//
// Class MultiBunchHandler
// Helper class that stores bunch injection
// information like azimuth, radius etc. of first
// bunch in multi-bunch mode of ParallelCyclotronTracker.
//
// Copyright (c) 2007 - 2014, Jianjun Yang, Paul Scherrer Institut, Villigen PSI, Switzerland
// Copyright (c) 2012 - 2020, Paul Scherrer Institut, Villigen PSI, Switzerland
// All rights reserved
//
// Implemented as part of the PhD thesis
// "Beam dynamics in high intensity cyclotrons including neighboring bunch effects"
// and the paper
// "Beam dynamics in high intensity cyclotrons including neighboring bunch effects:
// Model, implementation, and application"
// (https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.13.064201)
//
// This file is part of OPAL.
//
// OPAL is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// You should have received a copy of the GNU General Public License
// along with OPAL. If not, see .
//
#include "MultiBunchHandler.h"
#include "Structure/H5PartWrapperForPC.h"
//FIXME Remove headers and dynamic_cast in
#include "Algorithms/PartBunch.h"
#ifdef ENABLE_AMR
#include "Algorithms/AmrPartBunch.h"
#endif
extern Inform *gmsg;
MultiBunchHandler::MultiBunchHandler(PartBunchBase *beam,
const int& numBunch,
const double& eta,
const double& para,
const std::string& mode,
const std::string& binning)
: onebunch_m(OpalData::getInstance()->getInputBasename() + "-onebunch.h5")
, numBunch_m(numBunch)
, eta_m(eta)
, coeffDBunches_m(para)
, radiusLastTurn_m(0.0)
, radiusThisTurn_m(0.0)
, bunchCount_m(1)
{
PAssert_GT(numBunch, 1);
binfo_m.reserve(numBunch);
for (int i = 0; i < beam->getNumBunch(); ++i) {
binfo_m.push_back(beaminfo_t());
}
this->setBinning(binning);
// mode of generating new bunches:
// "FORCE" means generating one bunch after each revolution, until get "TURNS" bunches.
// "AUTO" means only when the distance between two neighbor bunches is below the limitation,
// then starts to generate new bunches after each revolution,until get "TURNS" bunches;
// otherwise, run single bunch track
*gmsg << "***---------------------------- MULTI-BUNCHES MULTI-ENERGY-BINS MODE "
<< "----------------------------*** " << endl;
// only for regular run of multi bunches, instantiate the PartBins class
// note that for restart run of multi bunches, PartBins class is instantiated in function
// Distribution::doRestartOpalCycl()
if (!OpalData::getInstance()->inRestartRun()) {
// already exist bins number initially
const int BinCount = 1;
//allowed maximal bin
const int MaxBinNum = 1000;
// initialize particles number for each bin (both existed and not yet emmitted)
size_t partInBin[MaxBinNum] = {0};
partInBin[0] = beam->getTotalNum();
beam->setPBins(new PartBinsCyc(MaxBinNum, BinCount, partInBin));
// the allowed maximal bin number is set to 100
//beam->setPBins(new PartBins(100));
this->setMode(mode);
} else {
if(beam->pbin_m->getLastemittedBin() < 2) {
*gmsg << "In this restart job, the multi-bunches mode is forcely set to AUTO mode." << endl;
mode_m = MB_MODE::AUTO;
} else {
*gmsg << "In this restart job, the multi-bunches mode is forcely set to FORCE mode." << endl
<< "If the existing bunch number is less than the specified number of TURN, "
<< "readin the phase space of STEP#0 from h5 file consecutively" << endl;
mode_m = MB_MODE::FORCE;
}
}
}
void MultiBunchHandler::saveBunch(PartBunchBase *beam)
{
static IpplTimings::TimerRef saveBunchTimer = IpplTimings::getTimer("Save Bunch H5");
IpplTimings::startTimer(saveBunchTimer);
*gmsg << endl;
*gmsg << "* Store beam to H5 file for multibunch simulation ... ";
Ppos_t coord, momentum;
ParticleAttrib mass, charge;
ParticleAttrib porigin;
std::size_t localNum = beam->getLocalNum();
coord.create(localNum);
coord = beam->R;
momentum.create(localNum);
momentum = beam->P;
mass.create(localNum);
mass = beam->M;
charge.create(localNum);
charge = beam->Q;
porigin.create(localNum);
porigin = beam->POrigin;
std::map additionalAttributes = {
std::make_pair("REFPR", 0.0),
std::make_pair("REFPT", 0.0),
std::make_pair("REFPZ", 0.0),
std::make_pair("REFR", 0.0),
std::make_pair("REFTHETA", 0.0),
std::make_pair("REFZ", 0.0),
std::make_pair("AZIMUTH", 0.0),
std::make_pair("ELEVATION", 0.0),
std::make_pair("B-ref_x", 0.0),
std::make_pair("B-ref_z", 0.0),
std::make_pair("B-ref_y", 0.0),
std::make_pair("E-ref_x", 0.0),
std::make_pair("E-ref_z", 0.0),
std::make_pair("E-ref_y", 0.0),
std::make_pair("B-head_x", 0.0),
std::make_pair("B-head_z", 0.0),
std::make_pair("B-head_y", 0.0),
std::make_pair("E-head_x", 0.0),
std::make_pair("E-head_z", 0.0),
std::make_pair("E-head_y", 0.0),
std::make_pair("B-tail_x", 0.0),
std::make_pair("B-tail_z", 0.0),
std::make_pair("B-tail_y", 0.0),
std::make_pair("E-tail_x", 0.0),
std::make_pair("E-tail_z", 0.0),
std::make_pair("E-tail_y", 0.0)
};
H5PartWrapperForPC h5wrapper(onebunch_m, H5_O_WRONLY);
h5wrapper.writeHeader();
h5wrapper.writeStep(beam, additionalAttributes);
h5wrapper.close();
*gmsg << "Done." << endl;
IpplTimings::stopTimer(saveBunchTimer);
}
bool MultiBunchHandler::readBunch(PartBunchBase *beam,
const PartData& ref)
{
static IpplTimings::TimerRef readBunchTimer = IpplTimings::getTimer("Read Bunch H5");
IpplTimings::startTimer(readBunchTimer);
*gmsg << endl;
*gmsg << "* Read beam from H5 file for multibunch simulation ... ";
std::size_t localNum = beam->getLocalNum();
/*
* 2nd argument: 0 --> step zero is fine since the file has only this step
* 3rd argument: "" --> onebunch_m is used
* 4th argument: H5_O_RDONLY does not work with this constructor
*/
H5PartWrapperForPC h5wrapper(onebunch_m, 0, "", H5_O_WRONLY);
size_t numParticles = h5wrapper.getNumParticles();
const int bunchNum = bunchCount_m - 1;
beam->setTotalNumPerBunch(numParticles, bunchNum);
if ( numParticles == 0 ) {
throw OpalException("MultiBunchHandler::readBunch()",
"No particles in file " + onebunch_m + ".");
}
size_t numParticlesPerNode = numParticles / Ippl::getNodes();
size_t firstParticle = numParticlesPerNode * Ippl::myNode();
size_t lastParticle = firstParticle + numParticlesPerNode - 1;
if (Ippl::myNode() == Ippl::getNodes() - 1)
lastParticle = numParticles - 1;
PAssert_LT(firstParticle, lastParticle +1);
numParticles = lastParticle - firstParticle + 1;
beam->setLocalNumPerBunch(numParticles, bunchNum);
//FIXME
std::unique_ptr > tmpBunch = nullptr;
#ifdef ENABLE_AMR
AmrPartBunch* amrbunch_p = dynamic_cast(beam);
if ( amrbunch_p != nullptr ) {
tmpBunch.reset(new AmrPartBunch(&ref,
amrbunch_p->getAmrParticleBase()));
} else
#endif
tmpBunch.reset(new PartBunch(&ref));
tmpBunch->create(numParticles);
h5wrapper.readStep(tmpBunch.get(), firstParticle, lastParticle);
h5wrapper.close();
beam->create(numParticles);
for(size_t ii = 0; ii < numParticles; ++ ii, ++ localNum) {
beam->R[localNum] = tmpBunch->R[ii];
beam->P[localNum] = tmpBunch->P[ii];
beam->M[localNum] = tmpBunch->M[ii];
beam->Q[localNum] = tmpBunch->Q[ii];
beam->POrigin[localNum] = ParticleOrigin::REGULAR;
beam->Bin[localNum] = bunchNum;
beam->bunchNum[localNum] = bunchNum;
}
beam->boundp();
binfo_m.push_back(beaminfo_t(injection_m));
*gmsg << "Done." << endl;
IpplTimings::stopTimer(readBunchTimer);
return true;
}
short MultiBunchHandler::injectBunch(PartBunchBase *beam,
const PartData& ref,
bool& flagTransition)
{
short result = 0;
if ((bunchCount_m == 1) && (mode_m == MB_MODE::AUTO) && (!flagTransition)) {
// we have still a single bunch
beam->setTotalNumPerBunch(beam->getTotalNum(), 0);
beam->setLocalNumPerBunch(beam->getLocalNum(), 0);
// If all of the following conditions are met, this code will be executed
// to check the distance between two neighboring bunches:
// 1. Only one bunch exists (bunchCount_m == 1)
// 2. We are in multi-bunch mode, AUTO sub-mode (mode_m == 2)
// 3. It has been a full revolution since the last check (stepsNextCheck)
*gmsg << "* MBM: Checking for automatically injecting new bunch ..." << endl;
//beam->R *= Vector_t(0.001); // mm --> m
beam->calcBeamParameters();
//beam->R *= Vector_t(1000.0); // m --> mm
Vector_t Rmean = beam->get_centroid(); // m
radiusThisTurn_m = std::hypot(Rmean[0],Rmean[1]);
Vector_t Rrms = beam->get_rrms(); // m
double XYrms = std::hypot(Rrms[0], Rrms[1]);
// If the distance between two neighboring bunches is less than 5 times of its 2D rms size
// start multi-bunch simulation, fill current phase space to initialR and initialP arrays
if ((radiusThisTurn_m - radiusLastTurn_m) < coeffDBunches_m * XYrms) {
// since next turn, start multi-bunches
saveBunch(beam);
flagTransition = true;
}
*gmsg << "* MBM: RLastTurn = " << radiusLastTurn_m << " [m]" << endl;
*gmsg << "* MBM: RThisTurn = " << radiusThisTurn_m << " [m]" << endl;
*gmsg << "* MBM: XYrms = " << XYrms << " [m]" << endl;
radiusLastTurn_m = radiusThisTurn_m;
result = 1;
}
else if (bunchCount_m < numBunch_m) {
// Matthias: SteptoLastInj was used in MtsTracker, removed by DW in GenericTracker
// If all of the following conditions are met, this code will be executed
// to read new bunch from hdf5 format file:
// 1. We are in multi-bunch mode (numBunch_m > 1)
// 2. It has been a full revolution since the last check
// 3. Number of existing bunches is less than the desired number of bunches
// 4. FORCE mode, or AUTO mode with flagTransition = true
// Note: restart from 1 < BunchCount < numBunch_m must be avoided.
*gmsg << "* MBM: Injecting a new bunch ..." << endl;
bunchCount_m++;
beam->setNumBunch(bunchCount_m);
// read initial distribution from h5 file
switch ( mode_m ) {
case MB_MODE::FORCE:
case MB_MODE::AUTO:
readBunch(beam, ref);
updateParticleBins(beam);
calcBunchBeamParameters(beam, bunchCount_m - 1);
break;
default:
throw OpalException("MultiBunchHandler::injectBunch()",
"We shouldn't be here in single bunch mode.");
}
Ippl::Comm->barrier();
*gmsg << "* MBM: Bunch " << bunchCount_m
<< " injected, total particle number = "
<< beam->getTotalNum() << endl;
result = 2;
}
return result;
}
void MultiBunchHandler::updateParticleBins(PartBunchBase *beam) {
if (bunchCount_m < 2)
return;
static IpplTimings::TimerRef binningTimer = IpplTimings::getTimer("Particle Binning");
IpplTimings::startTimer(binningTimer);
switch ( binning_m ) {
case MB_BINNING::GAMMA:
beam->resetPartBinID2(eta_m);
break;
case MB_BINNING::BUNCH:
beam->resetPartBinBunch();
break;
default:
beam->resetPartBinID2(eta_m);
}
IpplTimings::stopTimer(binningTimer);
}
void MultiBunchHandler::setMode(const std::string& mbmode) {
if ( mbmode.compare("FORCE") == 0 ) {
*gmsg << "FORCE mode: The multi bunches will be injected consecutively" << endl
<< " after each revolution, until get \"TURNS\" bunches." << endl;
mode_m = MB_MODE::FORCE;
} else if ( mbmode.compare("AUTO") == 0 ) {
*gmsg << "AUTO mode: The multi bunches will be injected only when the" << endl
<< " distance between two neighboring bunches is below" << endl
<< " the limitation. The control parameter is set to "
<< coeffDBunches_m << endl;
mode_m = MB_MODE::AUTO;
} else
throw OpalException("MultiBunchHandler::setMode()",
"MBMODE name \"" + mbmode + "\" unknown.");
}
void MultiBunchHandler::setBinning(std::string binning) {
if ( binning.compare("BUNCH") == 0 ) {
*gmsg << "Use 'BUNCH' injection for binnning." << endl;
binning_m = MB_BINNING::BUNCH;
} else if ( binning.compare("GAMMA") == 0 ) {
*gmsg << "Use 'GAMMA' for binning." << endl;
binning_m = MB_BINNING::GAMMA;
} else {
throw OpalException("MultiBunchHandler::setBinning()",
"MB_BINNING name \"" + binning + "\" unknown.");
}
}
void MultiBunchHandler::setRadiusTurns(const double& radius) {
if ( mode_m != MB_MODE::AUTO )
return;
radiusLastTurn_m = radius;
radiusThisTurn_m = radiusLastTurn_m;
if (OpalData::getInstance()->inRestartRun()) {
*gmsg << "Radial position at restart position = ";
} else {
*gmsg << "Initial radial position = ";
}
// New OPAL 2.0: Init in m -DW
*gmsg << radiusThisTurn_m << " m" << endl;
}
bool MultiBunchHandler::calcBunchBeamParameters(PartBunchBase* beam,
short bunchNr)
{
if ( !OpalData::getInstance()->isInOPALCyclMode() ) {
return false;
}
const unsigned long localNum = beam->getLocalNum();
long int bunchTotalNum = 0;
unsigned long bunchLocalNum = 0;
/* container:
*
* ekin, , , , , , ,
* , , , , , ,
* , , ,
* , , , , ,
*/
const unsigned int dim = PartBunchBase::Dimension;
std::vector local(7 * dim + 1);
beaminfo_t& binfo = getBunchInfo(bunchNr);
for(unsigned long k = 0; k < localNum; ++k) {
if ( beam->bunchNum[k] != bunchNr ) { //|| ID[k] == 0 ) {
continue;
}
++bunchTotalNum;
++bunchLocalNum;
// ekin
local[0] += std::sqrt(dot(beam->P[k], beam->P[k]) + 1.0);
for (unsigned int i = 0; i < dim; ++i) {
double r = beam->R[k](i);
double p = beam->P[k](i);
// , ,
local[i + 1] += r;
// ,
local[i + dim + 1] += p;
// , ,
double r2 = r * r;
local[i + 2 * dim + 1] += r2;
// , ,
local[i + 3 * dim + 1] += p * p;
// , ,
local[i + 4 * dim + 1] += r * p;
// , ,
local[i + 5 * dim + 1] += r2 * r;
// , ,
local[i + 6 * dim + 1] += r2 * r2;
}
}
// inefficient
allreduce(bunchTotalNum, 1, std::plus());
// here we also update the number of particles of *this* bunch
if (bunchNr >= (short)beam->getNumBunch())
throw OpalException("MultiBunchHandler::calcBunchBeamParameters()",
"Bunch number " + std::to_string(bunchNr) +
" exceeds bunch index " + std::to_string(beam->getNumBunch() - 1));
beam->setTotalNumPerBunch(bunchTotalNum, bunchNr);
beam->setLocalNumPerBunch(bunchLocalNum, bunchNr);
if ( bunchTotalNum == 0 )
return false;
// ekin
const double m0 = beam->getM() * 1.0e-6;
local[0] -= bunchLocalNum;
local[0] *= m0;
allreduce(local.data(), local.size(), std::plus());
double invN = 1.0 / double(bunchTotalNum);
binfo.ekin = local[0] * invN;
binfo.time = beam->getT() * 1e9; // ns
binfo.nParticles = bunchTotalNum;
for (unsigned int i = 0; i < dim; ++i) {
double w = local[i + 1] * invN;
double pw = local[i + dim + 1] * invN;
double w2 = local[i + 2 * dim + 1] * invN;
double pw2 = local[i + 3 * dim + 1] * invN;
double wpw = local[i + 4 * dim + 1] * invN;
double w3 = local[i + 5 * dim + 1] * invN;
double w4 = local[i + 6 * dim + 1] * invN;
// , ,
binfo.mean[i] = w;
// central: - ^2 (w = x, y, z)
binfo.prms[i] = pw2 - pw * pw;
if ( binfo.prms[i] < 0 ) {
binfo.prms[i] = 0.0;
}
// central: -
wpw = wpw - w * pw;
// central: - ^2 (w = x, y, z)
binfo.rrms[i] = w2 - w * w;
// central: normalized emittance
binfo.emit[i] = (binfo.rrms[i] * binfo.prms[i] - wpw * wpw);
binfo.emit[i] = std::sqrt(std::max(binfo.emit[i], 0.0));
// central: - 4 * * + 6 * ^2 * - 3 * ^4
double tmp = w4
- 4.0 * w * w3
+ 6.0 * w * w * w2
- 3.0 * w * w * w * w;
binfo.halo[i] = tmp / ( binfo.rrms[i] * binfo.rrms[i] );
// central: sqrt( - ^2) (w = x, y, z)
binfo.rrms[i] = std::sqrt(binfo.rrms[i]);
// central: sqrt( - ^2)
binfo.prms[i] = std::sqrt(binfo.prms[i]);
// central: rms correlation --> ( - ) / sqrt( * )
double denom = 1.0 / (binfo.rrms[i] * binfo.prms[i]);
binfo.correlation[i] = (std::isfinite(denom)) ? wpw * denom : 0.0;
}
double tmp = 1.0 / std::pow(binfo.ekin / m0 + 1.0, 2.0);
binfo.dEkin = binfo.prms[1] * m0 * std::sqrt(1.0 - tmp);
return true;
}
void MultiBunchHandler::updateTime(const double& dt) {
for (short b = 0; b < bunchCount_m; ++b) {
binfo_m[b].time += dt;
}
}
void MultiBunchHandler::updatePathLength(const std::vector& lpaths) {
PAssert_EQ(bunchCount_m, (short)lpaths.size() - 1);
for (short b = 0; b < bunchCount_m; ++b) {
binfo_m[b].pathlength += lpaths[b];
}
}