// ------------------------------------------------------------------------ // Copyright: see Copyright.readme // ------------------------------------------------------------------------ // // Class: MapAnalyser // Organizes the function for a linear map analysis from // ThickTracker. // Transfer map -> tunes, symplecticity and stability // Sigma Matrix -> (not projected) beam emittance // // ------------------------------------------------------------------------ // // $Author: ganz $ // // ------------------------------------------------------------------------ #include "MapAnalyser.h" #include #include "Physics/Physics.h" #include #include #include MapAnalyser::MapAnalyser() : mapAnalysis_m(IpplTimings::getTimer("mapAnalysis")) , bunchAnalysis_m(IpplTimings::getTimer("bunchAnalysis")) { } //Analyzes a TransferMap for the tunes, symplecticity and stability void MapAnalyser::linTAnalyze(const fMatrix_t& tMatrix){ std::ofstream tplot; tplot.open ("tunePlot.txt",std::ios::app); tplot << std::setprecision(16); //================================ IpplTimings::startTimer(mapAnalysis_m); fMatrix_t blocktMatrix, scalingMatrix, invScalingMatrix; //get the EigenValues/-Vectors cfMatrix_t eigenValM, eigenVecM, invEigenVecM; eigenDecomp_m(tMatrix, eigenValM, eigenVecM, invEigenVecM); //normalize eigen Vectors for (int i=0; i <6 ; i++){ double temp=0; for (int j=0; j <6 ; j+=2){ temp += 2*(eigenVecM[j][i] * std::conj(eigenVecM[j+1][i])).imag(); } temp=std::fabs(temp); if (temp > 1e-10){ //TODO is it neccessary to normalize the eigenValues? //eigenValM[i][i] *= std::sqrt(temp); for (int j=0; j <6 ; j++){ eigenVecM[j][i] /= std::sqrt(temp); invEigenVecM[j][i] /= std::sqrt(temp); } } } //TODO pack transposition in a neat function cfMatrix_t eigenVecMT; for (int i=0; i <6 ; i++){ for (int j=0; j <6 ; j++){ eigenVecMT[i][j]= eigenVecM[j][i]; } } double prec =0.01; int idx=0; std::array pairs; fMatrix_t skewMatrix = createSkewMatrix_m(); cfMatrix_t cSkewMatrix = complexTypeMatrix_m(skewMatrix); fMatrix_t K = imagPartOfMatrix_m(eigenVecMT *cSkewMatrix* eigenVecM); for (int i=0; i<6;i++) pairs[i]=-1; //Printer for (int i=0; i <6 ; i++){ for (int j=0; j <6 ; j++){ if (K[i][j]>1-prec && K[i][j]<1+prec){ pairs[idx]=i; pairs[idx+1]=j; idx+=2; if (idx==6) break; } } } //Fill empty elements in pairs std::array::iterator pairsIt; //Compare eigenvalues int negidx=6-1; for (int i=0; i<6; i++) { pairsIt = std::find (pairs.begin(), pairs.end(), i); if (pairsIt != pairs.end()){ continue; } for (int j=0; i!=j && j <6 ; j++){ double diff = std::abs( eigenValM[i][i] - eigenValM[j][j]); if (diff< 0.001){ pairs[negidx]=i; pairs[negidx-1]=j; negidx-=2; } } } //Fill the paris vector for (int i=0; i < 6 && idx < 6; i++){ pairsIt = std::find (pairs.begin(), pairs.end(), i); if (pairsIt != pairs.end()){ continue; } else{ pairs[idx]=i; idx++; } } // :FIXME: why commented out? To be removed? cfMatrix_t tempM = eigenVecM ; //cfMatrix_t tempInvM = eigenVecM ; cfMatrix_t tempValM = eigenValM ; for (int i=0; i <6 ; i++){ eigenValM[i][i]=tempValM[pairs[i]][pairs[i]]; for (int j=0; j <6 ; j++){ eigenVecM[j][i]=tempM[j][pairs[i]]; //eigenVecMT[i][j]=eigenVecM[j][i]; //invEigenVecM[i][j]=tempInvM[pairs[i]][j]; } } invEigenVecM= invertMatrix_m(eigenVecM); cfMatrix_t cblocktMatrix = getBlockDiagonal_m(tMatrix, eigenVecM, invEigenVecM); FVector, 3> betaTunes, betaTunes2; FVector betaTunes3; // :FIXME: why commented out //rearrangeEigen(eigenValM, eigenVecM); for (int i = 0; i < 3; i++){ betaTunes[i]=std::log(eigenValM[i*2][i*2])/ (2*Physics::pi * std::complex(0, 1)); betaTunes[i]= std::asin(cblocktMatrix[i*2][i*2+1])/(std::complex(2*Physics::pi, 0)); betaTunes2[i]= std::acos(cblocktMatrix[i*2][i*2])/(std::complex(2*Physics::pi, 0)); betaTunes2[i]= std::acos(cblocktMatrix[i*2][i*2].real())/(std::complex(2*Physics::pi, 0)); betaTunes3[i]= std::acos(eigenValM[i*2][i*2].real()) / (2*Physics::pi); double lenEigenVec = 0; for (int j = 0; j < 3; j++){ lenEigenVec += std::abs(eigenVecM[i][j]); } lenEigenVec = std::sqrt(lenEigenVec); tplot<<"1: "<( GSL_REAL(gsl_vector_complex_get(eval, i)), GSL_IMAG(gsl_vector_complex_get(eval, i))); for (int j = 0; j < 6; ++j) { eigenVec[i][j] = std::complex( GSL_REAL(gsl_matrix_complex_get(evec, i, j)), GSL_IMAG(gsl_matrix_complex_get(evec, i, j))); } } //invert Eigenvectormatrix gsl_linalg_complex_LU_decomp(evec, p, &s); gsl_linalg_complex_LU_invert(evec, p, eveci); //Create invEigenVecMatrix for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { invEigenVec[i][j] = std::complex( GSL_REAL(gsl_matrix_complex_get(eveci, i, j)), GSL_IMAG(gsl_matrix_complex_get(eveci, i, j))); } } //free space gsl_vector_complex_free(eval); gsl_matrix_complex_free(evec); gsl_matrix_complex_free(eveci); } //Transforms the Matirx to a block diagonal rotation Matrix MapAnalyser::cfMatrix_t MapAnalyser::getBlockDiagonal_m(const fMatrix_t& M, cfMatrix_t& eigenVecM, cfMatrix_t& invEigenVecM){ cfMatrix_t cM, qMatrix, invqMatrix, nMatrix, invnMatrix, rMatrix; for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ cM[i][j]=std::complex(M[i][j],0); } } for (int i=0; i <6 ; i=i+2){ qMatrix[0+i][0+i]=std::complex(1.,0); qMatrix[0+i][1+i]=std::complex(0,1.); qMatrix[1+i][0+i]=std::complex(1.,0); qMatrix[1+i][1+i]=std::complex(0,-1); invqMatrix[0+i][0+i]=std::complex(1.,0); invqMatrix[0+i][1+i]=std::complex(1.,0); invqMatrix[1+i][0+i]=std::complex(0.,-1.); invqMatrix[1+i][1+i]=std::complex(0,1.); } qMatrix/=std::sqrt(2.); invqMatrix/=std::sqrt(2); nMatrix=eigenVecM*qMatrix; invnMatrix= invqMatrix* invEigenVecM; rMatrix= invnMatrix * cM * nMatrix; return rMatrix; } void MapAnalyser::printPhaseShift_m(fMatrix_t& Sigma, fMatrix_t tM, cfMatrix_t& oldN){ cfMatrix_t N1, cinvN, cR, ctM, N2; fMatrix_t R1, S, sigmaS; for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ ctM[i][j]=std::complex(tM[i][j],0); } } S = createSkewMatrix_m(); sigmaS = Sigma*S; setNMatrix_m(sigmaS, N2, cinvN); std::array phi; for (int i = 0; i < 3; i++){ phi[i] = std::atan(oldN[2*i+1][i].real()/oldN[2*i][2*i].real()); } R1=createRotMatrix_m(phi); for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ cR[i][j]=std::complex(R1[i][j],0); N1[i][j]=oldN[i][j].real(); } } } void MapAnalyser::setNMatrix_m(fMatrix_t& M, cfMatrix_t& N, cfMatrix_t& invN){ cfMatrix_t eigenValM, eigenVecM, invEigenVecM, eigenVecMT; eigenDecomp_m(M, eigenValM, eigenVecM, invEigenVecM); cfMatrix_t cM, qMatrix, invqMatrix, nMatrix, invnMatrix, rMatrix; //std::ofstream tmap; //tmap.open ("TransferMap.txt",std::ios::app); //tmap << std::setprecision(16); for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ cM[i][j]=std::complex(M[i][j],0); } } for (int i=0; i <6 ; i=i+2){ qMatrix[0+i][0+i]=std::complex(1.,0); qMatrix[0+i][1+i]=std::complex(0,1.); qMatrix[1+i][0+i]=std::complex(1.,0); qMatrix[1+i][1+i]=std::complex(0,-1); invqMatrix[0+i][0+i]=std::complex(1.,0); invqMatrix[0+i][1+i]=std::complex(1.,0); invqMatrix[1+i][0+i]=std::complex(0.,-1.); invqMatrix[1+i][1+i]=std::complex(0,1.); } qMatrix/=std::sqrt(2.); invqMatrix/=std::sqrt(2); N=eigenVecM*qMatrix; invN= invqMatrix* invEigenVecM; } MapAnalyser::fMatrix_t MapAnalyser::createRotMatrix_m(std::array phi){ fMatrix_t R; for (int i = 0; i < 3; i++){ R[2*i][2*i] = std::cos(phi[1]); R[2*i+1][2*i+1] = R[2*i][2*i]; R[2*i][2*i+1] = std::sin(phi[1]); R[2*i+1][2*i] = -R[2*i][2*i+1]; } return R; } MapAnalyser::fMatrix_t MapAnalyser::createSkewMatrix_m(){ fMatrix_t S; for (int i = 0; i < 3; i++){ S[2*i][2*i+1] = 1; S[2*i+1][2*i] = -1; } return S; } MapAnalyser::fMatrix_t MapAnalyser::realPartOfMatrix_m(cfMatrix_t cM){ fMatrix_t M; for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ M[i][j]=cM[i][j].real(); } } return M; } MapAnalyser::fMatrix_t MapAnalyser::imagPartOfMatrix_m(cfMatrix_t cM){ fMatrix_t M; for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ M[i][j]=cM[i][j].imag(); } } return M; } MapAnalyser::cfMatrix_t MapAnalyser::complexTypeMatrix_m(fMatrix_t M){ cfMatrix_t cM; for (int i=0; i<6; i++){ for (int j =0; j<6; j++){ cM[i][j]=std::complex(M[i][j],0); } } return cM; } MapAnalyser::cfMatrix_t MapAnalyser::invertMatrix_m(const cfMatrix_t& M){ gsl_set_error_handler_off(); //gsl_vector_complex *m = gsl_vector_complex_alloc(6); gsl_matrix_complex *m = gsl_matrix_complex_alloc(6, 6); gsl_matrix_complex *invm = gsl_matrix_complex_alloc(6, 6); gsl_permutation * p = gsl_permutation_alloc(6); gsl_complex temp; int s; //Create invEigenVecMatrix for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { GSL_SET_COMPLEX(&temp,std::real(M[i][j]),std::imag(M[i][j])); gsl_matrix_complex_set( m, i, j, temp); } } //invert Eigenvectormatrix int eigenDecompStatus = gsl_linalg_complex_LU_decomp(m, p, &s); if (eigenDecompStatus != 0){ std::cout<< "This actually works" << std::endl; //gsl_set_error_handler (NULL); } int invertStatus = gsl_linalg_complex_LU_invert(m, p, invm); if ( invertStatus ) { std::cout << "Error" << std::endl; std::exit(1); } if (invertStatus != 0){ std::cout<< "This actually works" << std::endl; //gsl_set_error_handler (NULL); } cfMatrix_t invM; //Create invEigenVecMatrix for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { invM[i][j] = std::complex( GSL_REAL(gsl_matrix_complex_get(invm, i, j)), GSL_IMAG(gsl_matrix_complex_get(invm, i, j))); } } //free space gsl_matrix_complex_free(m); gsl_matrix_complex_free(invm); gsl_permutation_free(p); return invM; } #if 0 //TODO Work in progress void MapAnalyser::rearrangeEigen_m(cfMatrix_t& eigenVal, cfMatrix_t& EigenVec){ #ifdef PHIL_WRITE std::ofstream out; out.open("OUT.txt", std::ios::app); #endif double precision = 1e-9; int pair = 0; std::complex mult; std::pair pairs[3]; cfMatrix_t eigVa, eigVe, temp; out << "+++++++++++++++++++++++++++++++" << std::endl; //out << EigenVec << std::endl; for (int i = 0; pair < 3 && i <2*DIM; i++){ for (int j = 0; pair < 3 && j < i; j++){ mult=0; if (true){//std::abs(EigenVal[i][i].real() - EigenVal[j][j].real()) < precision //&& std::abs(EigenVal[i][i].imag() + EigenVal[j][j].imag() ) < precision ){ out << eigenVal[i][i] << " " << eigenVal[j][j] << std::endl; out << "/////////////Calc///////////" << std::endl; for (int k = 0; k (i,j); out << i << " " << j << std::endl; pair++; } } } } } #endif