelmann's avatar
adelmann committed
28
#include "AbsBeamline/Degrader.h"
gsell's avatar
gsell committed
29 30 31 32
#include "AbsBeamline/Diagnostic.h"
#include "AbsBeamline/Drift.h"
#include "AbsBeamline/ElementBase.h"
#include "AbsBeamline/Lambertson.h"
33
#include "AbsBeamline/Offset.h"
gsell's avatar
gsell committed
34 35 36 37 38 39 40 41
#include "AbsBeamline/Marker.h"
#include "AbsBeamline/Monitor.h"
#include "AbsBeamline/Multipole.h"
#include "AbsBeamline/Probe.h"
#include "AbsBeamline/RBend.h"
#include "AbsBeamline/RFCavity.h"
#include "AbsBeamline/RFQuadrupole.h"
#include "AbsBeamline/SBend.h"
42
#include "AbsBeamline/SBend3D.h"
gsell's avatar
gsell committed
43 44 45 46 47
#include "AbsBeamline/Separator.h"
#include "AbsBeamline/Septum.h"
#include "AbsBeamline/Solenoid.h"
#include "AbsBeamline/CyclotronValley.h"
#include "AbsBeamline/Stripper.h"
48
#include "AbsBeamline/VariableRFCavity.h"
49 50

#include "Elements/OpalBeamline.h"
51
#include "Elements/OpalRing.h"
gsell's avatar
gsell committed
52 53 54

#include "BeamlineGeometry/Euclid3D.h"
#include "BeamlineGeometry/PlanarArcGeometry.h"
Jianjun Yang's avatar
Jianjun Yang committed
55
#include "BeamlineGeometry/RBendGeometry.h"
gsell's avatar
gsell committed
56 57 58 59 60 61 62 63 64 65 66 67
#include "Beamlines/Beamline.h"

#include "Fields/BMultipoleField.h"
#include "FixedAlgebra/FTps.h"
#include "FixedAlgebra/FTpsMath.h"
#include "FixedAlgebra/FVps.h"

#include "Physics/Physics.h"

#include "Utilities/NumToStr.h"
#include "Utilities/OpalException.h"

68
#include "Structure/BoundaryGeometry.h"
gsell's avatar
gsell committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#include "Ctunes.h"
#include "Ctunes.cc"
#include <cassert>

#include <hdf5.h>
#include "H5hut.h"

class Beamline;
class PartData;
using Physics::c;
using Physics::m_p; // GeV
using Physics::PMASS;
using Physics::PCHARGE;
using Physics::pi;
using Physics::q_e;

const double c_mmtns = c * 1.0e-6; // m/s --> mm/ns
const double mass_coeff = 1.0e18 * q_e / c / c; // from GeV/c^2 to basic unit: GV*C*s^2/m^2
88 89 90
Vector_t const ParallelCyclotronTracker::xaxis = Vector_t(1.0, 0.0, 0.0);
Vector_t const ParallelCyclotronTracker::yaxis = Vector_t(0.0, 1.0, 0.0);
Vector_t const ParallelCyclotronTracker::zaxis = Vector_t(0.0, 0.0, 1.0);
gsell's avatar
gsell committed
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

#define PSdim 6

extern Inform *gmsg;

// typedef FVector<double, PSdim> Vector;

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param reference
 * @param revBeam
 * @param revTrack
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
        const PartData &reference,
        bool revBeam, bool revTrack):
    Tracker(beamline, reference, revBeam, revTrack),
110
    eta_m(0.01),
gsell's avatar
gsell committed
111 112
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(0),
113 114
    initialTotalNum_m(0),
    opalRing_m(NULL) {
gsell's avatar
gsell committed
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
}

/**
 * Constructor ParallelCyclotronTracker
 *
 * @param beamline
 * @param bunch
 * @param ds
 * @param reference
 * @param revBeam
 * @param revTrack
 * @param maxSTEPS
 * @param timeIntegrator
 */
ParallelCyclotronTracker::ParallelCyclotronTracker(const Beamline &beamline,
                                                   PartBunch &bunch,
                                                   DataSink &ds,
                                                   const PartData &reference,
                                                   bool revBeam, bool revTrack,
                                                   int maxSTEPS, int timeIntegrator):
    Tracker(beamline, reference, revBeam, revTrack),
    maxSteps_m(maxSTEPS),
    timeIntegrator_m(timeIntegrator),
139
    eta_m(0.01),
gsell's avatar
gsell committed
140 141
    myNode_m(Ippl::myNode()),
    initialLocalNum_m(bunch.getLocalNum()),
142 143
    initialTotalNum_m(bunch.getTotalNum()),
    opalRing_m(NULL) {
gsell's avatar
gsell committed
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    itsBeamline = dynamic_cast<Beamline *>(beamline.clone());
    itsBunch = &bunch;
    itsDataSink = &ds;
    //  scaleFactor_m = itsBunch->getdT() * c;
    scaleFactor_m = 1;
    multiBunchMode_m = 0;

    IntegrationTimer_m = IpplTimings::getTimer("Integration");
    TransformTimer_m   = IpplTimings::getTimer("Frametransform");
    DumpTimer_m        = IpplTimings::getTimer("Dump");
    BinRepartTimer_m   = IpplTimings::getTimer("Binaryrepart");
}

/**
 * Destructor ParallelCyclotronTracker
 *
 */
ParallelCyclotronTracker::~ParallelCyclotronTracker() {
    for(list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
        delete(*compindex);
    }
    for(beamline_list::iterator fdindex = FieldDimensions.begin(); fdindex != FieldDimensions.end(); fdindex++) {
        delete(*fdindex);
    }
    delete itsBeamline;
169 170 171
    if (opalRing_m != NULL) {
        // delete opalRing_m;
    }
gsell's avatar
gsell committed
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186
/**
 * AAA
 *
 * @param none
 */
void ParallelCyclotronTracker::initializeBoundaryGeometry() {
  for(list<Component *>::iterator compindex = myElements.begin(); compindex != myElements.end(); compindex++) {
    bgf_m = dynamic_cast<ElementBase *>(*compindex)->getBoundaryGeometry();
    if(!bgf_m) 
      continue;
    else
      break;
  }
adelmann's avatar
adelmann committed
187 188 189 190 191
  if (bgf_m) {
    itsDataSink->writeGeomToVtk(*bgf_m, string("data/testGeometry-00000.vtk"));
    OpalData::getInstance()->setGlobalGeometry(bgf_m);
    *gmsg << "* Boundary geometry initialized " << endl;
  }
192 193 194 195 196 197 198 199 200 201 202
}
/**
 *
 *
 * @param fn Base file name
 */
void ParallelCyclotronTracker::bgf_main_collision_test() {
  if(!bgf_m) return;

  Inform msg("bgf_main_collision_test ");
  
203 204 205 206
  /**                                                                                                      
   *Here we check if a particles is outside the domain, flag it for deletion
   */

gsell's avatar
gsell committed
207
  Vector_t intecoords = 0.0;
208 209 210 211 212

  // This has to match the dT in the rk4 pusher! -DW
  //double dtime = 0.5 * itsBunch->getdT();  // Old
  double dtime = itsBunch->getdT() * getHarmonicNumber();  // New

213 214 215
  int triId = 0;     
  size_t Nimpact = 0;
  for(size_t i = 0; i < itsBunch->getLocalNum(); i++) {
216
    int res = bgf_m->PartInside(itsBunch->R[i]*1.0e-3, itsBunch->P[i], dtime, itsBunch->PType[i], itsBunch->Q[i], intecoords, triId);
217 218 219 220 221 222 223 224
    if(res >= 0) { 
      itsBunch->Bin[i] = -1;
      Nimpact++;
    }               
  }
}


gsell's avatar
gsell committed
225 226 227 228 229 230 231 232 233 234 235 236
/**
 *
 *
 * @param fn Base file name
 */
void ParallelCyclotronTracker::openFiles(string SfileName) {

    string  SfileName2 = SfileName + string("-Angle0.dat");

    outfTheta0_m.precision(8);
    outfTheta0_m.setf(ios::scientific, ios::floatfield);
    outfTheta0_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
237
    outfTheta0_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma" << endl;
gsell's avatar
gsell committed
238 239 240 241 242

    SfileName2 = SfileName + string("-Angle1.dat");
    outfTheta1_m.precision(8);
    outfTheta1_m.setf(ios::scientific, ios::floatfield);
    outfTheta1_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
243
    outfTheta1_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
244 245 246 247 248

    SfileName2 = SfileName + string("-Angle2.dat");
    outfTheta2_m.precision(8);
    outfTheta2_m.setf(ios::scientific, ios::floatfield);
    outfTheta2_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
249
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
250 251 252 253 254 255 256 257 258

    // for single Particle Mode, output after each turn, to define matched initial phase ellipse.

    SfileName2 = SfileName + string("-afterEachTurn.dat");

    outfThetaEachTurn_m.precision(8);
    outfThetaEachTurn_m.setf(ios::scientific, ios::floatfield);

    outfThetaEachTurn_m.open(SfileName2.c_str());
Jianjun Yang's avatar
Jianjun Yang committed
259
    outfTheta2_m << "#  r [mm]      beta_r*gamma       theta [mm]      beta_theta*gamma        z [mm]          beta_z*gamma"  << endl;
gsell's avatar
gsell committed
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
}

/**
 * Close all files related to
 * special output in the Cyclotron
 * mode.
 */
void ParallelCyclotronTracker::closeFiles() {

    outfTheta0_m.close();
    outfTheta1_m.close();
    outfTheta2_m.close();
    outfThetaEachTurn_m.close();
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/** 
 *
 * @param ring
 */
void ParallelCyclotronTracker::visitOpalRing(const OpalRing &ring) {
    *gmsg << "Adding OpalRing" << endl;
    if (opalRing_m != NULL) {
        delete opalRing_m;
    }
    opalRing_m = dynamic_cast<OpalRing*>(ring.clone());
    myElements.push_back(opalRing_m);
    opalRing_m->initialise(itsBunch);

    referenceR = opalRing_m->getBeamRInit();
    referencePr = opalRing_m->getBeamPRInit();
    referenceTheta = opalRing_m->getBeamPhiInit();
    if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
        throw OpalException("Error in ParallelCyclotronTracker::visitOpalRing",
                            "PHIINIT is out of [-180, 180)!");
    }
    referencePz = 0.0;
    referencePtot =  itsReference.getGamma() * itsReference.getBeta();
    referencePt = sqrt(referencePtot * referencePtot
                     - referencePr * referencePr);
    if(referencePtot < 0.0)
        referencePt *= -1.0;
    sinRefTheta_m = sin(referenceTheta / 180.0 * pi);
    cosRefTheta_m = cos(referenceTheta / 180.0 * pi);
gsell's avatar
gsell committed
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    double BcParameter[8];
    for(int i = 0; i < 8; i++) BcParameter[i] = 0.0;
    buildupFieldList(BcParameter, "OPALRING", opalRing_m);

    // Finally print some diagnostic
    *gmsg << "* Initial beam radius = " << referenceR << " [mm] " << endl;
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
    *gmsg << "* Total reference momentum   = " << referencePtot * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference azimuthal momentum  = " << referencePt * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum     = " << referencePr * 1000.0
          << " [MCU]" << endl;
    *gmsg << "* " << opalRing_m->getSymmetry() << " fold field symmetry "
          << endl;
    *gmsg << "* Harmonic number h= " << opalRing_m->getHarmonicNumber() << " "
          << endl;
}
gsell's avatar
gsell committed
323 324 325 326 327 328 329 330 331 332

/**
 *
 *
 * @param cycl
 */
void ParallelCyclotronTracker::visitCyclotron(const Cyclotron &cycl) {

    *gmsg << "* --------- Cyclotron ------------------------------" << endl;

333 334
    Cyclotron *elptr = dynamic_cast<Cyclotron *>(cycl.clone());
    myElements.push_back(elptr);
335
     
336
    // Fresh run (no restart):
337
    if(!OpalData::getInstance()->inRestartRun()) {
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        // Get reference values from cyclotron element
        referenceR     = elptr->getRinit();
        referenceTheta = elptr->getPHIinit();
        referenceZ     = elptr->getZinit();
        referencePr    = elptr->getPRinit();
        referencePz    = elptr->getPZinit();
         
        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {
            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "PHIINIT is out of [-180, 180)!");
        }

        referencePtot =  itsReference.getGamma() * itsReference.getBeta();

        // Calculate reference azimuthal (tangential) momentum from total-, z- and radial momentum:
        float insqrt = referencePtot * referencePtot - referencePr * referencePr - referencePz * referencePz;

        if(insqrt < 0) {

            if(insqrt > -1.0e-10) {

	        referencePt = 0.0;

            } else {

	        throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "Pt imaginary!");
            }

        } else {

            referencePt = sqrt(insqrt);
        }

        if(referencePtot < 0.0) referencePt *= -1.0;
        // End calculate referencePt

    // Restart a run:
    } else {

        if(referenceTheta <= -180.0 || referenceTheta > 180.0) {

            throw OpalException("Error in ParallelCyclotronTracker::visitCyclotron", "PHIINIT is out of [-180, 180)!");

        }
      
        referencePtot =  bega;
        // Note: Nothing else has to be set, b/c everything comes from the h5 file -DW
385 386
    }

387
    /*
388 389 390 391 392 393 394 395 396 397 398
    // TEMP Debug Output -DW
    Vector_t const meanP = calcMeanP();
    *gmsg << endl;
    *gmsg << "** Reference P:"  << endl;
    *gmsg << "referencePtot = " << referencePtot << endl;
    *gmsg << "Ptot (from Bunch) = " << sqrt(dot(meanP, meanP)) << endl;
    *gmsg << "referencePr = "   << referencePr   << endl;
    *gmsg << "referencePz = "   << referencePz   << endl;
    *gmsg << "referencePt = "   << referencePt   << endl;
    *gmsg << endl;
    // ENDTEMP
399
    */
gsell's avatar
gsell committed
400

401
    sinRefTheta_m = sin(referenceTheta / 180.0 * pi);
402 403
    cosRefTheta_m = cos(referenceTheta / 180.0 * pi);   
   
404
    *gmsg << endl;
adelmann's avatar
adelmann committed
405
    *gmsg << "* Bunch global starting position:" << endl;
406 407
    *gmsg << "* RINIT = " << referenceR  << " [mm]" << endl;
    *gmsg << "* PHIINIT = " << referenceTheta << " [deg]" << endl;
408
    *gmsg << "* ZINIT = " << referenceZ << " [mm]" << endl;
409
    *gmsg << endl;
adelmann's avatar
adelmann committed
410
    *gmsg << "* Bunch global starting momenta:" << endl;
gsell's avatar
gsell committed
411 412
    *gmsg << "* Initial gamma = " << itsReference.getGamma() << endl;
    *gmsg << "* Initial beta = " << itsReference.getBeta() << endl;
413
    *gmsg << "* Reference total momentum (beta * gamma) = " << referencePtot * 1000.0 << " [MCU]" << endl;
414 415 416
    *gmsg << "* Reference azimuthal momentum (Pt) = " << referencePt * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference radial momentum (Pr) = " << referencePr * 1000.0 << " [MCU]" << endl;
    *gmsg << "* Reference axial momentum (Pz) = " << referencePz * 1000.0 << " [MCU]" << endl;
417
    *gmsg << endl;
adelmann's avatar
adelmann committed
418

gsell's avatar
gsell committed
419
    double sym = elptr->getSymmetry();
420
    *gmsg << "* " << sym << "-fold field symmerty " << endl;
gsell's avatar
gsell committed
421

422 423 424
    // ckr: this just returned the default value as defined in Component.h
    // double rff = elptr->getRfFrequ();
    // *gmsg << "* Rf frequency= " << rff << " [MHz]" << endl;
gsell's avatar
gsell committed
425 426

    string fmfn = elptr->getFieldMapFN();
427
    *gmsg << "* Field map file name = " << fmfn << " " << endl;
gsell's avatar
gsell committed
428 429

    string type = elptr->getType();
430
    *gmsg << "* Type of cyclotron = " << type << " " << endl;
431 432 433
    
    double rmin = elptr->getMinR();
    double rmax = elptr->getMaxR();
434
    *gmsg << "* Radial aperture = " << rmin << " ... " << rmax<<" [mm] "<< endl;
435 436 437

    double zmin = elptr->getMinZ();
    double zmax = elptr->getMaxZ();
438
    *gmsg << "* Vertical aperture = " << zmin << " ... " << zmax<<" [mm]"<< endl;
gsell's avatar
gsell committed
439

440
    /**
441
    bool Sflag = elptr->getSuperpose();
442 443 444 445 446
    string flagsuperposed;
    if (Sflag)
      flagsuperposed="yes";
    else
      flagsuperposed="no";
447
    *gmsg << "* Electric field maps are superposed? " << flagsuperposed << " " << endl;
448
    */
449

gsell's avatar
gsell committed
450
    double h = elptr->getCyclHarm();
451
    *gmsg << "* Harmonic number h = " << h << " " << endl;
gsell's avatar
gsell committed
452

453
    /**
adelmann's avatar
adelmann committed
454
    if (elptr->getSuperpose())
455
        *gmsg << "* Fields are superposed " << endl;
456
    */
adelmann's avatar
adelmann committed
457

gsell's avatar
gsell committed
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    /**
     * To ease the initialise() function, set a integral parameter fieldflag internally.
     * Its value is  by the option "TYPE" of the element  "CYCLOTRON"
     * fieldflag = 1, readin PSI format measured field file (default)
     * fieldflag = 2, readin carbon cyclotron field file created by Jianjun Yang, TYPE=CARBONCYCL
     * fieldflag = 3, readin ANSYS format file for CYCIAE-100 created by Jianjun Yang, TYPE=CYCIAE
     * fieldflag = 4, readin AVFEQ format file for Riken cyclotrons
     * fieldflag = 5, readin FFAG format file for MSU/FNAL FFAG
     * fieldflag = 6, readin both median plane B field map and 3D E field map of RF cavity for compact cyclotron
     */
    int  fieldflag;
    if(type == string("CARBONCYCL")) {
        fieldflag = 2;
    } else if(type == string("CYCIAE")) {
        fieldflag = 3;
    } else if(type == string("AVFEQ")) {
        fieldflag = 4;
    } else if(type == string("FFAG")) {
        fieldflag = 5;
    } else if(type == string("BANDRF")) {
        fieldflag = 6;
    } else
        fieldflag = 1;

    // read field map on the  middle plane of cyclotron.
    // currently scalefactor is set to 1.0
    elptr->initialise(itsBunch, fieldflag, 1.0);

    double BcParameter[8];
adelmann's avatar
adelmann committed
487 488
    for(int i = 0; i < 8; i++) 
      BcParameter[i] = 0.0;
gsell's avatar
gsell committed
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    string ElementType = "CYCLOTRON";
    BcParameter[0] = elptr->getRmin();
    BcParameter[1] = elptr->getRmax();

    // store inner radius and outer radius of cyclotron field map in the list
    buildupFieldList(BcParameter, ElementType, elptr);

}

/**
 * Not implemented and most probable never used
 *
 */
void ParallelCyclotronTracker::visitBeamBeam(const BeamBeam &) {
    *gmsg << "In BeamBeam tracker is missing " << endl;
}

/**
 *
 *
 * @param coll
 */
void ParallelCyclotronTracker::visitCollimator(const Collimator &coll) {

513
    *gmsg << "* --------- Collimator -----------------------------" << endl;
gsell's avatar
gsell committed
514

515 516
    Collimator* elptr = dynamic_cast<Collimator *>(coll.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
517

518
    double xstart = elptr->getXStart();
adelmann's avatar
adelmann committed
519
    *gmsg << "* Xstart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
520

521
    double xend = elptr->getXEnd();
adelmann's avatar
adelmann committed
522
    *gmsg << "* Xend= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
523

524
    double ystart = elptr->getYStart();
adelmann's avatar
adelmann committed
525
    *gmsg << "* Ystart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
526

527
    double yend = elptr->getYEnd();
adelmann's avatar
adelmann committed
528
    *gmsg << "* Yend= " <<yend << " [mm]" << endl;
gsell's avatar
gsell committed
529

530
    double zstart = elptr->getZStart();
adelmann's avatar
adelmann committed
531
    *gmsg << "* Zstart= " << zstart << " [mm]" << endl;
532 533

    double zend = elptr->getZEnd();
adelmann's avatar
adelmann committed
534
    *gmsg << "* Zend= " <<zend << " [mm]" << endl;
535

536
    double width = elptr->getWidth();
adelmann's avatar
adelmann committed
537
    *gmsg << "* Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
538 539 540 541 542 543 544

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "CCOLLIMATOR";
545 546 547 548
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
gsell's avatar
gsell committed
549 550 551 552 553 554 555 556 557 558 559 560 561 562
    BcParameter[4] = width ;
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitCorrector(const Corrector &corr) {
    *gmsg << "In Corrector; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Corrector *>(corr.clone()));
}

adelmann's avatar
adelmann committed
563 564 565 566 567 568 569 570 571 572 573 574
/**
 *
 *
 * @param degrader
 */
void ParallelCyclotronTracker::visitDegrader(const Degrader &deg) {
    *gmsg << "In Degrader; L= " << deg.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Degrader *>(deg.clone()));

}


gsell's avatar
gsell committed
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/**
 *
 *
 * @param diag
 */
void ParallelCyclotronTracker::visitDiagnostic(const Diagnostic &diag) {
    *gmsg << "In Diagnostic; L= " << diag.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Diagnostic *>(diag.clone()));
}

/**
 *
 *
 * @param drift
 */
void ParallelCyclotronTracker::visitDrift(const Drift &drift) {
    *gmsg << "In drift L= " << drift.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Drift *>(drift.clone()));
}

/**
 *
 *
 * @param lamb
 */
void ParallelCyclotronTracker::visitLambertson(const Lambertson &lamb) {
    *gmsg << "In Lambertson; L= " << lamb.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Lambertson *>(lamb.clone()));
}

605 606 607 608 609 610 611 612 613 614 615
void ParallelCyclotronTracker::visitOffset(const Offset & off) {
    if (opalRing_m == NULL)
        throw OpalException(
                        "ParallelCylcotronTracker::visitOffset",
                        "Attempt to place an offset when OpalRing not defined");
    Offset* offNonConst = const_cast<Offset*>(&off);
    offNonConst->updateGeometry(opalRing_m->getNextPosition(),
                       opalRing_m->getNextNormal());
    opalRing_m->appendElement(off);
}

gsell's avatar
gsell committed
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/**
 *
 *
 * @param marker
 */
void ParallelCyclotronTracker::visitMarker(const Marker &marker) {
    //   *gmsg << "In Marker; L= " << marker.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Marker *>(marker.clone()));
    // Do nothing.
}

/**
 *
 *
 * @param corr
 */
void ParallelCyclotronTracker::visitMonitor(const Monitor &corr) {
    //   *gmsg << "In Monitor; L= " << corr.getElementLength() << endl;
    myElements.push_back(dynamic_cast<Monitor *>(corr.clone()));
    //   applyDrift(flip_s * corr.getElementLength());
}

638

gsell's avatar
gsell committed
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/**
 *
 *
 * @param mult
 */
void ParallelCyclotronTracker::visitMultipole(const Multipole &mult) {
    *gmsg << "In Multipole; L= " << mult.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Multipole *>(mult.clone()));
}

/**
 *
 *
 * @param prob
 */
void ParallelCyclotronTracker::visitProbe(const Probe &prob) {
655
    *gmsg << "* -----------  Probe -------------------------------" << endl;
656 657
    Probe *elptr = dynamic_cast<Probe *>(prob.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
658

659
    double xstart = elptr->getXstart();
660
    *gmsg << "XStart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
661

662
    double xend = elptr->getXend();
663
    *gmsg << "XEnd= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
664

665
    double ystart = elptr->getYstart();
666
    *gmsg << "YStart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
667

668
    double yend = elptr->getYend();
669
    *gmsg << "YEnd= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
670

671
    double width = elptr->getWidth();
672
    *gmsg << "Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "PROBE";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store probe parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitRBend(const RBend &bend) {
    *gmsg << "In RBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RBend *>(bend.clone()));
}

702 703 704 705 706 707 708 709 710
void ParallelCyclotronTracker::visitSBend3D(const SBend3D &bend) {
    *gmsg << "Adding SBend3D" << endl;
    if (opalRing_m != NULL)
        opalRing_m->appendElement(bend);
    else
        throw OpalException("ParallelCyclotronTracker::visitSBend3D",
                      "Need to define a RINGDEFINITION to use SBend3D element");
}

711 712 713 714 715 716 717 718 719
void ParallelCyclotronTracker::visitVariableRFCavity(const VariableRFCavity &cav) {
    *gmsg << "Adding Variable RF Cavity" << endl;
    if (opalRing_m != NULL)
        opalRing_m->appendElement(cav);
    else
        throw OpalException("ParallelCyclotronTracker::visitVariableRFCavity",
            "Need to define a RINGDEFINITION to use VariableRFCavity element");
}

gsell's avatar
gsell committed
720 721 722 723 724 725 726 727
/**
 *
 *
 * @param as
 */
void ParallelCyclotronTracker::visitRFCavity(const RFCavity &as) {

    *gmsg << "* --------- RFCavity ------------------------------" << endl;
728

729 730
    RFCavity *elptr = dynamic_cast<RFCavity *>(as.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
731 732 733 734 735 736 737

    if((elptr->getComponentType() != "SINGLEGAP") && (elptr->getComponentType() != "DOUBLEGAP")) {
        *gmsg << (elptr->getComponentType()) << endl;
        throw OpalException("ParallelCyclotronTracker::visitRFCavity",
                            "The ParallelCyclotronTracker can only play with cyclotron type RF system currently ...");
    }

738
    double rmin = elptr->getRmin();
gsell's avatar
gsell committed
739 740
    *gmsg << "* Minimal radius of cavity= " << rmin << " [mm]" << endl;

741
    double rmax = elptr->getRmax();
gsell's avatar
gsell committed
742 743
    *gmsg << "* Maximal radius of cavity= " << rmax << " [mm]" << endl;

744
    double rff = elptr->getCycFrequency();
gsell's avatar
gsell committed
745 746
    *gmsg << "* RF frequency (2*pi*f)= " << rff << " [rad/s]" << endl;

747
    string fmfn = elptr->getFieldMapFN();
gsell's avatar
gsell committed
748 749
    *gmsg << "* RF Field map file name= " << fmfn << endl;

750
    double angle = elptr->getAzimuth();
gsell's avatar
gsell committed
751 752
    *gmsg << "* Cavity azimuth position= " << angle << " [deg] " << endl;

753
    double gap = elptr->getGapWidth();
gsell's avatar
gsell committed
754 755
    *gmsg << "* Cavity gap width= " << gap << " [mm] " << endl;

756
    double pdis = elptr->getPerpenDistance();
gsell's avatar
gsell committed
757 758 759
    *gmsg << "* Cavity Shift distance= " << pdis << " [mm] " << endl;


760
    double phi0 = elptr->getPhi0();
gsell's avatar
gsell committed
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    *gmsg << "* Initial RF phase (t=0)= " << phi0 << " [deg] " << endl;

    // read cavity voltage profile data from file.
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "CAVITY";
    BcParameter[0] = rmin;
    BcParameter[1] = rmax;
    BcParameter[2] = pdis;
    BcParameter[3] = angle;

    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param rfq
 */
void ParallelCyclotronTracker::visitRFQuadrupole(const RFQuadrupole &rfq) {
    *gmsg << "In RFQuadrupole; L= " << rfq.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<RFQuadrupole *>(rfq.clone()));
}

/**
 *
 *
 * @param bend
 */
void ParallelCyclotronTracker::visitSBend(const SBend &bend) {
    *gmsg << "In SBend; L= " << bend.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<SBend *>(bend.clone()));
}

/**
 *
 *
 * @param sep
 */
void ParallelCyclotronTracker::visitSeparator(const Separator &sep) {
    *gmsg << "In Seapator L= " << sep.getElementLength() << " however the element is missing " << endl;
    myElements.push_back(dynamic_cast<Separator *>(sep.clone()));
}

/**
 *
 *
 * @param sept
 */
void ParallelCyclotronTracker::visitSeptum(const Septum &sept) {
814 815

    *gmsg << "* -----------  Septum -------------------------------" << endl;
gsell's avatar
gsell committed
816

817 818
    Septum *elptr = dynamic_cast<Septum *>(sept.clone());
    myElements.push_back(elptr);
gsell's avatar
gsell committed
819

820
    double xstart = elptr->getXstart();
821
    *gmsg << "XStart= " << xstart << " [mm]" << endl;
gsell's avatar
gsell committed
822

823
    double xend = elptr->getXend();
824
    *gmsg << "XEnd= " << xend << " [mm]" << endl;
gsell's avatar
gsell committed
825

826
    double ystart = elptr->getYstart();
827
    *gmsg << "YStart= " << ystart << " [mm]" << endl;
gsell's avatar
gsell committed
828

829
    double yend = elptr->getYend();
830
    *gmsg << "YEnd= " << yend << " [mm]" << endl;
gsell's avatar
gsell committed
831

832
    double width = elptr->getWidth();
833
    *gmsg << "Width= " << width << " [mm]" << endl;
gsell's avatar
gsell committed
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910


    // initialise, do nothing
    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "SEPTUM";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;

    // store septum parameters in the list
    buildupFieldList(BcParameter, ElementType, elptr);
}

/**
 *
 *
 * @param solenoid
 */
void ParallelCyclotronTracker::visitSolenoid(const Solenoid &solenoid) {
    myElements.push_back(dynamic_cast<Solenoid *>(solenoid.clone()));
    Component *elptr = *(--myElements.end());
    if(!elptr->hasAttribute("ELEMEDGE")) {
        *gmsg << "Solenoid: no position of the element given!" << endl;
        return;
    }
}

/**
 *
 *
 * @param pplate
 */
void ParallelCyclotronTracker::visitParallelPlate(const ParallelPlate &pplate) {//do nothing

    //*gmsg << "ParallelPlate: not in use in ParallelCyclotronTracker!" << endl;

    //buildupFieldList(startField, endField, elptr);

}

/**
 *
 *
 * @param cv
 */
void ParallelCyclotronTracker::visitCyclotronValley(const CyclotronValley &cv) {
    // Do nothing here.
}
/**
 * not used
 *
 * @param angle
 * @param curve
 * @param field
 * @param scale
 */
void ParallelCyclotronTracker::applyEntranceFringe(double angle, double curve,
        const BMultipoleField &field, double scale) {

}

/**
 *
 *
 * @param stripper
 */

void ParallelCyclotronTracker::visitStripper(const Stripper &stripper) {

    *gmsg << "* ---------Stripper------------------------------" << endl;

911 912 913 914
    Stripper *elptr = dynamic_cast<Stripper *>(stripper.clone());
    myElements.push_back(elptr);

    double xstart = elptr->getXstart();
gsell's avatar
gsell committed
915 916
    *gmsg << "XStart= " << xstart << " [mm]" << endl;

917
    double xend = elptr->getXend();
gsell's avatar
gsell committed
918 919
    *gmsg << "XEnd= " << xend << " [mm]" << endl;

920
    double ystart = elptr->getYstart();
gsell's avatar
gsell committed
921 922
    *gmsg << "YStart= " << ystart << " [mm]" << endl;

923
    double yend = elptr->getYend();
gsell's avatar
gsell committed
924 925
    *gmsg << "YEnd= " << yend << " [mm]" << endl;

926
    double width = elptr->getWidth();
gsell's avatar
gsell committed
927 928
    *gmsg << "Width= " << width << " [mm]" << endl;

929
    double opcharge = elptr->getOPCharge();
gsell's avatar
gsell committed
930 931
    *gmsg << "Charge of outcome particle = +e * " << opcharge << endl;

932
    double opmass = elptr->getOPMass();
adelmann's avatar
Cleanup  
adelmann committed
933
    *gmsg << "* Mass of the outcome particle = " << opmass << " [GeV/c^2]" << endl;
gsell's avatar
gsell committed
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

    elptr->initialise(itsBunch, 1.0);

    double BcParameter[8];
    for(int i = 0; i < 8; i++)
        BcParameter[i] = 0.0;
    string ElementType = "STRIPPER";
    BcParameter[0] = xstart ;
    BcParameter[1] = xend;
    BcParameter[2] = ystart ;
    BcParameter[3] = yend;
    BcParameter[4] = width ;
    BcParameter[5] = opcharge;
    BcParameter[6] = opmass;

    buildupFieldList(BcParameter, ElementType, elptr);
}


void ParallelCyclotronTracker::applyExitFringe(double angle, double curve,
        const BMultipoleField &field, double scale) {

}


/**
 *
 *
 * @param BcParameter
 * @param ElementType
 * @param elptr
 */
void ParallelCyclotronTracker::buildupFieldList(double BcParameter[], string ElementType, Component *elptr) {
    beamline_list::iterator sindex;

    type_pair *localpair = new type_pair();
    localpair->first = ElementType;

    for(int i = 0; i < 8; i++)
        *(((localpair->second).first) + i) = *(BcParameter + i);

    (localpair->second).second = elptr;

    // always put cyclotron as the first element in the list.
978
    if(ElementType == "OPALRING") {
gsell's avatar
gsell committed
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
        sindex = FieldDimensions.begin();
    } else {
        sindex = FieldDimensions.end();
    }
    FieldDimensions.insert(sindex, localpair);

}

/**
 *
 *
 * @param bl
 */
void ParallelCyclotronTracker::visitBeamline(const Beamline &bl) {
    itsBeamline->iterate(*dynamic_cast<BeamlineVisitor *>(this), false);
}

Matthias Toggweiler's avatar
Matthias Toggweiler committed
996 997 998 999
void ParallelCyclotronTracker::checkNumPart(std::string s) {
    int nlp = itsBunch->getLocalNum();
    int minnlp = 0;
    int maxnlp = 111111;
gsell's avatar
gsell committed
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    reduce(nlp, minnlp, OpMinAssign());
    reduce(nlp, maxnlp, OpMaxAssign());
    *gmsg << s << " min local particle number " << minnlp << " max local particle number: " << maxnlp << endl;
}

/**
 *
 *
 */
void ParallelCyclotronTracker::execute() {

    /*
      Initialize common variables and structures
      for the integrators
    */

    step_m = 0;
    restartStep0_m = 0;
1018
    // record how many bunches have already been injected. ONLY FOR MPM
gsell's avatar
gsell committed
1019 1020 1021 1022 1023 1024
    BunchCount_m = itsBunch->getNumBunch();

    // For the time being, we set bin number equal to bunch number. FixMe: not used
    BinCount_m = BunchCount_m;

    itsBeamline->accept(*this);
1025 1026
    if (opalRing_m != NULL)
        opalRing_m->lockRing();
gsell's avatar
gsell committed
1027 1028

    // display the selected elements
adelmann's avatar
Cleanup  
adelmann committed
1029 1030
    *gmsg << "* -----------------------------" << endl;
    *gmsg << "* The selected Beam line elements are :" << endl;
gsell's avatar
gsell committed
1031
    for(beamline_list::iterator sindex = FieldDimensions.begin(); sindex != FieldDimensions.end(); sindex++)
adelmann's avatar
Cleanup  
adelmann committed
1032 1033
      *gmsg << "* -> " <<  ((*sindex)->first) << endl;
    *gmsg << "* -----------------------------" << endl;
1034

1035 1036 1037
    // don't initializeBoundaryGeometry()
    // get BoundaryGeometry that is already initialized
    bgf_m = OpalData::getInstance()->getGlobalGeometry(); 
1038

gsell's avatar
gsell committed
1039 1040 1041 1042 1043 1044
    // external field arrays for dumping
    for(int k = 0; k < 2; k++)
        FDext_m[k] = Vector_t(0.0, 0.0, 0.0);
    extE_m = Vector_t(0.0, 0.0, 0.0);
    extB_m = Vector_t(0.0, 0.0, 0.0);

adelmann's avatar
adelmann committed
1045 1046 1047

    *gmsg << *itsBunch << endl;

gsell's avatar
gsell committed
1048 1049 1050 1051 1052 1053
    if(timeIntegrator_m == 0) {
        *gmsg << "* 4th order Runge-Kutta integrator" << endl;
        Tracker_RK4();
    } else if(timeIntegrator_m == 1) {
        *gmsg << "* 2nd order Leap-Frog integrator" << endl;
        Tracker_LF();
1054 1055 1056
    } else if(timeIntegrator_m == 2) {
        *gmsg << "* Multiple time stepping (MTS) integrator" << endl;
        Tracker_MTS();
gsell's avatar
gsell committed
1057 1058 1059 1060 1061
    } else {
        *gmsg << "ERROR: Invalid name of TIMEINTEGRATOR in Track command" << endl;
        exit(1);
    }

adelmann's avatar
Cleanup  
adelmann committed
1062 1063
    *gmsg << "* -----------------------------" << endl;
    *gmsg << "* Finalizing i.e. write data and close files :" << endl;
gsell's avatar
gsell committed
1064 1065 1066
    for(beamline_list::iterator sindex = FieldDimensions.begin(); sindex != FieldDimensions.end(); sindex++) {
        (((*sindex)->second).second)->finalise();
    }
adelmann's avatar
Cleanup  
adelmann committed
1067
    *gmsg << "* -----------------------------" << endl;
gsell's avatar
gsell committed
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

/**
   In general the two tracker have much code in common.
   This is a great source of errors.
   Need to avoid this

*/



/**
 *
 *
 */
void ParallelCyclotronTracker::Tracker_LF() {

    BorisPusher pusher;

    // time steps interval between bunches for multi-bunch simulation.
    const int stepsPerTurn = itsBunch->getStepsPerTurn();

1090
    const double harm = getHarmonicNumber();
gsell's avatar
gsell committed
1091 1092 1093 1094 1095 1096 1097 1098 1099

    // load time
    const double dt = itsBunch->getdT() * 1.0e9 * harm; //[s]-->[ns]

    // find the injection time interval
    if(numBunch_m > 1) {
        *gmsg << "Time interval between neighbour bunches is set to " << stepsPerTurn *dt << "[ns]" << endl;
    }

1100
    initTrackOrbitFile();
gsell's avatar
gsell committed
1101 1102 1103 1104

    int SteptoLastInj = itsBunch->getSteptoLastInj();

    // get data from h5 file for restart run
1105
    if(OpalData::getInstance()->inRestartRun()) {
1106
        restartStep0_m = itsBunch->getLocalTrackStep();
gsell's avatar
gsell committed
1107
        step_m = restartStep0_m;
1108
        if (numBunch_m > 1) itsBunch->resetPartBinID2(eta_m);
1109
        *gmsg << "* Restart at integration step " << restartStep0_m << endl;
gsell's avatar
gsell committed
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    }

    if(OpalData::getInstance()->hasBunchAllocated() && Options::scan) {
        lastDumpedStep_m = 0;
        itsBunch->setT(0.0);
    }

    *gmsg << "* Beginning of this run is at t= " << itsBunch->getT() * 1e9 << " [ns]" << endl;
    *gmsg << "* The time step is set to dt= " << dt << " [ns]" << endl;

    // for single Particle Mode, output at zero degree.
    if(initialTotalNum_m == 1)
1122
        openFiles(OpalData::getInstance()->getInputBasename());
gsell's avatar
gsell committed
1123 1124

    double const initialReferenceTheta = referenceTheta / 180.0 * pi;
1125

1126
    initDistInGlobalFrame();
gsell's avatar
gsell committed
1127 1128 1129 1130 1131 1132 1133 1134

    //  read in some control parameters
    const int SinglePartDumpFreq = Options::sptDumpFreq;
    const int resetBinFreq = Options::rebinFreq;
    const int scSolveFreq = Options::scSolveFreq;
    const bool doDumpAfterEachTurn = Options::psDumpEachTurn;


1135
    int boundpDestroyFreq = 10; // TODO: Should this be treated as a control parameter? 
gsell's avatar
gsell committed
1136 1137 1138 1139

    // prepare for dump after each turn
    double oldReferenceTheta = initialReferenceTheta;

adelmann's avatar
Cleanup  
adelmann committed
1140 1141
    *gmsg << "* Single particle trajectory dump frequency is set to " << SinglePartDumpFreq << endl;
    *gmsg << "* Repartition frequency is set to " << Options::repartFreq << endl;
gsell's avatar
gsell committed
1142 1143 1144 1145 1146 1147 1148 1149
    if(numBunch_m > 1)
        *gmsg << "particles energy bin ID reset frequency is set to " << resetBinFreq << endl;

    // if initialTotalNum_m = 2, trigger SEO mode
    // prepare for transverse tuning calculation
    vector<double> Ttime, Tdeltr, Tdeltz;
    // prepare for transverse tuning calculation
    vector<int> TturnNumber;
1150
    turnnumber_m = 1;
gsell's avatar
gsell committed
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180


    // flag to determine when to transit from single-bunch to multi-bunches mode
    bool flagTransition = false;
    // step point determining the next time point of check for transition
    int stepsNextCheck = step_m + itsBunch->getStepsPerTurn();

    const  double deltaTheta = pi / (stepsPerTurn);
    // record at which angle the space charge are solved
    double angleSpaceChargeSolve = 0.0;

    if(initialTotalNum_m == 1) {
        *gmsg << "* *---------------------------- SINGLE PARTICLE MODE------ ----------------------------*** " << endl;
        *gmsg << "* Instruction: when the total particle number equal to 1, single particle mode is triggered automatically," << endl
              << "* The initial distribution file must be specified which should contain only one line for the single particle " << endl
              << "* *------------NOTE: SINGLE PARTICLE MODE ONLY WORKS SERIALLY ON SINGLE NODE ------------------*** " << endl;
        if(Ippl::getNodes() != 1)
            throw OpalException("Error in ParallelCyclotronTracker::execute", "SINGLE PARTICLE MODE ONLY WORKS SERIALLY ON SINGLE NODE!");

    } else if(initialTotalNum_m == 2) {
        *gmsg << "* *------------------------ STATIC EQUILIBRIUM ORBIT MODE ----------------------------*** " << endl;
        *gmsg << "* Instruction: when the total particle number equal to 2, SEO mode is triggered automatically." << endl
              << "* This mode does NOT include any RF cavities. The initial distribution file must be specified" << endl
              << "* In the file the first line is for reference particle and the second line is for offcenter particle." << endl
              << "* The tunes are calculated by FFT routines based on these two particles. " << endl
              << "* *------------NOTE: SEO MODE ONLY WORKS SERIALLY ON SINGLE NODE ------------------*** " << endl;
        if(Ippl::getNodes() != 1)
            throw OpalException("Error in ParallelCyclotronTracker::execute", "SEO MODE ONLY WORKS SERIALLY ON SINGLE NODE!");
    }

1181
    // apply the plugin elements: probe, collimator, stripper, septum
1182 1183 1184
    // make sure that we apply elements even on first step
    applyPluginElements(dt);

gsell's avatar
gsell committed
1185 1186 1187
    // *****************II***************
    // main integration loop
    // *****************II***************
adelmann's avatar
Cleanup  
adelmann committed
1188
    *gmsg << "* ---------------------------- Start tracking ----------------------------" << endl;
gsell's avatar
gsell committed
1189 1190
    for(; step_m < maxSteps_m; step_m++) {
        bool dumpEachTurn = false;
1191 1192 1193
        if(step_m % SinglePartDumpFreq == 0) {
            singleParticleDump();
        }
gsell's avatar
gsell committed
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        Ippl::Comm->barrier();

        // Push for first half step
        itsBunch->R *= Vector_t(0.001);
        push(0.5 * dt * 1e-9);
        itsBunch->R *= Vector_t(1000.0);

        // bunch injection
        if(numBunch_m > 1) {

            if((BunchCount_m == 1) && (multiBunchMode_m == 2) && (!flagTransition)) {
                if(step_m == stepsNextCheck) {
                    // under 3 conditions, following code will be execute
                    // to check the distance between two neighborring bunches
                    // 1.multi-bunch mode, AUTO sub-mode
                    // 2.After each revolution
                    // 3.only one bunch exists

                    *gmsg << "checking for automatically injecting new bunch ..." << endl;

                    itsBunch->R /= Vector_t(1000.0); // mm --> m
                    itsBunch->calcBeamParameters_cycl();
                    itsBunch->R *= Vector_t(1000.0); // m --> mm

                    Vector_t Rmean = itsBunch->get_centroid() * 1000.0; // m --> mm

                    RThisTurn_m = sqrt(pow(Rmean[0], 2.0) + pow(Rmean[1], 2.0));

                    Vector_t Rrms = itsBunch->get_rrms() * 1000.0; // m --> mm

                    double XYrms =  sqrt(pow(Rrms[0], 2.0) + pow(Rrms[1], 2.0));


                    // if the distance between two neighbour bunch is less than CoeffDBunches_m times of its 2D rms size
                    // start multi-bunch simulation, fill current phase space to initialR and initialP arrays

                    if((RThisTurn_m - RLastTurn_m) < CoeffDBunches_m * XYrms) {
                        // since next turn, start multi-bunches
                        saveOneBunch();
                        flagTransition = true;

1235
                        *gmsg << "*** Save beam distribution at turn #" << turnnumber_m << " ***" << endl;
1236
                        *gmsg << "*** After one revolution, Multi-Bunch Mode will be invoked ***" << endl;
gsell's avatar
gsell committed
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

                    }

                    stepsNextCheck += stepsPerTurn;

                    *gmsg << "RLastTurn = " << RLastTurn_m << " [mm]" << endl;
                    *gmsg << "RThisTurn = " << RThisTurn_m << " [mm]" << endl;
                    *gmsg << "    XYrms = " << XYrms    << " [mm]" << endl;

                    RLastTurn_m = RThisTurn_m;
                }
            } else if(SteptoLastInj == stepsPerTurn - 1) {
                if(BunchCount_m < numBunch_m) {

                    // under 4 conditions, following code will be execute
                    // to read new bunch from hdf5 format file for FORCE or AUTO mode
                    // 1.multi-bunch mode
                    // 2.after each revolution
                    // 3.existing bunches is less than the specified bunches
                    // 4.FORCE mode, or AUTO mode with flagTransition = true
                    // Note: restart from 1 < BunchCount < numBunch_m must be avoided.
                    *gmsg << "step " << step_m << ", inject a new bunch... ... ..." << endl;
                    BunchCount_m++;

                    // read initial distribution from h5 file
                    if(multiBunchMode_m == 1) {
                        readOneBunch(BunchCount_m - 1);
1264
                        itsBunch->resetPartBinID2(eta_m);
gsell's avatar
gsell committed
1265 1266 1267 1268 1269 1270 1271
                    } else if(multiBunchMode_m == 2) {

                        if(OpalData::getInstance()->inRestartRun())
                            readOneBunchFromFile(BunchCount_m - 1);
                        else
                            readOneBunch(BunchCount_m - 1);

1272
                        itsBunch->resetPartBinID2(eta_m);
gsell's avatar
gsell committed
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
                    }

                    SteptoLastInj = 0;

                    itsBunch->setNumBunch(BunchCount_m);

                    stepsNextCheck += stepsPerTurn;

                    // update  after injection
                    itsBunch->boundp();

                    Ippl::Comm->barrier();
                    *gmsg << BunchCount_m << "'th bunch injected, total particle number = " << itsBunch->getTotalNum() << endl;
                }
            } else if(BunchCount_m == numBunch_m) {
                // After this, numBunch_m is wrong but useless
                numBunch_m--;

            } else {
                SteptoLastInj++;
            }
        }

        // calculate self fields Space Charge effects are included only when total macropaticles number is NOT LESS THAN 1000.
        if(itsBunch->hasFieldSolver() && initialTotalNum_m >= 1000) {
            if(step_m % scSolveFreq == 0) {
                //    *gmsg << "Calculate space charge at step " << step_m<<endl;
                // Firstly reset E and B to zero before fill new space charge field data for each track step
                itsBunch->Bf = Vector_t(0.0);
                itsBunch->Ef = Vector_t(0.0);

                Vector_t const meanR = calcMeanR();
                if((itsBunch->weHaveBins()) && BunchCount_m > 1) {
                    IpplTimings::startTimer(TransformTimer_m);
                    double const binsPhi = itsBunch->calcMeanPhi() - 0.5 * pi;
                    angleSpaceChargeSolve = binsPhi;
                    globalToLocal(itsBunch->R, binsPhi, meanR);

                    //scale coordinates
                    itsBunch->R /= Vector_t(1000.0); // mm --> m

                    if((step_m + 1) % boundpDestroyFreq == 0)
                        itsBunch->boundp_destroy();
                    else
                        itsBunch->boundp();

                    IpplTimings::stopTimer(TransformTimer_m);

                    // calcualte gamma for each energy bin
                    itsBunch->calcGammas_cycl();

                    repartition();
1325

gsell's avatar
gsell committed
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
                    // calculate space charge field for each energy bin
                    for(int b = 0; b < itsBunch->getLastemittedBin() ; b++) {

                        if(itsBunch->pbin_m->getTotalNumPerBin(b) >= 1000) {
                            //if(itsBunch->getNumPartInBin(b) >= 1000) {
                            itsBunch->setBinCharge(b, itsBunch->getChargePerParticle());
                            //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//
                            itsBunch->computeSelfFields_cycl(b);
                            //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%//
                            INFOMSG("Bin:" << b << ", charge per particle " <<  itsBunch->getChargePerParticle() << endl);
                        } else {
                            INFOMSG("Note: Bin " << b << ": less than 1000 particles, omit space charge fields" << endl);
                        }
                    }

                    itsBunch->Q = itsBunch->getChargePerParticle();

                    IpplTimings::startTimer(TransformTimer_m);

                    //scale coordinates back
                    itsBunch->R *= Vector_t(1000.0); // m --> mm
1347

gsell's avatar
gsell committed
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364