/** * @file SigmaGenerator.h * The SigmaGenerator class uses the class ClosedOrbitFinder to get the parameters (inverse bending radius, path length * field index and tunes) to initialize the sigma matrix. * The main function of this class is match(value_type, size_type), where it iteratively tries to find a matched distribution for given * emittances, energy and current. The computation stops when the L2-norm is smaller than a user-defined tolerance. \n * In default mode it prints all space charge maps, cyclotron maps and second moment matrices. The orbit properties, i.e. * tunes, average radius, orbit radius, inverse bending radius, path length, field index and frequency error, are printed * as well. * * @author Matthias Frey, Cristopher Cortes * @version 1.1 */ #ifndef SIGMAGENERATOR_H #define SIGMAGENERATOR_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Physics/Physics.h" #include "Utilities/Options.h" #include "Utilities/Options.h" #include "Utilities/OpalException.h" #include #include #include #include #include #include #include #include #include #include #include #if BOOST_VERSION >= 106000 #include #endif #include "matrix_vector_operation.h" #include "ClosedOrbitFinder.h" #include "MapGenerator.h" #include "Harmonics.h" extern Inform *gmsg; /// @brief This class computes the matched distribution template class SigmaGenerator { public: /// Type of variables typedef Value_type value_type; /// Type of constant variables typedef const value_type const_value_type; /// Type for specifying sizes typedef Size_type size_type; /// Type for storing maps typedef boost::numeric::ublas::matrix matrix_type; typedef std::complex complex_t; /// Type for storing complex matrices typedef boost::numeric::ublas::matrix cmatrix_type; /// Type for storing the sparse maps typedef boost::numeric::ublas::compressed_matrix sparse_matrix_type; /// Type for storing vectors typedef boost::numeric::ublas::vector vector_type; /// Container for storing the properties for each angle typedef std::vector container_type; /// Type of the truncated powere series typedef FTps Series; /// Type of a map typedef FVps Map; /// Type of the Hamiltonian for the cyclotron typedef std::function Hamiltonian; /// Type of the Hamiltonian for the space charge typedef std::function SpaceCharge; /// Constructs an object of type SigmaGenerator /*! * @param I specifies the current for which a matched distribution should be found, \f$ [I] = A \f$ * @param ex is the emittance in x-direction (horizontal), \f$ \left[\varepsilon_{x}\right] = \pi\ mm\ mrad \f$ * @param ey is the emittance in y-direction (longitudinal), \f$ \left[\varepsilon_{y}\right] = \pi\ mm\ mrad \f$ * @param ez is the emittance in z-direction (vertical), \f$ \left[\varepsilon_{z}\right] = \pi\ mm\ mrad \f$ * @param E is the energy, \f$ \left[E\right] = MeV \f$ * @param m is the mass of the particles \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$ * @param cycl is the cyclotron element * @param N is the number of integration steps (closed orbit computation). That's why its also the number * of maps (for each integration step a map) * @param Nsectors is the number of sectors that the field map is averaged over (closed orbit computation) * @param truncOrder is the truncation order for power series of the Hamiltonian * @param write is a boolean (default: true). If true all maps of all iterations are stored, otherwise not. */ SigmaGenerator(value_type I, value_type ex, value_type ey, value_type ez, value_type E, value_type m, const Cyclotron* cycl, size_type N, size_type Nsectors, size_type truncOrder, bool write = true); /// Searches for a matched distribution. /*! * Returns "true" if a matched distribution within the accuracy could be found, returns "false" otherwise. * @param accuracy is used for computing the equilibrium orbit (to a certain accuracy) * @param maxit is the maximum number of iterations (the program stops if within this value no stationary * distribution was found) * @param maxitOrbit is the maximum number of iterations for finding closed orbit * @param angle defines the start of the sector (one can choose any angle between 0° and 360°) * @param denergy energy step size for closed orbit finder [MeV] * @param rguess value of radius for closed orbit finder * @param type specifies the magnetic field format (e.g. CARBONCYCL) * @param harmonic is a boolean. If "true" the harmonics are used instead of the closed orbit finder. * @param full match over full turn not just single sector */ bool match(value_type accuracy, size_type maxit, size_type maxitOrbit, Cyclotron* cycl, value_type denergy, value_type rguess, bool harmonic, bool full); /*! * Eigenvalue / eigenvector solver * @param Mturn is a 6x6 dimensional one turn transfer matrix * @param R is the 6x6 dimensional transformation matrix (gets computed) */ void eigsolve_m(const matrix_type& Mturn, sparse_matrix_type& R); /*! * @param R is the 6x6 dimensional transformation matrix * @param invR is the 6x6 dimensional inverse transformation (gets computed) * @return true if success */ bool invertMatrix_m(const sparse_matrix_type& R, sparse_matrix_type& invR); /// Block diagonalizes the symplex part of the one turn transfer matrix /*! It computes the transformation matrix R and its inverse invR. * * @param Mturn is a 6x6 dimensional one turn transfer matrix * @param R is the 6x6 dimensional transformation matrix (gets computed) * @param invR is the 6x6 dimensional inverse transformation (gets computed) */ void decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR); /// Checks if the sigma-matrix is an eigenellipse and returns the L2 error. /*! * The idea of this function is taken from Dr. Christian Baumgarten's program. * @param Mturn is the one turn transfer matrix * @param sigma is the sigma matrix to be tested */ value_type isEigenEllipse(const matrix_type& Mturn, const matrix_type& sigma); /// Returns the converged stationary distribution matrix_type& getSigma(); /// Returns the number of iterations needed for convergence (if not converged, it returns zero) size_type getIterations() const; /// Returns the error (if the program didn't converged, one can call this function to check the error) value_type getError() const; /// Returns the emittances (ex,ey,ez) in \f$ \pi\ mm\ mrad \f$ for which the code converged (since the whole simulation is done on normalized emittances) std::array getEmittances() const; const double& getInjectionRadius() const { return rinit_m; } const double& getInjectionMomentum() const { return prinit_m; } private: /// Stores the value of the current, \f$ \left[I\right] = A \f$ value_type I_m; /// Stores the desired emittances, \f$ \left[\varepsilon_{x}\right] = \left[\varepsilon_{y}\right] = \left[\varepsilon_{z}\right] = mm \ mrad \f$ std::array emittance_m; /// Is the orbital frequency, \f$ \left[\omega_{o}\right] = \frac{1}{s} \f$ value_type wo_m; /// Stores the user-define energy, \f$ \left[E\right] = MeV \f$ value_type E_m; /// Relativistic factor (which can be computed out ot the kinetic energy and rest mass (potential energy)), \f$ \left[\gamma\right] = 1 \f$ value_type gamma_m; /// Relativistic factor squared value_type gamma2_m; /// Harmonic number, \f$ \left[N_{h}\right] = 1 \f$ value_type nh_m; /// Velocity (c/v), \f$ \left[\beta\right] = 1 \f$ value_type beta_m; /// Is the mass of the particles, \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$ value_type m_m; /// Is the number of iterations needed for convergence size_type niterations_m; /// Is true if converged, false otherwise bool converged_m; /// Minimum energy needed in cyclotron, \f$ \left[E_{min}\right] = MeV \f$ value_type Emin_m; /// Maximum energy reached in cyclotron, \f$ \left[E_{max}\right] = MeV \f$ value_type Emax_m; /// Number of integration steps for closed orbit computation size_type N_m; /// Number of (symmetric) sectors the field is averaged over size_type nSectors_m; /// Number of integration steps per sector (--> also: number of maps per sector) size_type nStepsPerSector_m; /// Number of integration steps in total size_type nSteps_m; /// Error of computation value_type error_m; /// Truncation order of the power series for the Hamiltonian (cyclotron and space charge) size_type truncOrder_m; /// Decides for writing output (default: true) bool write_m; /// Stores the stationary distribution (sigma matrix) matrix_type sigma_m; /// Vector storing the second moment matrix for each angle std::vector sigmas_m; /// Stores the Hamiltonian of the cyclotron Hamiltonian H_m; /// Stores the Hamiltonian for the space charge SpaceCharge Hsc_m; /// All variables x, px, y, py, z, delta Series x_m, px_m, y_m, py_m, z_m, delta_m; double rinit_m; double prinit_m; /*! Initializes a first guess of the sigma matrix with the assumption of * a spherical symmetric beam (ex = ey = ez). For each angle split the * same initial guess is taken. * * @param nuz is the vertical tune * @param ravg is the average radius of the closed orbit */ void initialize(value_type, value_type); /// Computes the new initial sigma matrix /*! * @param M is the 6x6 one turn transfer matrix * @param R is the transformation matrix * @param invR is the inverse transformation matrix */ matrix_type updateInitialSigma(const matrix_type&, sparse_matrix_type&, sparse_matrix_type&); /// Computes new sigma matrices (one for each angle) /*! * Mscs is a vector of all space charge maps * Mcycs is a vector of all cyclotron maps */ void updateSigma(const std::vector&, const std::vector&); /// Returns the L2-error norm between the old and new sigma-matrix /*! * @param oldS is the old sigma matrix * @param newS is the new sigma matrix */ value_type L2ErrorNorm(const matrix_type&, const matrix_type&); /// Returns the Lp-error norm between the old and new sigma-matrix /*! * @param oldS is the old sigma matrix * @param newS is the new sigma matrix */ value_type L1ErrorNorm(const matrix_type&, const matrix_type&); /// Transforms a floating point value to a string /*! * @param val is the floating point value which is transformed to a string */ std::string float2string(value_type val); /// Called within SigmaGenerator::match(). /*! * @param tunes * @param ravg is the average radius [m] * @param r_turn is the radius [m] * @param peo is the momentum * @param h_turn is the inverse bending radius * @param fidx_turn is the field index * @param ds_turn is the path length element */ void writeOrbitOutput_m(const std::pair& tunes, const value_type& ravg, const value_type& freqError, const container_type& r_turn, const container_type& peo, const container_type& h_turn, const container_type& fidx_turn, const container_type& ds_turn); }; // ----------------------------------------------------------------------------------------------------------------------- // PUBLIC MEMBER FUNCTIONS // ----------------------------------------------------------------------------------------------------------------------- template SigmaGenerator::SigmaGenerator(value_type I, value_type ex, value_type ey, value_type ez, value_type E, value_type m, const Cyclotron* cycl, size_type N, size_type Nsectors, size_type truncOrder, bool write) : I_m(I) , wo_m(cycl->getRfFrequ(0)*1E6/cycl->getCyclHarm()*2.0*Physics::pi) , E_m(E) , gamma_m(E/m+1.0) , gamma2_m(gamma_m*gamma_m) , nh_m(cycl->getCyclHarm()) , beta_m(std::sqrt(1.0-1.0/gamma2_m)) , m_m(m) , niterations_m(0) , converged_m(false) , Emin_m(cycl->getFMLowE()) , Emax_m(cycl->getFMHighE()) , N_m(N) , nSectors_m(Nsectors) , nStepsPerSector_m(N/cycl->getSymmetry()) , nSteps_m(N) , error_m(std::numeric_limits::max()) , truncOrder_m(truncOrder) , write_m(write) , sigmas_m(nStepsPerSector_m) , rinit_m(0.0) , prinit_m(0.0) { // set emittances (initialization like that due to old compiler version) // [ex] = [ey] = [ez] = pi*mm*mrad --> [emittance] = mm mrad emittance_m[0] = ex * Physics::pi; emittance_m[1] = ey * Physics::pi; emittance_m[2] = ez * Physics::pi; // minimum beta*gamma value_type minGamma = Emin_m / m_m + 1.0; value_type bgam = std::sqrt(minGamma * minGamma - 1.0); // normalized emittance (--> multiply with beta*gamma) // [emittance] = mm mrad emittance_m[0] *= bgam; emittance_m[1] *= bgam; emittance_m[2] *= bgam; // Define the Hamiltonian Series::setGlobalTruncOrder(truncOrder_m); // infinitesimal elements x_m = Series::makeVariable(0); px_m = Series::makeVariable(1); y_m = Series::makeVariable(2); py_m = Series::makeVariable(3); z_m = Series::makeVariable(4); delta_m = Series::makeVariable(5); H_m = [&](value_type h, value_type kx, value_type ky) { return 0.5*px_m*px_m + 0.5*kx*x_m*x_m - h*x_m*delta_m + 0.5*py_m*py_m + 0.5*ky*y_m*y_m + 0.5*delta_m*delta_m/gamma2_m; }; Hsc_m = [&](value_type sigx, value_type sigy, value_type sigz) { // convert m from MeV/c^2 to eV*s^{2}/m^{2} value_type m = m_m * 1.0e6 / (Physics::c * Physics::c); // formula (57) value_type lam = 2.0 * Physics::pi*Physics::c / (wo_m * nh_m); // wavelength, [lam] = m value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m * Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma_m * gamma2_m); // [K3] = m value_type milli = 1.0e-3; // formula (30), (31) // [sigma(0,0)] = mm^{2} --> [sx] = [sy] = [sz] = mm // multiply with 0.001 to get meter --> [sx] = [sy] = [sz] = m value_type sx = std::sqrt(std::fabs(sigx)) * milli; value_type sy = std::sqrt(std::fabs(sigy)) * milli; value_type sz = std::sqrt(std::fabs(sigz)) * milli; value_type tmp = sx * sy; // [tmp] = m^{2} value_type f = std::sqrt(tmp) / (3.0 * gamma_m * sz); // [f] = 1 value_type kxy = K3 * std::fabs(1.0 - f) / ((sx + sy) * sz); // [kxy] = 1/m value_type Kx = kxy / sx; value_type Ky = kxy / sy; value_type Kz = K3 * f / (tmp * sz); return -0.5 * Kx * x_m * x_m -0.5 * Ky * y_m * y_m -0.5 * Kz * z_m * z_m * gamma2_m; }; } template bool SigmaGenerator::match(value_type accuracy, size_type maxit, size_type maxitOrbit, Cyclotron* cycl, value_type denergy, value_type rguess, bool harmonic, bool full) { /* compute the equilibrium orbit for energy E_ * and get the the following properties: * - inverse bending radius h * - step sizes of path ds * - tune nuz */ try { if ( !full ) nSteps_m = nStepsPerSector_m; // object for space charge map and cyclotron map MapGenerator mapgen(nSteps_m); // compute cyclotron map and space charge map for each angle and store them into a vector std::vector Mcycs(nSteps_m), Mscs(nSteps_m); container_type h(nSteps_m), r(nSteps_m), ds(nSteps_m), fidx(nSteps_m); value_type ravg = 0.0, const_ds = 0.0; std::pair tunes; if (!harmonic) { ClosedOrbitFinder > cof(m_m, N_m, cycl, false, nSectors_m); if ( !cof.findOrbit(accuracy, maxitOrbit, E_m, denergy, rguess) ) { throw OpalException("SigmaGenerator::match()", "Closed orbit finder didn't converge."); } cof.computeOrbitProperties(E_m); // properties of one turn tunes = cof.getTunes(); ravg = cof.getAverageRadius(); // average radius value_type angle = cycl->getPHIinit(); container_type h_turn = cof.getInverseBendingRadius(angle); container_type r_turn = cof.getOrbit(angle); container_type ds_turn = cof.getPathLength(angle); container_type fidx_turn = cof.getFieldIndex(angle); container_type peo = cof.getMomentum(angle); // write properties to file if (write_m) writeOrbitOutput_m(tunes, ravg, cof.getFrequencyError(), r_turn, peo, h_turn, fidx_turn, ds_turn); // write to terminal *gmsg << "* ----------------------------" << endl << "* Closed orbit info:" << endl << "*" << endl << "* average radius: " << ravg << " [m]" << endl << "* initial radius: " << r_turn[0] << " [m]" << endl << "* initial momentum: " << peo[0] << " [Beta Gamma]" << endl << "* frequency error: " << cof.getFrequencyError()*100 <<" [ % ] "<< endl << "* horizontal tune: " << tunes.first << endl << "* vertical tune: " << tunes.second << endl << "* ----------------------------" << endl << endl; // copy properties std::copy_n(r_turn.begin(), nSteps_m, r.begin()); std::copy_n(h_turn.begin(), nSteps_m, h.begin()); std::copy_n(fidx_turn.begin(), nSteps_m, fidx.begin()); std::copy_n(ds_turn.begin(), nSteps_m, ds.begin()); rinit_m = r[0]; prinit_m = peo[0]; } else { *gmsg << "Not yet supported." << endl; return false; } // initialize sigma matrices (for each angle one) (first guess) initialize(tunes.second,ravg); // for writing std::ofstream writeMturn, writeMcyc, writeMsc; if (write_m) { std::string energy = float2string(E_m); writeMturn.open("data/OneTurnMapForEnergy"+energy+"MeV.dat",std::ios::app); writeMsc.open("data/SpaceChargeMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeMcyc.open("data/CyclotronMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeMturn << "--------------------------------" << std::endl; writeMturn << "Iteration: 0 " << std::endl; writeMturn << "--------------------------------" << std::endl; writeMsc << "--------------------------------" << std::endl; writeMsc << "Iteration: 0 " << std::endl; writeMsc << "--------------------------------" << std::endl; } // calculate only for a single sector (a nSector_-th) of the whole cyclotron for (size_type i = 0; i < nSteps_m; ++i) { if (!harmonic) { Mcycs[i] = mapgen.generateMap(H_m(h[i], h[i]*h[i]+fidx[i], -fidx[i]), ds[i],truncOrder_m); Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0), sigmas_m[i](2,2), sigmas_m[i](4,4)), ds[i],truncOrder_m); } else { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0), sigmas_m[i](2,2), sigmas_m[i](4,4)), const_ds,truncOrder_m); } if (write_m) { writeMcyc << Mcycs[i] << std::endl; writeMsc << Mscs[i] << std::endl; } } // one turn matrix mapgen.combine(Mscs,Mcycs); matrix_type Mturn = mapgen.getMap(); if (write_m) writeMturn << Mturn << std::endl; // (inverse) transformation matrix sparse_matrix_type R(6, 6), invR(6, 6); // new initial sigma matrix matrix_type newSigma(6,6); // for exiting loop bool stop = false; value_type weight = 0.5; while (error_m > accuracy && !stop) { // decouple transfer matrix and compute (inverse) tranformation matrix decouple(Mturn,R,invR); // construct new initial sigma-matrix newSigma = updateInitialSigma(Mturn, R, invR); // compute new sigma matrices for all angles (except for initial sigma) updateSigma(Mscs,Mcycs); // compute error error_m = L2ErrorNorm(sigmas_m[0],newSigma); // write new initial sigma-matrix into vector sigmas_m[0] = weight*newSigma + (1.0-weight)*sigmas_m[0]; if (write_m) { writeMsc << "--------------------------------" << std::endl; writeMsc << "Iteration: " << niterations_m + 1 << std::endl; writeMsc << "--------------------------------" << std::endl; } // compute new space charge maps for (size_type i = 0; i < nSteps_m; ++i) { if (!harmonic) { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0), sigmas_m[i](2,2), sigmas_m[i](4,4)), ds[i],truncOrder_m); } else { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0), sigmas_m[i](2,2), sigmas_m[i](4,4)), const_ds,truncOrder_m); } if (write_m) writeMsc << Mscs[i] << std::endl; } // construct new one turn transfer matrix M mapgen.combine(Mscs,Mcycs); Mturn = mapgen.getMap(); if (write_m) { writeMturn << "--------------------------------" << std::endl; writeMturn << "Iteration: " << niterations_m + 1 << std::endl; writeMturn << "--------------------------------" << std::endl; writeMturn << Mturn << std::endl; } // check if number of iterations has maxit exceeded. stop = (niterations_m++ > maxit); } // store converged sigma-matrix sigma_m.resize(6,6,false); sigma_m.swap(newSigma); // returns if the sigma matrix has converged converged_m = error_m < accuracy; // Close files if (write_m) { writeMturn.close(); writeMsc.close(); writeMcyc.close(); } } catch(const std::exception& e) { std::cerr << e.what() << std::endl; } if ( converged_m && write_m ) { // write tunes std::ofstream writeSigmaMatched("data/MatchedDistributions.dat", std::ios::app); std::array emit = this->getEmittances(); writeSigmaMatched << "* Converged (Ex, Ey, Ez) = (" << emit[0] << ", " << emit[1] << ", " << emit[2] << ") pi mm mrad for E= " << E_m << " (MeV)" << std::endl << "* Sigma-Matrix " << std::endl; for(unsigned int i = 0; i < sigma_m.size1(); ++ i) { writeSigmaMatched << std::setprecision(4) << std::setw(11) << sigma_m(i,0); for(unsigned int j = 1; j < sigma_m.size2(); ++ j) { writeSigmaMatched << " & " << std::setprecision(4) << std::setw(11) << sigma_m(i,j); } writeSigmaMatched << " \\\\" << std::endl; } writeSigmaMatched << std::endl; writeSigmaMatched.close(); } return converged_m; } template void SigmaGenerator::eigsolve_m(const matrix_type& Mturn, sparse_matrix_type& R) { typedef gsl_matrix* gsl_matrix_t; typedef gsl_vector_complex* gsl_cvector_t; typedef gsl_matrix_complex* gsl_cmatrix_t; typedef gsl_eigen_nonsymmv_workspace* gsl_wspace_t; typedef boost::numeric::ublas::vector complex_vector_type; gsl_cvector_t evals = gsl_vector_complex_alloc(6); gsl_cmatrix_t evecs = gsl_matrix_complex_alloc(6, 6); gsl_wspace_t wspace = gsl_eigen_nonsymmv_alloc(6); gsl_matrix_t M = gsl_matrix_alloc(6, 6); // go to GSL for (size_type i = 0; i < 6; ++i){ for (size_type j = 0; j < 6; ++j) { gsl_matrix_set(M, i, j, Mturn(i,j)); } } /*int status = */gsl_eigen_nonsymmv(M, evals, evecs, wspace); // if ( !status ) // throw OpalException("SigmaGenerator::eigsolve_m()", // "Couldn't perform eigendecomposition!"); /*status = *///gsl_eigen_nonsymmv_sort(evals, evecs, GSL_EIGEN_SORT_ABS_ASC); // if ( !status ) // throw OpalException("SigmaGenerator::eigsolve_m()", // "Couldn't sort eigenvalues and eigenvectors!"); // go to UBLAS for( size_type i = 0; i < 6; i++){ gsl_vector_complex_view evec_i = gsl_matrix_complex_column(evecs, i); for(size_type j = 0;j < 6; j++){ gsl_complex zgsl = gsl_vector_complex_get(&evec_i.vector, j); complex_t z(GSL_REAL(zgsl), GSL_IMAG(zgsl)); R(i,j) = z; } } // Sorting the Eigenvectors // This is an arbitrary threshold that has worked for me. (We should fix this) value_type threshold = 10e-12; bool isZdirection = false; std::vector zVectors{}; std::vector xyVectors{}; for(size_type i = 0; i < 6; i++){ complex_t z = R(i,0); if(std::abs(z) < threshold) z = 0.; if(z == 0.) isZdirection = true; complex_vector_type v(6); if(isZdirection){ for(size_type j = 0;j < 6; j++){ complex_t z = R(i,j); v(j) = z; } zVectors.push_back(v); } else{ for(size_type j = 0; j < 6; j++){ complex_t z = R(i,j); v(j) = z; } xyVectors.push_back(v); } isZdirection = false; } //if z-direction not found, then the system does not behave as expected if(zVectors.size() != 2) throw OpalException("SigmaGenerator::eigsolve_m()", "Couldn't find the vertical Eigenvectors."); // Norms the Eigenvectors for(size_type i = 0; i < 4; i++){ value_type norm{0}; for(size_type j = 0; j < 6; j++) norm += std::norm(xyVectors[i](j)); for(size_type j = 0; j < 6; j++) xyVectors[i](j) /= std::sqrt(norm); } for(size_type i = 0; i < 2; i++){ value_type norm{0}; for(size_type j = 0; j < 6; j++) norm += std::norm(zVectors[i](j)); for(size_type j = 0; j < 6; j++) zVectors[i](j) /= std::sqrt(norm); } for(value_type i = 0; i < 6; i++){ R(i,0) = xyVectors[0](i); R(i,1) = xyVectors[1](i); R(i,2) = zVectors[0](i); R(i,3) = zVectors[1](i); R(i,4) = xyVectors[2](i); R(i,5) = xyVectors[3](i); } gsl_vector_complex_free(evals); gsl_matrix_complex_free(evecs); gsl_eigen_nonsymmv_free(wspace); gsl_matrix_free(M); } template bool SigmaGenerator::invertMatrix_m(const sparse_matrix_type& R, sparse_matrix_type& invR) { typedef boost::numeric::ublas::permutation_matrix pmatrix_t; //creates a working copy of R cmatrix_type A(R); //permutation matrix for the LU-factorization pmatrix_t pm(A.size1()); //LU-factorization int res = lu_factorize(A,pm); if( res != 0) return false; // create identity matrix of invR invR.assign(boost::numeric::ublas::identity_matrix(A.size1())); // backsubstitute to get the inverse boost::numeric::ublas::lu_substitute(A, pm, invR); return true; } template void SigmaGenerator::decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR) { this->eigsolve_m(Mturn, R); if ( !this->invertMatrix_m(R, invR) ) throw OpalException("SigmaGenerator::decouple()", "Couldn't compute inverse matrix!"); } template typename SigmaGenerator::value_type SigmaGenerator::isEigenEllipse(const matrix_type& Mturn, const matrix_type& sigma) { // compute sigma matrix after one turn matrix_type newSigma = matt_boost::gemmm(Mturn, sigma, boost::numeric::ublas::trans(Mturn)); // return L2 error return L2ErrorNorm(sigma,newSigma); } template inline typename SigmaGenerator::matrix_type& SigmaGenerator::getSigma() { return sigma_m; } template inline typename SigmaGenerator::size_type SigmaGenerator::getIterations() const { return (converged_m) ? niterations_m : size_type(0); } template inline typename SigmaGenerator::value_type SigmaGenerator::getError() const { return error_m; } template inline std::array SigmaGenerator::getEmittances() const { value_type bgam = gamma_m*beta_m; return std::array{{ emittance_m[0]/Physics::pi/bgam, emittance_m[1]/Physics::pi/bgam, emittance_m[2]/Physics::pi/bgam }}; } // ----------------------------------------------------------------------------------------------------------------------- // PRIVATE MEMBER FUNCTIONS // ----------------------------------------------------------------------------------------------------------------------- template void SigmaGenerator::initialize(value_type nuz, value_type ravg) { /* * The initialization is based on the analytical solution of * using a spherical symmetric beam in the paper: * Transverse-longitudinal coupling by space charge in cyclotrons * by Dr. Christian Baumgarten * (formulas: (46), (56), (57)) */ /* Units: * ---------------------------------------------- * [wo] = 1/s * [nh] = 1 * [q0] = e * [I] = A * [eps0] = (A*s)^{2}/(N*m^{2}) * [E0] = MeV/(c^{2}) (with speed of light c) * [beta] = 1 * [gamma] = 1 * [m] = kg * * [lam] = m * [K3] = m * [alpha] = 10^{3}/(pi*mrad) * ---------------------------------------------- */ // helper constants value_type invbg = 1.0 / (beta_m * gamma_m); value_type micro = 1.0e-6; value_type mega = 1.0e6; //value_type kilo = 1.0e3; // convert mass m_m from MeV/c^2 to eV*s^{2}/m^{2} value_type m = m_m * mega/(Physics::c * Physics::c); // [m] = eV*s^{2}/m^{2}, [m_m] = MeV/c^2 /* Emittance [ex] = [ey] = [ez] = mm mrad (emittance_m are normalized emittances * (i.e. emittance multiplied with beta*gamma) */ value_type ex = emittance_m[0] * invbg; // [ex] = mm mrad value_type ey = emittance_m[1] * invbg; // [ey] = mm mrad value_type ez = emittance_m[2] * invbg; // [ez] = mm mrad // convert normalized emittances: mm mrad --> m rad (mm mrad: millimeter milliradian) ex *= micro; ey *= micro; ez *= micro; // initial guess of emittance, [e] = m rad value_type e = std::cbrt(ex * ey * ez); // cbrt computes cubic root (C++11) // cyclotron radius [rcyc] = m value_type rcyc = ravg / beta_m; // "average" inverse bending radius value_type h = 1.0 / ravg; // [h] = 1/m // formula (57) value_type lam = 2.0 * Physics::pi * Physics::c / (wo_m * nh_m); // wavelength, [lam] = m value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m * Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma2_m * gamma_m); // [K3] = m value_type alpha = /* physics::q0 */ 1.0 * Physics::mu_0 * I_m / (5.0 * std::sqrt(10.0) * m * Physics::c * gamma_m * nh_m) * std::sqrt(rcyc * rcyc * rcyc / (e * e * e)); // [alpha] = 1/rad --> [alpha] = 1 value_type sig0 = std::sqrt(2.0 * rcyc * e) / gamma_m; // [sig0] = m*sqrt(rad) --> [sig0] = m // formula (56) value_type sig; // [sig] = m if (alpha >= 2.5) { sig = sig0 * std::cbrt(1.0 + alpha); // cbrt computes cubic root (C++11) } else if (alpha >= 0) { sig = sig0 * (1 + alpha * (0.25 - 0.03125 * alpha)); } else { throw OpalException("SigmaGenerator::initialize()", "Negative alpha value: " + std::to_string(alpha) + " < 0"); } // K = Kx = Ky = Kz value_type K = K3 * gamma_m / (3.0 * sig * sig * sig); // formula (46), [K] = 1/m^{2} value_type kx = h * h * gamma2_m; // formula (46) (assumption of an isochronous cyclotron), [kx] = 1/m^{2} value_type a = 0.5 * kx - K; // formula (22) (with K = Kx = Kz), [a] = 1/m^{2} value_type b = K * K; // formula (22) (with K = Kx = Kz and kx = h^2*gamma^2), [b] = 1/m^{4} // b must be positive, otherwise no real-valued frequency if (b < 0) throw OpalException("SigmaGenerator::initialize()", "Negative value --> No real-valued frequency."); value_type tmp = a * a - b; // [tmp] = 1/m^{4} if (tmp < 0) throw OpalException("SigmaGenerator::initialize()", "Square root of negative number."); tmp = std::sqrt(tmp); // [tmp] = 1/m^{2} if (a < tmp) throw OpalException("Error in SigmaGenerator::initialize()", "Square root of negative number."); if (h * h * nuz * nuz <= K) throw OpalException("SigmaGenerator::initialize()", "h^{2} * nu_{z}^{2} <= K (i.e. square root of negative number)"); value_type Omega = std::sqrt(a + tmp); // formula (22), [Omega] = 1/m value_type omega = std::sqrt(a - tmp); // formula (22), [omega] = 1/m value_type A = h / (Omega * Omega + K); // formula (26), [A] = m value_type B = h / (omega * omega + K); // formula (26), [B] = m value_type invAB = 1.0 / (B - A); // [invAB] = 1/m // construct initial sigma-matrix (formula (29, 30, 31) // Remark: We multiply with 10^{6} (= mega) to convert emittances back. // 1 m^{2} = 10^{6} mm^{2} matrix_type sigma = boost::numeric::ublas::zero_matrix(6); // formula (30), [sigma(0,0)] = m^2 rad * 10^{6} = mm^{2} rad = mm mrad sigma(0,0) = invAB * (B * ex / Omega + A * ez / omega) * mega; // [sigma(0,5)] = [sigma(5,0)] = m rad * 10^{6} = mm mrad // 1000: m --> mm and 1000 to promille sigma(0,5) = sigma(5,0) = invAB * (ex / Omega + ez / omega) * mega; // [sigma(1,1)] = rad * 10^{6} = mrad (and promille) sigma(1,1) = invAB * (B * ex * Omega + A * ez * omega) * mega; // [sigma(1,4)] = [sigma(4,1)] = m rad * 10^{6} = mm mrad sigma(1,4) = sigma(4,1) = invAB * (ex * Omega+ez * omega) / (K * gamma2_m) * mega; // formula (31), [sigma(2,2)] = m rad * 10^{6} = mm mrad sigma(2,2) = ey / (std::sqrt(h * h * nuz * nuz - K)) * mega; sigma(3,3) = (ey * mega) * (ey * mega) / sigma(2,2); // [sigma(4,4)] = m^{2} rad * 10^{6} = mm^{2} rad = mm mrad sigma(4,4) = invAB * (A * ex * Omega + B * ez * omega) / (K * gamma2_m) * mega; // formula (30), [sigma(5,5)] = rad * 10^{6} = mrad (and promille) sigma(5,5) = invAB * (ex / (B * Omega) + ez / (A * omega)) * mega; // fill in initial guess of the sigma matrix (for each angle the same guess) sigmas_m.resize(nSteps_m); for (typename std::vector::iterator it = sigmas_m.begin(); it != sigmas_m.end(); ++it) { *it = sigma; } if (write_m) { std::string energy = float2string(E_m); std::ofstream writeInit("data/maps/InitialSigmaPerAngleForEnergy" + energy + "MeV.dat", std::ios::app); writeInit << sigma << std::endl; writeInit.close(); } } template typename SigmaGenerator::matrix_type SigmaGenerator::updateInitialSigma(const matrix_type& /*M*/, sparse_matrix_type& R, sparse_matrix_type& invR) { /* * Function input: * - M: one turn transfer matrix * - R: transformation matrix (in paper: E) * - invR: inverse transformation matrix (in paper: E^{-1} */ /* formula (18): * sigma = -E*D*E^{-1}*S * with diagonal matrix D (stores eigenvalues of sigma*S (emittances apart from +- i), * skew-symmetric matrix (formula (13)), and tranformation matrices E, E^{-1} */ cmatrix_type S = boost::numeric::ublas::zero_matrix(6,6); S(0,1) = S(2,3) = S(4,5) = 1; S(1,0) = S(3,2) = S(5,4) = -1; // Build new D-Matrix // Section 2.4 Eq. 18 in M. Frey Semester thesis // D = diag(i*emx,-i*emx,i*emy,-i*emy,i*emz, -i*emz) cmatrix_type D = boost::numeric::ublas::zero_matrix(6,6); value_type invbg = 1.0 / (beta_m * gamma_m); complex_t im(0,1); for(size_type i = 0; i < 3; ++i){ D(2*i, 2*i) = emittance_m[i] * invbg * im; D(2*i+1, 2*i+1) = -emittance_m[i] * invbg * im; } // Computing of new Sigma // sigma = -R*D*R^{-1}*S cmatrix_type csigma(6, 6); csigma = boost::numeric::ublas::prod(invR, S); csigma = boost::numeric::ublas::prod(D, csigma); csigma = boost::numeric::ublas::prod(-R, csigma); matrix_type sigma(6,6); for (size_type i = 0; i < 6; ++i){ for (size_type j = 0; j < 6; ++j){ sigma(i,j) = csigma(i,j).real(); } } for (size_type i = 0; i < 6; ++i) { if(sigma(i,i) < 0.) sigma(i,i) *= -1.0; } if (write_m) { std::string energy = float2string(E_m); std::ofstream writeSigma("data/maps/SigmaPerAngleForEnergy" + energy + "MeV.dat", std::ios::app); writeSigma << "--------------------------------" << std::endl; writeSigma << "Iteration: " << niterations_m + 1 << std::endl; writeSigma << "--------------------------------" << std::endl; writeSigma << sigma << std::endl; writeSigma.close(); } return sigma; } template void SigmaGenerator::updateSigma(const std::vector& Mscs, const std::vector& Mcycs) { matrix_type M = boost::numeric::ublas::matrix(6,6); std::ofstream writeSigma; if (write_m) { std::string energy = float2string(E_m); writeSigma.open("data/maps/SigmaPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); } // initial sigma is already computed for (size_type i = 1; i < nSteps_m; ++i) { // transfer matrix for one angle M = boost::numeric::ublas::prod(Mscs[i - 1],Mcycs[i - 1]); // transfer the matrix sigma sigmas_m[i] = matt_boost::gemmm(M,sigmas_m[i - 1], boost::numeric::ublas::trans(M)); if (write_m) writeSigma << sigmas_m[i] << std::endl; } if (write_m) { writeSigma << std::endl; writeSigma.close(); } } template typename SigmaGenerator::value_type SigmaGenerator::L2ErrorNorm(const matrix_type& oldS, const matrix_type& newS) { // compute difference matrix_type diff = newS - oldS; // sum squared error up and take square root return std::sqrt(std::inner_product(diff.data().begin(), diff.data().end(), diff.data().begin(), 0.0)); } template typename SigmaGenerator::value_type SigmaGenerator::L1ErrorNorm(const matrix_type& oldS, const matrix_type& newS) { // compute difference matrix_type diff = newS - oldS; std::for_each(diff.data().begin(), diff.data().end(), [](value_type& val) { return std::abs(val); }); // sum squared error up and take square root return std::accumulate(diff.data().begin(), diff.data().end(), 0.0); } template std::string SigmaGenerator::float2string(value_type val) { std::ostringstream out; out << std::setprecision(6) << val; return out.str(); } template void SigmaGenerator::writeOrbitOutput_m( const std::pair& tunes, const value_type& ravg, const value_type& freqError, const container_type& r_turn, const container_type& peo, const container_type& h_turn, const container_type& fidx_turn, const container_type& ds_turn) { // write tunes std::ofstream writeTunes("data/Tunes.dat", std::ios::app); if(writeTunes.tellp() == 0) // if nothing yet written --> write description writeTunes << "energy [MeV]" << std::setw(15) << "nur" << std::setw(25) << "nuz" << std::endl; writeTunes << E_m << std::setw(30) << std::setprecision(10) << tunes.first << std::setw(25) << tunes.second << std::endl; // write average radius std::ofstream writeAvgRadius("data/AverageValues.dat", std::ios::app); if (writeAvgRadius.tellp() == 0) // if nothing yet written --> write description writeAvgRadius << "energy [MeV]" << std::setw(15) << "avg. radius [m]" << std::setw(15) << "r [m]" << std::setw(15) << "pr [m]" << std::endl; writeAvgRadius << E_m << std::setw(25) << std::setprecision(10) << ravg << std::setw(25) << std::setprecision(10) << r_turn[0] << std::setw(25) << std::setprecision(10) << peo[0] << std::endl; // write frequency error std::ofstream writePhase("data/FrequencyError.dat",std::ios::app); if(writePhase.tellp() == 0) // if nothing yet written --> write description writePhase << "energy [MeV]" << std::setw(15) << "freq. error" << std::endl; writePhase << E_m << std::setw(30) << std::setprecision(10) << freqError << std::endl; // write other properties std::string energy = float2string(E_m); std::ofstream writeProperties("data/PropertiesForEnergy"+energy+"MeV.dat", std::ios::out); writeProperties << std::left << std::setw(25) << "orbit radius" << std::setw(25) << "orbit momentum" << std::setw(25) << "inverse bending radius" << std::setw(25) << "field index" << std::setw(25) << "path length" << std::endl; for (size_type i = 0; i < r_turn.size(); ++i) { writeProperties << std::setprecision(10) << std::left << std::setw(25) << r_turn[i] << std::setw(25) << peo[i] << std::setw(25) << h_turn[i] << std::setw(25) << fidx_turn[i] << std::setw(25) << ds_turn[i] << std::endl; } // close all files within this if-statement writeTunes.close(); writeAvgRadius.close(); writePhase.close(); writeProperties.close(); } #endif