/**
* @file SigmaGenerator.h
* The SigmaGenerator class uses the class ClosedOrbitFinder to get the parameters (inverse bending radius, path length
* field index and tunes) to initialize the sigma matrix.
* The main function of this class is match(value_type, size_type), where it iteratively tries to find a matched distribution for given
* emittances, energy and current. The computation stops when the L2-norm is smaller than a user-defined tolerance. \n
* In default mode it prints all space charge maps, cyclotron maps and second moment matrices. The orbit properties, i.e.
* tunes, average radius, orbit radius, inverse bending radius, path length, field index and frequency error, are printed
* as well.
*
* @author Matthias Frey, Cristopher Cortes
* @version 1.1
*/
#ifndef SIGMAGENERATOR_H
#define SIGMAGENERATOR_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Physics/Physics.h"
#include "Utilities/Options.h"
#include "Utilities/Options.h"
#include "Utilities/OpalException.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if BOOST_VERSION >= 106000
#include
#endif
#include "matrix_vector_operation.h"
#include "ClosedOrbitFinder.h"
#include "MapGenerator.h"
#include "Harmonics.h"
extern Inform *gmsg;
/// @brief This class computes the matched distribution
template
class SigmaGenerator
{
public:
/// Type of variables
typedef Value_type value_type;
/// Type of constant variables
typedef const value_type const_value_type;
/// Type for specifying sizes
typedef Size_type size_type;
/// Type for storing maps
typedef boost::numeric::ublas::matrix matrix_type;
typedef std::complex complex_t;
/// Type for storing complex matrices
typedef boost::numeric::ublas::matrix cmatrix_type;
/// Type for storing the sparse maps
typedef boost::numeric::ublas::compressed_matrix sparse_matrix_type;
/// Type for storing vectors
typedef boost::numeric::ublas::vector vector_type;
/// Container for storing the properties for each angle
typedef std::vector container_type;
/// Type of the truncated powere series
typedef FTps Series;
/// Type of a map
typedef FVps Map;
/// Type of the Hamiltonian for the cyclotron
typedef std::function Hamiltonian;
/// Type of the Hamiltonian for the space charge
typedef std::function SpaceCharge;
/// Constructs an object of type SigmaGenerator
/*!
* @param I specifies the current for which a matched distribution should be found, \f$ [I] = A \f$
* @param ex is the emittance in x-direction (horizontal), \f$ \left[\varepsilon_{x}\right] = \pi\ mm\ mrad \f$
* @param ey is the emittance in y-direction (longitudinal), \f$ \left[\varepsilon_{y}\right] = \pi\ mm\ mrad \f$
* @param ez is the emittance in z-direction (vertical), \f$ \left[\varepsilon_{z}\right] = \pi\ mm\ mrad \f$
* @param E is the energy, \f$ \left[E\right] = MeV \f$
* @param m is the mass of the particles \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$
* @param cycl is the cyclotron element
* @param N is the number of integration steps (closed orbit computation). That's why its also the number
* of maps (for each integration step a map)
* @param Nsectors is the number of sectors that the field map is averaged over (closed orbit computation)
* @param truncOrder is the truncation order for power series of the Hamiltonian
* @param write is a boolean (default: true). If true all maps of all iterations are stored, otherwise not.
*/
SigmaGenerator(value_type I, value_type ex, value_type ey, value_type ez,
value_type E, value_type m, const Cyclotron* cycl,
size_type N, size_type Nsectors, size_type truncOrder, bool write = true);
/// Searches for a matched distribution.
/*!
* Returns "true" if a matched distribution within the accuracy could be found, returns "false" otherwise.
* @param accuracy is used for computing the equilibrium orbit (to a certain accuracy)
* @param maxit is the maximum number of iterations (the program stops if within this value no stationary
* distribution was found)
* @param maxitOrbit is the maximum number of iterations for finding closed orbit
* @param angle defines the start of the sector (one can choose any angle between 0° and 360°)
* @param denergy energy step size for closed orbit finder [MeV]
* @param rguess value of radius for closed orbit finder
* @param type specifies the magnetic field format (e.g. CARBONCYCL)
* @param harmonic is a boolean. If "true" the harmonics are used instead of the closed orbit finder.
* @param full match over full turn not just single sector
*/
bool match(value_type accuracy, size_type maxit, size_type maxitOrbit,
Cyclotron* cycl, value_type denergy, value_type rguess, bool harmonic, bool full);
/*!
* Eigenvalue / eigenvector solver
* @param Mturn is a 6x6 dimensional one turn transfer matrix
* @param R is the 6x6 dimensional transformation matrix (gets computed)
*/
void eigsolve_m(const matrix_type& Mturn, sparse_matrix_type& R);
/*!
* @param R is the 6x6 dimensional transformation matrix
* @param invR is the 6x6 dimensional inverse transformation (gets computed)
* @return true if success
*/
bool invertMatrix_m(const sparse_matrix_type& R,
sparse_matrix_type& invR);
/// Block diagonalizes the symplex part of the one turn transfer matrix
/*! It computes the transformation matrix R and its inverse invR.
*
* @param Mturn is a 6x6 dimensional one turn transfer matrix
* @param R is the 6x6 dimensional transformation matrix (gets computed)
* @param invR is the 6x6 dimensional inverse transformation (gets computed)
*/
void decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR);
/// Checks if the sigma-matrix is an eigenellipse and returns the L2 error.
/*!
* The idea of this function is taken from Dr. Christian Baumgarten's program.
* @param Mturn is the one turn transfer matrix
* @param sigma is the sigma matrix to be tested
*/
value_type isEigenEllipse(const matrix_type& Mturn, const matrix_type& sigma);
/// Returns the converged stationary distribution
matrix_type& getSigma();
/// Returns the number of iterations needed for convergence (if not converged, it returns zero)
size_type getIterations() const;
/// Returns the error (if the program didn't converged, one can call this function to check the error)
value_type getError() const;
/// Returns the emittances (ex,ey,ez) in \f$ \pi\ mm\ mrad \f$ for which the code converged (since the whole simulation is done on normalized emittances)
std::array getEmittances() const;
const double& getInjectionRadius() const {
return rinit_m;
}
const double& getInjectionMomentum() const {
return prinit_m;
}
private:
/// Stores the value of the current, \f$ \left[I\right] = A \f$
value_type I_m;
/// Stores the desired emittances, \f$ \left[\varepsilon_{x}\right] = \left[\varepsilon_{y}\right] = \left[\varepsilon_{z}\right] = mm \ mrad \f$
std::array emittance_m;
/// Is the orbital frequency, \f$ \left[\omega_{o}\right] = \frac{1}{s} \f$
value_type wo_m;
/// Stores the user-define energy, \f$ \left[E\right] = MeV \f$
value_type E_m;
/// Relativistic factor (which can be computed out ot the kinetic energy and rest mass (potential energy)), \f$ \left[\gamma\right] = 1 \f$
value_type gamma_m;
/// Relativistic factor squared
value_type gamma2_m;
/// Harmonic number, \f$ \left[N_{h}\right] = 1 \f$
value_type nh_m;
/// Velocity (c/v), \f$ \left[\beta\right] = 1 \f$
value_type beta_m;
/// Is the mass of the particles, \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$
value_type m_m;
/// Is the number of iterations needed for convergence
size_type niterations_m;
/// Is true if converged, false otherwise
bool converged_m;
/// Minimum energy needed in cyclotron, \f$ \left[E_{min}\right] = MeV \f$
value_type Emin_m;
/// Maximum energy reached in cyclotron, \f$ \left[E_{max}\right] = MeV \f$
value_type Emax_m;
/// Number of integration steps for closed orbit computation
size_type N_m;
/// Number of (symmetric) sectors the field is averaged over
size_type nSectors_m;
/// Number of integration steps per sector (--> also: number of maps per sector)
size_type nStepsPerSector_m;
/// Number of integration steps in total
size_type nSteps_m;
/// Error of computation
value_type error_m;
/// Truncation order of the power series for the Hamiltonian (cyclotron and space charge)
size_type truncOrder_m;
/// Decides for writing output (default: true)
bool write_m;
/// Stores the stationary distribution (sigma matrix)
matrix_type sigma_m;
/// Vector storing the second moment matrix for each angle
std::vector sigmas_m;
/// Stores the Hamiltonian of the cyclotron
Hamiltonian H_m;
/// Stores the Hamiltonian for the space charge
SpaceCharge Hsc_m;
/// All variables x, px, y, py, z, delta
Series x_m, px_m, y_m, py_m, z_m, delta_m;
double rinit_m;
double prinit_m;
/*! Initializes a first guess of the sigma matrix with the assumption of
* a spherical symmetric beam (ex = ey = ez). For each angle split the
* same initial guess is taken.
*
* @param nuz is the vertical tune
* @param ravg is the average radius of the closed orbit
*/
void initialize(value_type, value_type);
/// Computes the new initial sigma matrix
/*!
* @param M is the 6x6 one turn transfer matrix
* @param R is the transformation matrix
* @param invR is the inverse transformation matrix
*/
matrix_type updateInitialSigma(const matrix_type&,
sparse_matrix_type&,
sparse_matrix_type&);
/// Computes new sigma matrices (one for each angle)
/*!
* Mscs is a vector of all space charge maps
* Mcycs is a vector of all cyclotron maps
*/
void updateSigma(const std::vector&,
const std::vector&);
/// Returns the L2-error norm between the old and new sigma-matrix
/*!
* @param oldS is the old sigma matrix
* @param newS is the new sigma matrix
*/
value_type L2ErrorNorm(const matrix_type&, const matrix_type&);
/// Returns the Lp-error norm between the old and new sigma-matrix
/*!
* @param oldS is the old sigma matrix
* @param newS is the new sigma matrix
*/
value_type L1ErrorNorm(const matrix_type&, const matrix_type&);
/// Transforms a floating point value to a string
/*!
* @param val is the floating point value which is transformed to a string
*/
std::string float2string(value_type val);
/// Called within SigmaGenerator::match().
/*!
* @param tunes
* @param ravg is the average radius [m]
* @param r_turn is the radius [m]
* @param peo is the momentum
* @param h_turn is the inverse bending radius
* @param fidx_turn is the field index
* @param ds_turn is the path length element
*/
void writeOrbitOutput_m(const std::pair& tunes,
const value_type& ravg,
const value_type& freqError,
const container_type& r_turn,
const container_type& peo,
const container_type& h_turn,
const container_type& fidx_turn,
const container_type& ds_turn);
};
// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------
template
SigmaGenerator::SigmaGenerator(value_type I,
value_type ex,
value_type ey,
value_type ez,
value_type E,
value_type m,
const Cyclotron* cycl,
size_type N,
size_type Nsectors,
size_type truncOrder,
bool write)
: I_m(I)
, wo_m(cycl->getRfFrequ(0)*1E6/cycl->getCyclHarm()*2.0*Physics::pi)
, E_m(E)
, gamma_m(E/m+1.0)
, gamma2_m(gamma_m*gamma_m)
, nh_m(cycl->getCyclHarm())
, beta_m(std::sqrt(1.0-1.0/gamma2_m))
, m_m(m)
, niterations_m(0)
, converged_m(false)
, Emin_m(cycl->getFMLowE())
, Emax_m(cycl->getFMHighE())
, N_m(N)
, nSectors_m(Nsectors)
, nStepsPerSector_m(N/cycl->getSymmetry())
, nSteps_m(N)
, error_m(std::numeric_limits::max())
, truncOrder_m(truncOrder)
, write_m(write)
, sigmas_m(nStepsPerSector_m)
, rinit_m(0.0)
, prinit_m(0.0)
{
// set emittances (initialization like that due to old compiler version)
// [ex] = [ey] = [ez] = pi*mm*mrad --> [emittance] = mm mrad
emittance_m[0] = ex * Physics::pi;
emittance_m[1] = ey * Physics::pi;
emittance_m[2] = ez * Physics::pi;
// minimum beta*gamma
value_type minGamma = Emin_m / m_m + 1.0;
value_type bgam = std::sqrt(minGamma * minGamma - 1.0);
// normalized emittance (--> multiply with beta*gamma)
// [emittance] = mm mrad
emittance_m[0] *= bgam;
emittance_m[1] *= bgam;
emittance_m[2] *= bgam;
// Define the Hamiltonian
Series::setGlobalTruncOrder(truncOrder_m);
// infinitesimal elements
x_m = Series::makeVariable(0);
px_m = Series::makeVariable(1);
y_m = Series::makeVariable(2);
py_m = Series::makeVariable(3);
z_m = Series::makeVariable(4);
delta_m = Series::makeVariable(5);
H_m = [&](value_type h, value_type kx, value_type ky) {
return 0.5*px_m*px_m + 0.5*kx*x_m*x_m - h*x_m*delta_m +
0.5*py_m*py_m + 0.5*ky*y_m*y_m +
0.5*delta_m*delta_m/gamma2_m;
};
Hsc_m = [&](value_type sigx, value_type sigy, value_type sigz) {
// convert m from MeV/c^2 to eV*s^{2}/m^{2}
value_type m = m_m * 1.0e6 / (Physics::c * Physics::c);
// formula (57)
value_type lam = 2.0 * Physics::pi*Physics::c / (wo_m * nh_m); // wavelength, [lam] = m
value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m *
Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma_m * gamma2_m); // [K3] = m
value_type milli = 1.0e-3;
// formula (30), (31)
// [sigma(0,0)] = mm^{2} --> [sx] = [sy] = [sz] = mm
// multiply with 0.001 to get meter --> [sx] = [sy] = [sz] = m
value_type sx = std::sqrt(std::fabs(sigx)) * milli;
value_type sy = std::sqrt(std::fabs(sigy)) * milli;
value_type sz = std::sqrt(std::fabs(sigz)) * milli;
value_type tmp = sx * sy; // [tmp] = m^{2}
value_type f = std::sqrt(tmp) / (3.0 * gamma_m * sz); // [f] = 1
value_type kxy = K3 * std::fabs(1.0 - f) / ((sx + sy) * sz); // [kxy] = 1/m
value_type Kx = kxy / sx;
value_type Ky = kxy / sy;
value_type Kz = K3 * f / (tmp * sz);
return -0.5 * Kx * x_m * x_m
-0.5 * Ky * y_m * y_m
-0.5 * Kz * z_m * z_m * gamma2_m;
};
}
template
bool SigmaGenerator::match(value_type accuracy,
size_type maxit,
size_type maxitOrbit,
Cyclotron* cycl,
value_type denergy,
value_type rguess,
bool harmonic, bool full)
{
/* compute the equilibrium orbit for energy E_
* and get the the following properties:
* - inverse bending radius h
* - step sizes of path ds
* - tune nuz
*/
try {
if ( !full )
nSteps_m = nStepsPerSector_m;
// object for space charge map and cyclotron map
MapGenerator mapgen(nSteps_m);
// compute cyclotron map and space charge map for each angle and store them into a vector
std::vector Mcycs(nSteps_m), Mscs(nSteps_m);
container_type h(nSteps_m), r(nSteps_m), ds(nSteps_m), fidx(nSteps_m);
value_type ravg = 0.0, const_ds = 0.0;
std::pair tunes;
if (!harmonic) {
ClosedOrbitFinder > cof(m_m, N_m, cycl, false, nSectors_m);
if ( !cof.findOrbit(accuracy, maxitOrbit, E_m, denergy, rguess) ) {
throw OpalException("SigmaGenerator::match()",
"Closed orbit finder didn't converge.");
}
cof.computeOrbitProperties(E_m);
// properties of one turn
tunes = cof.getTunes();
ravg = cof.getAverageRadius(); // average radius
value_type angle = cycl->getPHIinit();
container_type h_turn = cof.getInverseBendingRadius(angle);
container_type r_turn = cof.getOrbit(angle);
container_type ds_turn = cof.getPathLength(angle);
container_type fidx_turn = cof.getFieldIndex(angle);
container_type peo = cof.getMomentum(angle);
// write properties to file
if (write_m)
writeOrbitOutput_m(tunes, ravg, cof.getFrequencyError(),
r_turn, peo, h_turn, fidx_turn, ds_turn);
// write to terminal
*gmsg << "* ----------------------------" << endl
<< "* Closed orbit info:" << endl
<< "*" << endl
<< "* average radius: " << ravg << " [m]" << endl
<< "* initial radius: " << r_turn[0] << " [m]" << endl
<< "* initial momentum: " << peo[0] << " [Beta Gamma]" << endl
<< "* frequency error: " << cof.getFrequencyError()*100 <<" [ % ] "<< endl
<< "* horizontal tune: " << tunes.first << endl
<< "* vertical tune: " << tunes.second << endl
<< "* ----------------------------" << endl << endl;
// copy properties
std::copy_n(r_turn.begin(), nSteps_m, r.begin());
std::copy_n(h_turn.begin(), nSteps_m, h.begin());
std::copy_n(fidx_turn.begin(), nSteps_m, fidx.begin());
std::copy_n(ds_turn.begin(), nSteps_m, ds.begin());
rinit_m = r[0];
prinit_m = peo[0];
} else {
*gmsg << "Not yet supported." << endl;
return false;
}
// initialize sigma matrices (for each angle one) (first guess)
initialize(tunes.second,ravg);
// for writing
std::ofstream writeMturn, writeMcyc, writeMsc;
if (write_m) {
std::string energy = float2string(E_m);
writeMturn.open("data/OneTurnMapForEnergy"+energy+"MeV.dat",std::ios::app);
writeMsc.open("data/SpaceChargeMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app);
writeMcyc.open("data/CyclotronMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app);
writeMturn << "--------------------------------" << std::endl;
writeMturn << "Iteration: 0 " << std::endl;
writeMturn << "--------------------------------" << std::endl;
writeMsc << "--------------------------------" << std::endl;
writeMsc << "Iteration: 0 " << std::endl;
writeMsc << "--------------------------------" << std::endl;
}
// calculate only for a single sector (a nSector_-th) of the whole cyclotron
for (size_type i = 0; i < nSteps_m; ++i) {
if (!harmonic) {
Mcycs[i] = mapgen.generateMap(H_m(h[i],
h[i]*h[i]+fidx[i],
-fidx[i]),
ds[i],truncOrder_m);
Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),
sigmas_m[i](2,2),
sigmas_m[i](4,4)),
ds[i],truncOrder_m);
} else {
Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),
sigmas_m[i](2,2),
sigmas_m[i](4,4)),
const_ds,truncOrder_m);
}
if (write_m) {
writeMcyc << Mcycs[i] << std::endl;
writeMsc << Mscs[i] << std::endl;
}
}
// one turn matrix
mapgen.combine(Mscs,Mcycs);
matrix_type Mturn = mapgen.getMap();
if (write_m)
writeMturn << Mturn << std::endl;
// (inverse) transformation matrix
sparse_matrix_type R(6, 6), invR(6, 6);
// new initial sigma matrix
matrix_type newSigma(6,6);
// for exiting loop
bool stop = false;
value_type weight = 0.5;
while (error_m > accuracy && !stop) {
// decouple transfer matrix and compute (inverse) tranformation matrix
decouple(Mturn,R,invR);
// construct new initial sigma-matrix
newSigma = updateInitialSigma(Mturn, R, invR);
// compute new sigma matrices for all angles (except for initial sigma)
updateSigma(Mscs,Mcycs);
// compute error
error_m = L2ErrorNorm(sigmas_m[0],newSigma);
// write new initial sigma-matrix into vector
sigmas_m[0] = weight*newSigma + (1.0-weight)*sigmas_m[0];
if (write_m) {
writeMsc << "--------------------------------" << std::endl;
writeMsc << "Iteration: " << niterations_m + 1 << std::endl;
writeMsc << "--------------------------------" << std::endl;
}
// compute new space charge maps
for (size_type i = 0; i < nSteps_m; ++i) {
if (!harmonic) {
Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),
sigmas_m[i](2,2),
sigmas_m[i](4,4)),
ds[i],truncOrder_m);
} else {
Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),
sigmas_m[i](2,2),
sigmas_m[i](4,4)),
const_ds,truncOrder_m);
}
if (write_m)
writeMsc << Mscs[i] << std::endl;
}
// construct new one turn transfer matrix M
mapgen.combine(Mscs,Mcycs);
Mturn = mapgen.getMap();
if (write_m) {
writeMturn << "--------------------------------" << std::endl;
writeMturn << "Iteration: " << niterations_m + 1 << std::endl;
writeMturn << "--------------------------------" << std::endl;
writeMturn << Mturn << std::endl;
}
// check if number of iterations has maxit exceeded.
stop = (niterations_m++ > maxit);
}
// store converged sigma-matrix
sigma_m.resize(6,6,false);
sigma_m.swap(newSigma);
// returns if the sigma matrix has converged
converged_m = error_m < accuracy;
// Close files
if (write_m) {
writeMturn.close();
writeMsc.close();
writeMcyc.close();
}
} catch(const std::exception& e) {
std::cerr << e.what() << std::endl;
}
if ( converged_m && write_m ) {
// write tunes
std::ofstream writeSigmaMatched("data/MatchedDistributions.dat", std::ios::app);
std::array emit = this->getEmittances();
writeSigmaMatched << "* Converged (Ex, Ey, Ez) = (" << emit[0]
<< ", " << emit[1] << ", " << emit[2]
<< ") pi mm mrad for E= " << E_m << " (MeV)"
<< std::endl << "* Sigma-Matrix " << std::endl;
for(unsigned int i = 0; i < sigma_m.size1(); ++ i) {
writeSigmaMatched << std::setprecision(4) << std::setw(11)
<< sigma_m(i,0);
for(unsigned int j = 1; j < sigma_m.size2(); ++ j) {
writeSigmaMatched << " & " << std::setprecision(4)
<< std::setw(11) << sigma_m(i,j);
}
writeSigmaMatched << " \\\\" << std::endl;
}
writeSigmaMatched << std::endl;
writeSigmaMatched.close();
}
return converged_m;
}
template
void SigmaGenerator::eigsolve_m(const matrix_type& Mturn,
sparse_matrix_type& R)
{
typedef gsl_matrix* gsl_matrix_t;
typedef gsl_vector_complex* gsl_cvector_t;
typedef gsl_matrix_complex* gsl_cmatrix_t;
typedef gsl_eigen_nonsymmv_workspace* gsl_wspace_t;
typedef boost::numeric::ublas::vector complex_vector_type;
gsl_cvector_t evals = gsl_vector_complex_alloc(6);
gsl_cmatrix_t evecs = gsl_matrix_complex_alloc(6, 6);
gsl_wspace_t wspace = gsl_eigen_nonsymmv_alloc(6);
gsl_matrix_t M = gsl_matrix_alloc(6, 6);
// go to GSL
for (size_type i = 0; i < 6; ++i){
for (size_type j = 0; j < 6; ++j) {
gsl_matrix_set(M, i, j, Mturn(i,j));
}
}
/*int status = */gsl_eigen_nonsymmv(M, evals, evecs, wspace);
// if ( !status )
// throw OpalException("SigmaGenerator::eigsolve_m()",
// "Couldn't perform eigendecomposition!");
/*status = *///gsl_eigen_nonsymmv_sort(evals, evecs, GSL_EIGEN_SORT_ABS_ASC);
// if ( !status )
// throw OpalException("SigmaGenerator::eigsolve_m()",
// "Couldn't sort eigenvalues and eigenvectors!");
// go to UBLAS
for( size_type i = 0; i < 6; i++){
gsl_vector_complex_view evec_i = gsl_matrix_complex_column(evecs, i);
for(size_type j = 0;j < 6; j++){
gsl_complex zgsl = gsl_vector_complex_get(&evec_i.vector, j);
complex_t z(GSL_REAL(zgsl), GSL_IMAG(zgsl));
R(i,j) = z;
}
}
// Sorting the Eigenvectors
// This is an arbitrary threshold that has worked for me. (We should fix this)
value_type threshold = 10e-12;
bool isZdirection = false;
std::vector zVectors{};
std::vector xyVectors{};
for(size_type i = 0; i < 6; i++){
complex_t z = R(i,0);
if(std::abs(z) < threshold) z = 0.;
if(z == 0.) isZdirection = true;
complex_vector_type v(6);
if(isZdirection){
for(size_type j = 0;j < 6; j++){
complex_t z = R(i,j);
v(j) = z;
}
zVectors.push_back(v);
}
else{
for(size_type j = 0; j < 6; j++){
complex_t z = R(i,j);
v(j) = z;
}
xyVectors.push_back(v);
}
isZdirection = false;
}
//if z-direction not found, then the system does not behave as expected
if(zVectors.size() != 2)
throw OpalException("SigmaGenerator::eigsolve_m()",
"Couldn't find the vertical Eigenvectors.");
// Norms the Eigenvectors
for(size_type i = 0; i < 4; i++){
value_type norm{0};
for(size_type j = 0; j < 6; j++) norm += std::norm(xyVectors[i](j));
for(size_type j = 0; j < 6; j++) xyVectors[i](j) /= std::sqrt(norm);
}
for(size_type i = 0; i < 2; i++){
value_type norm{0};
for(size_type j = 0; j < 6; j++) norm += std::norm(zVectors[i](j));
for(size_type j = 0; j < 6; j++) zVectors[i](j) /= std::sqrt(norm);
}
for(value_type i = 0; i < 6; i++){
R(i,0) = xyVectors[0](i);
R(i,1) = xyVectors[1](i);
R(i,2) = zVectors[0](i);
R(i,3) = zVectors[1](i);
R(i,4) = xyVectors[2](i);
R(i,5) = xyVectors[3](i);
}
gsl_vector_complex_free(evals);
gsl_matrix_complex_free(evecs);
gsl_eigen_nonsymmv_free(wspace);
gsl_matrix_free(M);
}
template
bool SigmaGenerator::invertMatrix_m(const sparse_matrix_type& R,
sparse_matrix_type& invR)
{
typedef boost::numeric::ublas::permutation_matrix pmatrix_t;
//creates a working copy of R
cmatrix_type A(R);
//permutation matrix for the LU-factorization
pmatrix_t pm(A.size1());
//LU-factorization
int res = lu_factorize(A,pm);
if( res != 0)
return false;
// create identity matrix of invR
invR.assign(boost::numeric::ublas::identity_matrix(A.size1()));
// backsubstitute to get the inverse
boost::numeric::ublas::lu_substitute(A, pm, invR);
return true;
}
template
void SigmaGenerator::decouple(const matrix_type& Mturn,
sparse_matrix_type& R,
sparse_matrix_type& invR)
{
this->eigsolve_m(Mturn, R);
if ( !this->invertMatrix_m(R, invR) )
throw OpalException("SigmaGenerator::decouple()",
"Couldn't compute inverse matrix!");
}
template
typename SigmaGenerator::value_type
SigmaGenerator::isEigenEllipse(const matrix_type& Mturn,
const matrix_type& sigma)
{
// compute sigma matrix after one turn
matrix_type newSigma = matt_boost::gemmm(Mturn,
sigma,
boost::numeric::ublas::trans(Mturn));
// return L2 error
return L2ErrorNorm(sigma,newSigma);
}
template
inline typename SigmaGenerator::matrix_type&
SigmaGenerator::getSigma()
{
return sigma_m;
}
template
inline typename SigmaGenerator::size_type
SigmaGenerator::getIterations() const
{
return (converged_m) ? niterations_m : size_type(0);
}
template
inline typename SigmaGenerator::value_type
SigmaGenerator::getError() const
{
return error_m;
}
template
inline std::array
SigmaGenerator::getEmittances() const
{
value_type bgam = gamma_m*beta_m;
return std::array{{
emittance_m[0]/Physics::pi/bgam,
emittance_m[1]/Physics::pi/bgam,
emittance_m[2]/Physics::pi/bgam
}};
}
// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------
template
void SigmaGenerator::initialize(value_type nuz,
value_type ravg)
{
/*
* The initialization is based on the analytical solution of
* using a spherical symmetric beam in the paper:
* Transverse-longitudinal coupling by space charge in cyclotrons
* by Dr. Christian Baumgarten
* (formulas: (46), (56), (57))
*/
/* Units:
* ----------------------------------------------
* [wo] = 1/s
* [nh] = 1
* [q0] = e
* [I] = A
* [eps0] = (A*s)^{2}/(N*m^{2})
* [E0] = MeV/(c^{2}) (with speed of light c)
* [beta] = 1
* [gamma] = 1
* [m] = kg
*
* [lam] = m
* [K3] = m
* [alpha] = 10^{3}/(pi*mrad)
* ----------------------------------------------
*/
// helper constants
value_type invbg = 1.0 / (beta_m * gamma_m);
value_type micro = 1.0e-6;
value_type mega = 1.0e6;
//value_type kilo = 1.0e3;
// convert mass m_m from MeV/c^2 to eV*s^{2}/m^{2}
value_type m = m_m * mega/(Physics::c * Physics::c); // [m] = eV*s^{2}/m^{2}, [m_m] = MeV/c^2
/* Emittance [ex] = [ey] = [ez] = mm mrad (emittance_m are normalized emittances
* (i.e. emittance multiplied with beta*gamma)
*/
value_type ex = emittance_m[0] * invbg; // [ex] = mm mrad
value_type ey = emittance_m[1] * invbg; // [ey] = mm mrad
value_type ez = emittance_m[2] * invbg; // [ez] = mm mrad
// convert normalized emittances: mm mrad --> m rad (mm mrad: millimeter milliradian)
ex *= micro;
ey *= micro;
ez *= micro;
// initial guess of emittance, [e] = m rad
value_type e = std::cbrt(ex * ey * ez); // cbrt computes cubic root (C++11)
// cyclotron radius [rcyc] = m
value_type rcyc = ravg / beta_m;
// "average" inverse bending radius
value_type h = 1.0 / ravg; // [h] = 1/m
// formula (57)
value_type lam = 2.0 * Physics::pi * Physics::c / (wo_m * nh_m); // wavelength, [lam] = m
value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m *
Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma2_m * gamma_m); // [K3] = m
value_type alpha = /* physics::q0 */ 1.0 * Physics::mu_0 * I_m / (5.0 * std::sqrt(10.0) * m * Physics::c *
gamma_m * nh_m) * std::sqrt(rcyc * rcyc * rcyc / (e * e * e)); // [alpha] = 1/rad --> [alpha] = 1
value_type sig0 = std::sqrt(2.0 * rcyc * e) / gamma_m; // [sig0] = m*sqrt(rad) --> [sig0] = m
// formula (56)
value_type sig; // [sig] = m
if (alpha >= 2.5) {
sig = sig0 * std::cbrt(1.0 + alpha); // cbrt computes cubic root (C++11)
} else if (alpha >= 0) {
sig = sig0 * (1 + alpha * (0.25 - 0.03125 * alpha));
} else {
throw OpalException("SigmaGenerator::initialize()",
"Negative alpha value: " + std::to_string(alpha) + " < 0");
}
// K = Kx = Ky = Kz
value_type K = K3 * gamma_m / (3.0 * sig * sig * sig); // formula (46), [K] = 1/m^{2}
value_type kx = h * h * gamma2_m; // formula (46) (assumption of an isochronous cyclotron), [kx] = 1/m^{2}
value_type a = 0.5 * kx - K; // formula (22) (with K = Kx = Kz), [a] = 1/m^{2}
value_type b = K * K; // formula (22) (with K = Kx = Kz and kx = h^2*gamma^2), [b] = 1/m^{4}
// b must be positive, otherwise no real-valued frequency
if (b < 0)
throw OpalException("SigmaGenerator::initialize()",
"Negative value --> No real-valued frequency.");
value_type tmp = a * a - b; // [tmp] = 1/m^{4}
if (tmp < 0)
throw OpalException("SigmaGenerator::initialize()",
"Square root of negative number.");
tmp = std::sqrt(tmp); // [tmp] = 1/m^{2}
if (a < tmp)
throw OpalException("Error in SigmaGenerator::initialize()",
"Square root of negative number.");
if (h * h * nuz * nuz <= K)
throw OpalException("SigmaGenerator::initialize()",
"h^{2} * nu_{z}^{2} <= K (i.e. square root of negative number)");
value_type Omega = std::sqrt(a + tmp); // formula (22), [Omega] = 1/m
value_type omega = std::sqrt(a - tmp); // formula (22), [omega] = 1/m
value_type A = h / (Omega * Omega + K); // formula (26), [A] = m
value_type B = h / (omega * omega + K); // formula (26), [B] = m
value_type invAB = 1.0 / (B - A); // [invAB] = 1/m
// construct initial sigma-matrix (formula (29, 30, 31)
// Remark: We multiply with 10^{6} (= mega) to convert emittances back.
// 1 m^{2} = 10^{6} mm^{2}
matrix_type sigma = boost::numeric::ublas::zero_matrix(6);
// formula (30), [sigma(0,0)] = m^2 rad * 10^{6} = mm^{2} rad = mm mrad
sigma(0,0) = invAB * (B * ex / Omega + A * ez / omega) * mega;
// [sigma(0,5)] = [sigma(5,0)] = m rad * 10^{6} = mm mrad // 1000: m --> mm and 1000 to promille
sigma(0,5) = sigma(5,0) = invAB * (ex / Omega + ez / omega) * mega;
// [sigma(1,1)] = rad * 10^{6} = mrad (and promille)
sigma(1,1) = invAB * (B * ex * Omega + A * ez * omega) * mega;
// [sigma(1,4)] = [sigma(4,1)] = m rad * 10^{6} = mm mrad
sigma(1,4) = sigma(4,1) = invAB * (ex * Omega+ez * omega) / (K * gamma2_m) * mega;
// formula (31), [sigma(2,2)] = m rad * 10^{6} = mm mrad
sigma(2,2) = ey / (std::sqrt(h * h * nuz * nuz - K)) * mega;
sigma(3,3) = (ey * mega) * (ey * mega) / sigma(2,2);
// [sigma(4,4)] = m^{2} rad * 10^{6} = mm^{2} rad = mm mrad
sigma(4,4) = invAB * (A * ex * Omega + B * ez * omega) / (K * gamma2_m) * mega;
// formula (30), [sigma(5,5)] = rad * 10^{6} = mrad (and promille)
sigma(5,5) = invAB * (ex / (B * Omega) + ez / (A * omega)) * mega;
// fill in initial guess of the sigma matrix (for each angle the same guess)
sigmas_m.resize(nSteps_m);
for (typename std::vector::iterator it = sigmas_m.begin(); it != sigmas_m.end(); ++it) {
*it = sigma;
}
if (write_m) {
std::string energy = float2string(E_m);
std::ofstream writeInit("data/maps/InitialSigmaPerAngleForEnergy" +
energy + "MeV.dat", std::ios::app);
writeInit << sigma << std::endl;
writeInit.close();
}
}
template
typename SigmaGenerator::matrix_type
SigmaGenerator::updateInitialSigma(const matrix_type& /*M*/,
sparse_matrix_type& R,
sparse_matrix_type& invR)
{
/*
* Function input:
* - M: one turn transfer matrix
* - R: transformation matrix (in paper: E)
* - invR: inverse transformation matrix (in paper: E^{-1}
*/
/* formula (18):
* sigma = -E*D*E^{-1}*S
* with diagonal matrix D (stores eigenvalues of sigma*S (emittances apart from +- i),
* skew-symmetric matrix (formula (13)), and tranformation matrices E, E^{-1}
*/
cmatrix_type S = boost::numeric::ublas::zero_matrix(6,6);
S(0,1) = S(2,3) = S(4,5) = 1;
S(1,0) = S(3,2) = S(5,4) = -1;
// Build new D-Matrix
// Section 2.4 Eq. 18 in M. Frey Semester thesis
// D = diag(i*emx,-i*emx,i*emy,-i*emy,i*emz, -i*emz)
cmatrix_type D = boost::numeric::ublas::zero_matrix(6,6);
value_type invbg = 1.0 / (beta_m * gamma_m);
complex_t im(0,1);
for(size_type i = 0; i < 3; ++i){
D(2*i, 2*i) = emittance_m[i] * invbg * im;
D(2*i+1, 2*i+1) = -emittance_m[i] * invbg * im;
}
// Computing of new Sigma
// sigma = -R*D*R^{-1}*S
cmatrix_type csigma(6, 6);
csigma = boost::numeric::ublas::prod(invR, S);
csigma = boost::numeric::ublas::prod(D, csigma);
csigma = boost::numeric::ublas::prod(-R, csigma);
matrix_type sigma(6,6);
for (size_type i = 0; i < 6; ++i){
for (size_type j = 0; j < 6; ++j){
sigma(i,j) = csigma(i,j).real();
}
}
for (size_type i = 0; i < 6; ++i) {
if(sigma(i,i) < 0.)
sigma(i,i) *= -1.0;
}
if (write_m) {
std::string energy = float2string(E_m);
std::ofstream writeSigma("data/maps/SigmaPerAngleForEnergy" +
energy + "MeV.dat", std::ios::app);
writeSigma << "--------------------------------" << std::endl;
writeSigma << "Iteration: " << niterations_m + 1 << std::endl;
writeSigma << "--------------------------------" << std::endl;
writeSigma << sigma << std::endl;
writeSigma.close();
}
return sigma;
}
template
void SigmaGenerator::updateSigma(const std::vector& Mscs,
const std::vector& Mcycs)
{
matrix_type M = boost::numeric::ublas::matrix(6,6);
std::ofstream writeSigma;
if (write_m) {
std::string energy = float2string(E_m);
writeSigma.open("data/maps/SigmaPerAngleForEnergy"+energy+"MeV.dat",std::ios::app);
}
// initial sigma is already computed
for (size_type i = 1; i < nSteps_m; ++i) {
// transfer matrix for one angle
M = boost::numeric::ublas::prod(Mscs[i - 1],Mcycs[i - 1]);
// transfer the matrix sigma
sigmas_m[i] = matt_boost::gemmm(M,sigmas_m[i - 1],
boost::numeric::ublas::trans(M));
if (write_m)
writeSigma << sigmas_m[i] << std::endl;
}
if (write_m) {
writeSigma << std::endl;
writeSigma.close();
}
}
template
typename SigmaGenerator::value_type
SigmaGenerator::L2ErrorNorm(const matrix_type& oldS,
const matrix_type& newS)
{
// compute difference
matrix_type diff = newS - oldS;
// sum squared error up and take square root
return std::sqrt(std::inner_product(diff.data().begin(),
diff.data().end(),
diff.data().begin(),
0.0));
}
template
typename SigmaGenerator::value_type
SigmaGenerator::L1ErrorNorm(const matrix_type& oldS,
const matrix_type& newS)
{
// compute difference
matrix_type diff = newS - oldS;
std::for_each(diff.data().begin(), diff.data().end(),
[](value_type& val) {
return std::abs(val);
});
// sum squared error up and take square root
return std::accumulate(diff.data().begin(), diff.data().end(), 0.0);
}
template
std::string SigmaGenerator::float2string(value_type val) {
std::ostringstream out;
out << std::setprecision(6) << val;
return out.str();
}
template
void SigmaGenerator::writeOrbitOutput_m(
const std::pair& tunes,
const value_type& ravg,
const value_type& freqError,
const container_type& r_turn,
const container_type& peo,
const container_type& h_turn,
const container_type& fidx_turn,
const container_type& ds_turn)
{
// write tunes
std::ofstream writeTunes("data/Tunes.dat", std::ios::app);
if(writeTunes.tellp() == 0) // if nothing yet written --> write description
writeTunes << "energy [MeV]" << std::setw(15)
<< "nur" << std::setw(25)
<< "nuz" << std::endl;
writeTunes << E_m << std::setw(30) << std::setprecision(10)
<< tunes.first << std::setw(25)
<< tunes.second << std::endl;
// write average radius
std::ofstream writeAvgRadius("data/AverageValues.dat", std::ios::app);
if (writeAvgRadius.tellp() == 0) // if nothing yet written --> write description
writeAvgRadius << "energy [MeV]" << std::setw(15)
<< "avg. radius [m]" << std::setw(15)
<< "r [m]" << std::setw(15)
<< "pr [m]" << std::endl;
writeAvgRadius << E_m << std::setw(25) << std::setprecision(10)
<< ravg << std::setw(25) << std::setprecision(10)
<< r_turn[0] << std::setw(25) << std::setprecision(10)
<< peo[0] << std::endl;
// write frequency error
std::ofstream writePhase("data/FrequencyError.dat",std::ios::app);
if(writePhase.tellp() == 0) // if nothing yet written --> write description
writePhase << "energy [MeV]" << std::setw(15)
<< "freq. error" << std::endl;
writePhase << E_m << std::setw(30) << std::setprecision(10)
<< freqError << std::endl;
// write other properties
std::string energy = float2string(E_m);
std::ofstream writeProperties("data/PropertiesForEnergy"+energy+"MeV.dat", std::ios::out);
writeProperties << std::left
<< std::setw(25) << "orbit radius"
<< std::setw(25) << "orbit momentum"
<< std::setw(25) << "inverse bending radius"
<< std::setw(25) << "field index"
<< std::setw(25) << "path length" << std::endl;
for (size_type i = 0; i < r_turn.size(); ++i) {
writeProperties << std::setprecision(10) << std::left
<< std::setw(25) << r_turn[i]
<< std::setw(25) << peo[i]
<< std::setw(25) << h_turn[i]
<< std::setw(25) << fidx_turn[i]
<< std::setw(25) << ds_turn[i] << std::endl;
}
// close all files within this if-statement
writeTunes.close();
writeAvgRadius.close();
writePhase.close();
writeProperties.close();
}
#endif