
Week 1

1.1 What is ISIS?

ISIS is a research facility at the Rutherford Appleton Laboratory which uses
neutrons and muons to study materials at an atomic level, sustaining further
research in various other fields. The basics of these studies lie in neutron
scattering, a technique which allows for a highly detailed image of the crystal
lattice structure of matter and how it behaves in various conditions.

The ISIS accelerator produces the high-energy beams required to pene-
trate into the materials. It takes hydrogen ions, accelerates them and strips
off the electrons leaving a beam of protons. These protons are further accel-
erated to 800 MeV and focused onto a tungsten target, producing neutron
pulses. Finally, the neutrons are detected after interacting with a material.

The neutrons are collected by about 20 instruments, each designed for a
specific type of experiment: neutron spectroscopy, diffraction, reflectometry
or small angle scattering. In these instruments, various detectors register
the position and time of arrival of the impinging neutrons.

Muons are also produced at ISIS from 2-3% of the proton beam by in-
serting a carbon target, resulting in pions which decay into muons. They
may provide complementary information to that attained in neutron experi-
ments because they have a spin and interact with the magnetic properties of
the material. The nuclear spin rotates the spin of the muons, making them
useful in studying superconducting samples, semiconductors and chemical
reactions.

The data from ISIS is used in areas such as energy, nanotechnology,
materials processing, drug design, bio-technology. The effect of strains and
stresses is investigated in engineering components; analyses are made on the
compatibility of bio-materials, the structure of pharmaceutical compounds,
or the efficiency of enzymes in removing environmental contamination.
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Figure 1.1: ISIS Facility

ISIS Instruments, Credit: STFC, http://www.stfc.ac.uk/stfc/cache/file/24C09892-
BF82-4C27-80C9B5567C033C82.jpt
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1.2 The ISIS accelerator

The principal components of ISIS are: the Linac, the Synchrotron, Target
Station 1, Target Station 2 and the Muon Target. The beam starts as 200 µs
pulses passed into the linac, where the RFQ (Radio Frequency Quadrupole,
202.5 MHz) divides the particles in discrete 4.94 ns bunches. The linac
provides 200 µs long , 22 mA H- pulses to the synchrotron. At the exit
of the synchrotron, two 100 ns long pulses consisting of 4 µC of protons
are delivered to the targets. By repeating the entire accelerating process 50
times per second, the final beam current is 200 µA.

The Linac

As a first element of the linac, the ion source produces H- ions. This
is done by feeding the ion source with hydrogen gas and caesium vapour.
Positively charged ions are attracted from the formed discharge plasma to-
wards a cathode. Caesium is used because its deposition reduces the work
function of the cathode, making it a more efficient donor of electrons to the
positively charged hydrogen ions, thus enhancing the production of H-. The
extracted beam is passed through a 90◦ magnet to remove any electrons,
and it is accelerated thgrough a DC gap between the high voltage platform
(containing the ion source) and the RFQ. There is an additional focusing
and monitoring process in the Low Energy Beam Transport before the RFQ.

In the next element, the RFQ, quadrupole electrodes produce a gradi-
ent field which both focuses and accelerates the beam. The particles pass
through four tanks which are fed with RF fields. Inside each tank, the beam
is in step with the alternating field, being shielded inside drift tubes while
the field is in the decelerating direction and crossing the gaps between the
tubes while the field is in the accelerating direction.

Figure 1.2: One tank from the LINAC

The linac is needed because it accelerates the particles to an injection
kinetic energy which reduces the total time needed to obtain the output
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energy by accelerating the particles in the ring. Low energy protons have a
higher time of flight around the ring, so it as an advantage to have a higher
value of the starting injection energy.

The ISIS synchrotron

In a synchrotron the field is increased with the change in momentum of
the particle such that the radius of the orbit remains the same while the
particle is accelerated and hence the particle is kept inside the accelerator.

The ISIS synchrotron is a 26 m radius ring in which the protons revolve
around 10 thousand times. The major components are the RF cavities used
for acceleration, the dipole magnets for bending the beam and quadrupole/
sextupole magnets to keep the beam focused.

Figure 1.3: ISIS synchrotron (Credit: STFC)

The beam enters from the linac in pulses by the accumulation of a large
number of protons over approximately 130 revolutions. The beam is accu-
mulated by a process called “charge exchange injection”: the injected beam
and the one already in the ring hit an aluminium oxide foil. This strips off
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the electrons from the protons allowing the circumvention of Liouville’s the-
orem, which states that it is impossible to increase the density of particles
in phase space by means of conservative forces.

Once injection is complete, the RF system traps the beam into two
bunches. There are six double-gap, ferrite-tuned RF cavities which provide
the accelerating voltage synchronised with the changing magnetic field in
the dipoles. To get the beam out, a system of fast (100 ns) kicker magnets
is turned on.

The main advantage of the synchrotron consists in the high energy of
the beam that is produced with less hardware compared to that required by
a lina. The high energy makes measurements possible in real time.

Dealing with electrons

When dealing with electron machines, the synchrotron radiation loss has
to be taken into consideration (energy loss ratio is 1013 compared to protons
of the same momentum in the relativistic region). The electrons, being much
lighter than the protons, suffer from considerable radiation loss in energy
and this may be handled by either using linear accelerators or circular one
with large radii. Because of this loss, the accelerating process requires a
longer time and more power. The maximum beam energy is given by the
point at which the amount of energy loss by radiation is close to the amount
of energy added each cycle. Nevertheless, the synchrotron radiation can
be useful in producing synchrotron light (X-rays) for probing deep into the
structure of matter.

1.3 From cyclotrons to FFAG

The cyclotron was one of the first types of circular accelerators. It uses a
static magnetic field and an alternating electric field. It is made from two
“D”-shaped metal halves insulated from each other and placed into vacuum,
connected to an oscillating potential. Below and above the vacuum chamber,
there are two magnets (usually magnetic coils) which create a constant field
across the chamber, perpendicular to the electrodes plane.

Particles are injected at the centre and because of their increasing mo-
mentum, they follow a spiral path being accelerated each time they pass
through the gap between the two metal halves. The right acceleration point
is achieved by matching the frequency of the voltage with the particle’s cy-
clotron resonance frequency (only a function of charge, mass and strength of
external magnetic field). When they reach the desired energy, a deflection
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plate attracts the beam, changing its path from the circular one and direct-
ing it into a target or another further component. It is however required to
take into account the relativistic effects which would lead to an adaptation
of the RF field frequency or a time-dependent applied magnetic field.

A FFAG accelerator (fixed field alternating gradient) puts together the
time-independent field of a cyclotron with the spatial gradient in this field
such that the radius of curvature remains approximately constant. There-
fore, it can accommodate stable orbits at a range of energies. The fixed
field implies no synchronization issues, higher repetition rate and therefore
higher average current. The accelerator is built from a sequence of identical
cells, each one having alternating focusing and defocusing magnets.

To obtain the stable orbits, the key feature is the increase in the strength
of the magnetic field with radius. This can be done by sticking to a power
law rk, where k is the field index in the scaling FFAGs (orbits of different
energies have the same shape, but their size scales with the energy). As a
consequence, this type of accelerator has the disadvantage of large aperture
magnets. Relaxing the power law condition, the size of the orbits does not
have such a large variation and the shapes become non-similar.

All of the above are linked together to form the basic principles behind
the functioning of synchrotrons and FFAG accelerators.
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Figure 1.4: Cross-section of a quadrupole magnet

1.4 Linear Beam Optics with Quadrupoles

A quadrupole magnet has four iron poles with hyperbolic contour. The field
is linear with in the deviation from the axis:

Bz = −gx (1)

Bx = −gz (2)

In the air gap between the magnets (no iron or currents) we have

∇×B = 0 (3)

Therefore the filed can be written as the gradient of a potential which implies
that the equipotentials are hyperbolas xz = const.

B = −∇V (4)

V (x, y) = gxz (5)

The gradient g and the current I through the coils can be related by one
of Maxwell’s equations ∮

H · ds = nI (6)

Using a certain path of integration and assuming µr >> 1 inside the iron we
obtain the following good approximation (where R is the shortest distance
from the center to one of the hyperbolic poles)

g =
2µ0nI

R2
(7)
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Finally, the magnetic field is given by

B =
2µ0nI

R2

 −z0
−x

 (8)

An important note is that this is a linear machine: the components of the
Lorentz force are not coupled and therefore, the horizontal and vertical
betatron oscillations are completely decoupled. For this field we can write
the vector potential

A =

 Ax
As
Az

 =
g

2

 0
z2 − x2

0

 (9)

where g is related to the quadrupole focusing strength k = e
cp0

dBz
dx . The

Hamiltonian for a charged particle in a magnetic field derived in Cartesian
coordinates is

H =

√
(mc2)2 + c2(p− eA)2 (10)

To carry out a transformation from the Cartesian coordinates to the local
coordinates s, x and z, we use a generating function of the third type

F3(π, s, x, z) = −π · (r0(s) + xx̂ + yŷ) (11)

In this equation π is the old momentum from which the new canonical
momentum Π can be derived

Πx = −∂F3

∂x
= π · x̂ = πx (12)

Πz = −∂F3

∂z
= π · ẑ = πz (13)

Πs = −∂F3

∂s
= π · dr0

ds
= π · ŝ = πs (14)

Using that Ax = 0, Az = 0, the Hamiltonian becomes

H = c
[
m2c2 + Πx

2 + Πz
2 + (Πs − eAs)2

]1/2
(15)

Hamilton’s equations are

ṡ =
∂Πs

∂H
, Π̇s = −∂Πs

∂s
; ẋ =

∂Πx

∂H
, Π̇x = −∂Πx

∂x
; ż =

∂Πz

∂H
, Π̇z = −∂Πz

∂z
;

The Hamiltonian is time-independent and it describes particle’s motion with
three degrees of freedom. We can lower the number of degrees of freedom
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from three to two by using the constancy oh H and changing the independent
variable from t to s. We have that

x′ =
dx

ds
=
ẋ

ṡ
=

(
∂H

∂Πx

)(
∂H

∂Πs

)−1

=
∂(−Πs)

∂Πx
(16)

This equation indicates that K = −Πs becomes the new Hamiltonian with
the conjugate coordinates x,Πx; z,Πz; t,−H. A similar approach also gives

dΠx

ds
=
dΠx/dt

ds/dt
=
−∂H/∂x
∂H/∂Πs

=

(
∂Πs

∂x

)
H

= −∂K
∂x

(17)

Assuming that the particles travel at small angles from the nominal orbit, we
consider the momenta along x and z small compared to the total momentum.
The new Hamiltonian K can be approximated to

K = −
[
H2

c2
−Πx

2 −Πz
2 −m2c2

]1/2

− eAs (18)

K ≈ −p
(

1− Πx
2

2p2
− Πz

2

2p2
− eAs

)
(19)

where p(H) =
√
H2/c2 −m2c2 is the total kinetic momentum of a particle

which for on-momentum particles becomes p0. We can normalize the mo-
menta, Pi = Πi/p0, and swap to a new Hamiltonian H = K/p0 to preserve
the structure of the equations, obtaining

H ≈ −
(

1− Px
2

2
− Pz

2

2

)
− k(s)

2
(z2 − x2) (20)

Using the results of (16) and (17) we get

x′ =
∂H
∂Px

= Px (21)

x′′ =
dx′

ds
= −∂H

∂x
= −k(s)x (22)

Finally, Hill’s equations are

x′′ + k(s)x = 0 (23)

z′′ − k(s)z = 0 (24)

Any linear differential equation, like Hill’s equation, has solutions which can
be traced from one point S1 to another S2 by a 2x2 transfer matrix(

x(s1)

x′(s1)

)
= M21

(
x(s2)

x′(s2)

)
(25)
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For one lattice element such as a quadrupole, k(s) = constant. In this case,
the solution to Hill’s equation for the variable u = x, y is

u(s) = C(s)u0 + S(s)u′0 (26)

Writing the solution in matrix form(
u

u′

)
=

(
C S
C ′ S′

)(
u0

u′0

)
= M

(
u0

u′0

)
(27)

Therefore, we obtain the transfer matrices for a quadrupole magnet (focus-
ing, defocusing)

MQF =

(
cos (
√
kl) 1√

k
sin (
√
kl)

−
√
k sin (

√
kl) cos (

√
kl)

)
(28)

MDF =

(
cosh (

√
|k|l) 1√

|k|
sinh (

√
|k|l)

−
√
k sinh (

√
|k|l) cosh (

√
|k|l)

)
(29)

A transfer matrix has always the determinant equal to 1 (it can be shown in
a general case starting from the Twiss matrix). In the case of a quadrupole

|MQF | = cos2 φ+ sin2 φ = 1 (30)

|MQD| = cosh2 φ− sinh2 φ = 1 (31)

To make the connection with the beam emittance (area of the beam in phase-
space coordinates) we define the rms beam emittance and the σ - matrix as
follows

εrms =
√
σx2σx′2 − σxx′2 (32)

σ ≡
(

σx
2 σxx′

2

σxx′
2 σx′

2

)
= 〈(〈y〉 − 〈y〉)〉〈(〈y〉 − 〈y〉)†〉 (33)

Under these definitions εrms =
√
detσ. The σ -matrix can also be traced

with the aid of the transfer matrix

σ2 = M21σ1M21
† (34)

Therefore the determinant of a transfer matrix being unity implies the emit-
tance conservation:

det(σ2) = [det(M21)]2 × det(σ1) = det(σ1)⇒ εrms,2 = εrms,1 (35)
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1.5 Linear Beam Optics with Dipoles

A dipole magnet is used to bend the orbit. The field associated with it is
B = B(s)ẑ. The function B(s) is such that it is not zero only inside the
magnet and vanishes outside of it. For a constant field in a gap of height
h, neglecting fringe fields and iron saturation, the following derivation is
possible ∮

H · ds = hH0 + lHE = nI (36)

HE =
1

µr
H0 << H0 (37)

⇒ B0 =
µ0nI

h
(38)

The radius of curvature is obtained from Newton’s second law

mv2

ρ
= qvB ⇒ 1

ρ
=
qB

mv
(39)

ρ =
p

eB
(40)

The field can be represented by the vector potential

As = −B(s)×
(

1− x

2ρ

)
(41)

Ax = Az = 0 (42)

The magnetic field obtained from this vector potential corresponds to the
field of the dipole if we neglect the second order terms since the complete

result has the form Bz ≈ B(s)+O
(
x2

ρ2

)
. Because of the radius of curvature,

the unit vector x̂ is a function of s, i.e. x̂(s). So the conjugate momentum
Πs becomes

Πs = −∂F3

∂s
= π ·

(
dr0
ds

+ x
dx̂

ds

)
(43)

= π ·
(

ŝ +
x

ρ
ŝ

)
= πs

(
1 +

x

ρ

)
(44)

Therefore the Hamiltonian for the dipole field is

H = c

[
m2c2 + Πx

2Πz
2 +

(
Πs

1 + x/ρ
− eAs

)2
]1/2

(45)

Following the same arguments as for the quadrupole magnet we change to
a new ”normalized” Hamiltonian H which can be separated into z and x
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Figure 1.5: Dipole wedge treatment

components.

H = −
(

1 +
x

ρ

)(
1− 1

2
Px

2 − 1

2
Pz

2

)
− e

p0
As

(
1 +

x

ρ

)
(46)

Hx '
1

2
Px

2 +
Kx(s)

s
x2 (47)

where Kx(s) = 1
ρ2

. From this Hamiltonian we obtain the equations of mo-
tion, from which the one along x̂ is non-trivial

x′′ +
1

ρ2
= 0 (48)

Therefore the transfer matrix for a ”hard edge” dipole (i.e. the magnet ends
are perpendicular to the circular trajectory) is

Mx =

(
cos (l/ρ) ρ sin (l/ρ)
−1
ρ sin (l/ρ) cos (l/ρ)

)
(49)

A rectangular magnet can be derived from a sector magnet by super-
imposing at the entrance and exit a ”magnetic wedge” of angle δ = φ/2
(treating the edge as an impulse kick). The deflection angle in the magnetic
wedge is

α =
∆l

ρ
=
x tan δ

ρ
=
x

f
(50)

It acts as a thin defocusing lens with focal length f = ρ
tan δ in the horizontal

plane and as a focusing lens with the same strength in the vertical plane.
The corresponding transfer matrix for this edge effect is ( ”-” focusing /”+”
defocusing )

Medge =

(
1 0

±1
ρ tan δ 1

)
(51)

The total transfer matrix for the dipole magnet is obtained by multiplying
the sector magnet matrix with the above matrix at the right and left. To
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Figure 1.6: Edge integration path

show that the vertical focusing strength is the same requires a more detailed
approach.

Proof.

∆z′ =
∆pz
p

=
ev
∫
B(x)ds

pv
=

1

ρB

∫
Bxds (52)

Bx = −Bh sin δ Bx(z = 0) = 0 (53)

∆z′ = −sin δ

Bρ

∫
Bhds = −tan δ

ρB

∫
(Bh cos δ)ds = −tan δ

ρB

∫ L2

L1
B · ds∮

B · ds =

∫ L2

L1
B · ds−B0z = 0 (54)

∆z′ = −tan δ

ρB
× (B0z) = −tan δ

ρ
z (55)

1.6 RF Cavities

An RF cavity is designed to provide a longitudinal electric field along the
particle trajectory at a phase velocity equal to the particle velocity. Mag-
netic fields provide deflection, but no acceleration. The fileds in an RF
cavity are solutions to the wave equation

∇2E− 1

c2

∂E

∂t
= 0 (56)

subjected to the boundary conditions:

- no tangential E-field, n̂×E = 0;
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- no normal magnetic field, n̂ ·H = 0.

The solution to the wave equation which has a longitudinal electric field is
the TM (transverse magnetic) mode. Two of the general TMmnp modes are
generally used: TM0np - monopoles modes that can couple to the beam and
exchange energy; and TM1np - dipole modes that can deflect the beam. The
general TM modes in (r, φ, s) coordinates have the following form (plus the
ejωt dependence)

Es = Akr2Jm(krr) cos(mφ) cos(kss) (57)

Er = −AkskrJm′(krr) cos(mφ) sin(kss) (58)

Eφ = A

(
mks
r

)
Jm(krr) sin(mφ) sin(kss) (59)

Bs = 0 (60)

Br = −jA
(
mk

cr

)
Jm(krr) sin(mφ) cos(kss) (61)

Bφ = −jA
(
kkr
c

)
Jm
′(krr) cos(mφ) cos(kss) (62)

The ks,r are the wave numbers in the longitudinal and radial modes, respec-
tively and they satisfy

k =
ω

c
=
√
k2
s + k2

r (63)

ks =
pπ

L
, p = 0, 1, 2, ... (64)

kr,mn =
jmn
R
, where Jm(jmn) = 0 (65)

kmnp =

√
p2π2

L2
+
jmn

2

c
(66)

The most simple example is the ”pill box” cavity operated in TM010 mode.
From Maxwell’s equations

∂2Ez
∂r2

+
1

r

∂Ez
∂r

=
1

c2

∂2Ez
∂t2

(67)

with the solution Ez(r) = E0J0(ω0
c r)e

−jω0t where ω0 = 2.405c
R and also Er =

Eφ = 0. The accelerating voltage for charged particles is given by the
integral

Vc =

∣∣∣∣∫ ∞
−∞

Ez(ρ = 0, z)ejω0z/βcdz

∣∣∣∣ (68)

For the pill box cavity, this integral leads to the transit time factor T

Vc = E0

∫ d

0
ejω0z/βcdz = E0d · sinc

(
ω0d

βc

)
= E0d · T (69)
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Figure 1.7: Longitudinal phase space

The condition for which the beam is longitudinally focusing (i.e. particles
never lag too far behind the RF field) is generally referred as the ”longitudi-
nal phase space stability”. This phase space is described by the coordinates
of energy difference between the ideal, synchronous particle (i.e. it always
arrives at the desired phase lag φs behind the rising zero-crossing of the RF
wave) and the phase lag φ.

In this phase-space, a particle (B) is restored and oscillates about the
stable phase (A) provided it does not reach and pass the point (C) where
it receives less voltage than the synchronous particle. This is equivalent to
φ < π − φs. The energy gain difference between a particle of general phase
lag φ and a synchronous particle is

∆E = E − Es = TeV0 (sinφ− sinφs) (70)

If the revolution frequency f is higher for a higher momentum particle, the
higher energy particle will arrive at the RF gap earlier (φ < φs). There-
fore, higher energy particles will receive less energy gain if the RF wave
synchronous phase is chosen such that 0 < φs <

π
2 . In the case df

d∆p < 0, the
phase stability requires π

2 < φs < π.
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1.7 Sextupoles and Octopoles

A sextupole magnet consist of six magnetic poles set out in an arrangement
of alternating north and south poles around a central axis. They are used to
deal with chromaticity (change of the linear parameters of transverse motion
of a single particle related with a change of the beam energy) and to damp
the head-tail instability (a transverse instability in which the filed generated
by the head of a bunch exerts a force on the tail of the bunch, leading to
unstable motion of the tail and breakup of the bunch). If the sextupole
is placed in a region of non-zero dispersion, there exists a strength of the
field for which the particles in a range of certain energies are focused at the
same point. This counterbalances the tendency of the quadrupole lattice to
disperse the beam (since off-momentum particles are incorrectly focused in
a quadrupole).

An octupole magnet has further effects on a beam: it reduces the cou-
pling between particles inducing Landau damping. This represents the dis-
appearance of the coherent transverse collective instabilities due to tune
spread.
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Week 2

In the following sections there are three models presented for the fringe field
of a multipole. The first one deals with a straight multipole, while the second
one treats a curved multipole, both starting with a power expansion for the
magnetic field. The last model tries to be different by starting with a more
compact functional form of the field which is then adapted to straight and
curved geometries.

1.1 Fringe field models

(for a straight multipole)

Most accelerator modeling codes use the hard-edge model for magnets
- constant Hamiltonian. Real magnets always have a smooth transition at
the edges - fringe fields. To obtain a multipole description of a field we can
apply the theory of analytic functions.

∇ ·B = 0⇒ ∃ A with B = ∇×A (71)

∇×B = 0⇒ ∃ V with B = −∇V (72)

Assuming that A has only a non-zero component As we get

Bx = −∂V
∂x

=
∂As
∂y

(73)

By = −∂V
∂y

= −∂As
∂x

(74)

These equations are just the Cauchy-Riemann conditions for an analytic
function Ã(z) = As(x, y) + iV (x, y). So the complex potential is an analytic
function and can be expanded as a power series

Ã(z) =
∞∑
n=0

κnz
n, κn = λn + iµn (75)
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with λn, µn being real constants. It is practical to express the field in cylin-
drical coordinates (r, ϕ, s)

x = r cosϕ y = r sinϕ (76)

zn = rn(cosnϕ+ i sinnϕ) (77)

From the real and imaginary parts of equation () we obtain

V (r, ϕ) =

∞∑
n=0

rn(µn cosnϕ+ λn sinnϕ) (78)

As(r, ϕ) =
∞∑
n=0

rn(λn cosnϕ− µn sinnϕ) (79)

Taking the gradient of −V (r, ϕ) we obtain the multipole expansion of the
azimuthal and radial field components, respectively

Bϕ = −1

r

∂V

∂ϕ
= −

∞∑
n=0

nrn−1(λn cosnϕ− µn sinnϕ) (80)

Br = −∂V
∂r

= −
∞∑
n=0

nrn−1(µn cosnϕ+ λn sinnϕ) (81)

Furthermore, we introduce the normal multipole coefficient bn and skew
coefficient an defined with the reference radius r0 and the magnitude of the
field at this radius B0 (these coefficients can be a function of s in a more
general case as it is presented further on).

bn = −nλn
B0

rn−1
0 an =

nµn
B0

rn−1
0 (82)

Bϕ(r, ϕ) = B0

∞∑
n=1

(bn cosnϕ+ an sinnϕ)

(
r

r0

)n−1

(83)

Br(r, ϕ) = B0

∞∑
n=1

(−an cosnϕ+ bn sinnϕ)

(
r

r0

)n−1

(84)

To obtain a model for the fringe field of a straight multipole, a proposed
starting solution for a non-skew magnetic field is

V =

∞∑
n=1

Vn(r, z) sinnϕ (85)

Vn =
∞∑
k=0

Cn,k(z)r
n+2k (86)
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It is straightforward to derive a relation between coefficients

∇2V = 0⇒ 1

r

∂

∂r

(
r
∂Vn
∂r

)
+
∂2Vn
∂z2

=
n2Vn
r2

= 0 (87)

Vn =
∞∑
k=0

Cn,k(z)r
n+2k (88)

⇒
∞∑
k=0

[
rn+2(k−1)

[
(n+ 2k)2 − n2

]
Cn,k(z) + rn+2k ∂

2Cn,k(z)

∂z2

]
= 0 (89)

By identifying the term in front of the same powers of r we obtain the
recurrence relation

Cn,k(z) = − 1

4k(n+ k)

d2Cn,k−1

dz2
, k = 1, 2, . . . (90)

The solution of the recursion relation becomes

Cn,k(z) = (−1)k
n!

22kk!(n+ k)!

d2kCn,0(z)

dz2k
(91)

Therefore

Vn = −

( ∞∑
k=0

(−1)k+1 n!

22kk!(n+ k)!
C

(2k)
n,0 (z)r2k

)
rn (92)

The transverse components of the field are

Br =

∞∑
n=1

grnr
n−1 sinnϕ (93)

Bϕ =
∞∑
n=1

gϕnr
n−1 cosnϕ (94)

where the following gradients determine the entire potential and can be
deduced from the function Cn,0(z) once the harmonic n is fixed.

grn(r, z) =

∞∑
k=0

(−1)k+1 n!(n+ 2k)

22kk!(n+ k)!
C

(2k)
n,0 (z)r2k (95)

gϕn(r, z) =

∞∑
k=0

(−1)k+1 n!n

22kk!(n+ k)!
C

(2k)
n,0 (z)r2k (96)

The z-directed component of the filed can be expressed in a similar form

Bz = −∂V
∂z

=

∞∑
n=1

gznr
n sinnϕ (97)

gzn =
∞∑
k=0

(−1)k+1 n!

22kk!(n+ k)!
C2k+1
n,0 r2k (98)
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The gradient functions grn, gϕn, gzn are obtained from

Br,n = −∂Vn
∂r

sinnϕ = grnr
n−1 sinnϕ (99)

Bϕ,n = −n
r
Vn cosnϕ = gϕnr

n−1 cosnϕ (100)

Bz,n = −∂Vn
∂z

sinnϕ = gznr
n sinnϕ (101)

One preferred model to approximate the gradient profile on the central axis
is the k-parameter Enge function

Cn,0(z) =
G0

1 + exp[P (d(z))]
, G0 =

B0

rn−1
0

(102)

P (d) = C0 + C1

(
d

λ

)
+ C2

(
d

λ

)2

+ · · ·+ Ck−1

(
d

λ

)k−1

(103)

where d(z) is the distance to the field boundary and λ characterizes the
fringe field length.

1.2 Fringe field of a curved multipole

(fixed radius)

We consider the Frenet-Serret coordinate system (x̂, ŝ, ẑ) with the radius
of curvature ρ constant and the scale factor hs = 1 + x/ρ. A conversion to
these coordinates implies that

∇ ·B =
1

hs

[
∂(hsBx)

∂x
+
∂Bs
∂s

+
∂(hsBz)

∂z

]
(104)

∇×B =
1

hs

[
∂Bz
∂s
− ∂(hsBs)

∂z

]
x̂ +

[
∂Bx
∂z
− ∂Bz

∂x

]
ŝ +

1

hs

[
∂(hsBs)

∂x
− ∂Bx

∂s

]
ẑ

To simplify the problem, consider multipoles with mid-plane symmetry, i.e.

bz(z) = Bz(−z) Bx(z) = −Bx(−z) Bs(z) = −Bs(−z) (105)

The most general form of the expansion is

Bz =

∞∑
i,k=0

bi,kx
iz2k (106)

Bx = z

∞∑
i,k=0

ai,kx
iz2k (107)

Bs = z
∞∑

i,k=0

ci,kx
iz2k (108)
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Maxwell’s equations ∇·B = 0 and ∇×B = 0 in the above coordinates yield

∂

∂x
((1 + x/ρ)Bx) +

∂Bs
∂s

+ (1 + x/ρ)
∂Bz
∂z

= 0 (109)

∂Bz
∂s

= (1 + x/ρ)
∂Bs
∂z

(110)

∂Bx
∂z

=
∂Bz
∂s

(111)

∂Bx
∂s

=
∂

∂x
((1 + x/ρ)Bs) (112)

The substitution of (106), (107) and (108) into Maxwell’s equations allows
for the derivation of recursion relations. (111) gives

∞∑
i,k=0

ai,k(2k + 1)xiz2k =

∞∑
i,k=0

bi,kix
i−1z2k (113)

Equating the powers in xiz2k

ai,k =
i+ 1

2k + 1
bi+1,k (114)

A similar result is obtained from (112)

∞∑
i,k=0

∂sbi,kx
iz2k =

(
1 +

x

ρ

) ∞∑
i,k=0

ci,k(2k + 1)xiz2k (115)

⇒ ci,k +
1

ρ
ci−1,k =

1

2k + 1
∂sbi,k (116)

The last equation from∇×B = 0 should be consistent with the two recursion
relations obtained. (110) implies

∞∑
i,k=0

[
i+ 1

ρ
ci,kx

i + ci,kix
i−1

]
zk+1 =

∞∑
i,k=0

∂sai,kx
iz2k (117)

⇒
∂sai,k
i+ 1

=
1

ρ
ci,k + ci+1,k (118)

This results follows directly from (114) and (116); therefore the relations
are consistent. Furthermore, the last required relations is obtained from the
divergence of B

∞∑
i,k=0

[
ai,kx

iz2k+1

ρ
+ iai,kx

i−1z2k+1 +
iai,kx

iz2k+1

ρ

]
+ (119)

+
∞∑

i,k=0

[
∂sci,kx

iz2k+1 + 2kbi,kx
iz2k−1 +

2k

ρ
bi,kx

i+1z2k−1

]
= 0
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⇒ ∂sci,k+
2(k + 1)

ρ
bi−1,k+1 +2(k+1)bi,k+1 +

1

ρ
ai,k+(i+1)ai+1,k+

1

ρ
ai,k = 0

Using the relation (114) to replace the a coefficients with b’s we arrive at

∂sci,k+
(i+ 1)2

ρ(2k + 1)
bi+1,k+

(i+ 1)(i+ 2)

2k + 1
bi+2,k+

2(k + 1)

ρ
bi−1,k+1+2(k+1)bi,k+1 = 0

(120)
All the coefficients above can be determined recursively provided the field
Bz can be measured at the mid-plane in the form

Bz(z = 0) = B0,0 +B1,0x+B2,0x
2 +B3,0x

3 + . . . (121)

where Bi,0 are functions of s and they can model the fringe field for each
multipole term xn. As an example, for a dipole magnet, the B1,0 function
can be model as an Enge function or tanh.

1.3 Fringe field of a curved multipole

(variable radius of curvature)

The difference between this case and the above is that ρ is now a function
of s, ρ(s). We can obtain the same result starting with the same functional
forms for the field (106), (107), (108). The result of the previous section
also holds in this case since no derivative ∂

∂s is applied to the scale factor
hs. However the expression for hs changes. This will be treated differently
later. If the radius of curvature is set to be proportional to the dipole filed
observed by some reference particle that stays in the centre of the dipole

1/ρ(s) ∝ B(z = 0, x = 0, s) = Bx(z = 0, x = 0) = b0,0(s) (122)

1.4 Fringe field of a multipole

This is a different, more compact treatment

The derivation is more clear if we gather the variables together in func-
tions. We assume again mid-plane symmetry and that the z-component of
the field in the mid-plane has the form

Bz(x, z = 0, s) = T (x)S(s) (123)

where T (s) is the transverse field profile and S(s) is the fringe field. One
of the requirements of the symmetry is that Bz(z) = Bz(−z) which using a
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scalar potential ψ requires ∂ψ
∂z to be an even function in z. Therefore, ψ is

an odd function in z and can be written as

ψ = zf0(x, s) +
z3

3!
f1(x, s) +

z5

5!
f2(x, s) + . . . (124)

The given transverse profile requires that f0(x, s) = T (x)S(s), while ∇2ψ =
0 follows from Maxwell’s equations as usual, more explicitly

∂

∂x

(
hs
∂ψ

∂x

)
+

∂

∂s

(
1

hs

∂ψ

∂s

)
+

∂

∂z

(
hs
∂ψ

∂z

)
= 0 (125)

For a straight multipole hs = 1. Laplace’s equation becomes∑
n=0

z2n+1

(2n+ 1)!

[
∂2
xfn(x, s) + ∂2

sfn(x, s)
]

+
∑
n=1

fn(x, s)
zn−1

(n− 1)!
= 0 (126)

By equating powers of z we obtain the recursion relation

fn+1(x, s) = −
(
∂2
x + ∂2

s

)
fn(x, s) (127)

The general expression for any fn(x, s) is then obtained from the mid-plane
field by

fn(x, s) = (−1)n
(
∂2
x + ∂2

s

)n
f0(x, s) (128)

fn(x, s) = (−1)n
n∑
i=0

(
n

i

)
T (2i)(x)S(2n−2i)(s) (129)

For a curved multipole of constant radius hs = 1 + x
ρ with ρ = const.

The corresponding Laplace’s equation is(
1

ρhs
∂x + ∂2

x + ∂2
z +

∂2
s

h2
s

)
ψ = 0 (130)

Again we substitute with the functional form of the potential to get the
recursion

fn+1(x, s) = −
[

1

ρ+ x
∂x + ∂2

x +
∂2
s

(1 + x/ρ)2

]
fn(x, s) (131)

fn(x, s) = (−1)n
[

1

ρ+ x
∂x + ∂2

x +
∂2
s

(1 + x/ρ)2

]n
f0(x, s) (132)

Finally consider what changes for ρ = ρ(s). An observation has to be made
here: because of the variable radius, the scale factor hs becomes

hs =

[(
∂ρ

∂s

)2

+

(
1 +

x

ρ

)2
]1/2

(133)
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Laplace’s equation gives[
∂x(hs)

hs
∂x + ∂2

x + ∂2
z +

∂2
s

h2
s

+ ∂s

(
1

hs

)
∂s
hs

]
ψ = 0 (134)

The last step is again the substitution to get

fn+1(x, s) = −
[
∂x(hs)

hs
∂x + ∂2

x +
∂2
s

h2
s

+ ∂s

(
1

hs

)
∂s
hs

]
fn(x, s) (135)

fn(x, s) = (−1)n
[
∂x(hs)

hs
∂x + ∂2

x +
∂2
s

h2
s

+ ∂s

(
1

hs

)
∂s
hs

]n
f0(x, s) (136)

If the radius of curvature is inversely proportional to the dipole field in
the centre of the multipole (the dipole component of the transverse field is
a constant Tdipole(x) = B0 multiplied by S(s)) then

ρ(s) =
ρ(0)

S(s)
(137)
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Weeks 3 and 4

1.1 Multipole Models in OPAL

The current version of the OPAL library has the possibility to represent a
multipole of arbitrary order by setting the normal and skew coefficients of
the field. However, the only model that includes fringe fields is that of a
dipole (both straight and sector magnet), using the Enge function with 6
parameters. All the others higher multipoles are represented as hard edge
magnets.

The figure 1.8 shows the normalised vertical component of the magnetic
field on the mid-plane where x is the relative distance from the reference tra-
jectory measured radially and ”phi” is the angle along the circular trajectory.
This component has the expected behaviour (soft edges and constant value
everywhere inside the magnet). The other two components are identically
zero everywhere on the mid-plane.

An analysis of the field map off the mid-plane shows some unexpected
peculiarities. The figures 1.9 and 1.10 represent the components of the field
off the mid-plane. The sudden change in the pattern is caused by reaching
the edge of the aperture and entering the material of the magnet. It seems
like inside the material the code is calculating the fringe fields even if the
field inside the magnet is not calculated. The vertical component Bz shows
deviations in the form of spikes at the regions where the fringe field reaches
the value of the central field. We will show later that these deviations have
consequences on the value of the curl of the field. The Bx component was
expected to be symmetric, but it is non-zero only at the exit edge of the
magnet. The By component is symmetric and increases as we get further
away from the mid-plane.
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Figure 1.8: Vertical component of the field on mid-plane

Figure 1.9: figure
Vertical component of the field off mid-plane

1.2 Mawxell’s equations

We built a unit test for Maxwell’s equations and run it for the field of
the dipole. Firstly, the value of the divergence of the field is close to zero
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Figure 1.10: Horizontal components of the field off mid-plane

(expected since the field is mainly constant in space) as shown by figure 1.11
and 1.12 where the values are not normalised. For the parameters chosen
to describe the magnet (length, aperture, reference radius, design energy of
the particles, bending angle of 30 degrees) the value of the field is of order
106 units. We can therefore imply that when normalised the divergence of
the field is indeed close to zero even off the mid-plane.

Secondly, the normalised absolute value of the curl of the field is 35 times
higher than unity on the mid-plane and 80 times higher off the mid-plane -
figure 1.13 and figure 1.14. The regions of non-uniformity are the end fields
as expected. The spike-shaped deviations and the horizontal components of
the field are believed to cause this behaviour. Since the curl of the field is
non-zero, the model is not completely realistic.

We tried to refine the existing model by including more terms in some of
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Figure 1.11: Divergence of the field on mid-plane

Figure 1.12: Divergence of the field off mid-plane

the expansions used in the code. As shown in the figure 1.15 these changes
eliminate the corner deviations but introduces irregularities near the origin
of the Enge functions used in the end fields. Furthermore, the normalised
absolute value of the curl of the field drops by a factor of 10 (figure 1.16),
still not good enough to accept it as a realistic model.
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Figure 1.13: |∇ ×B| on the mid-plane

Figure 1.14: |∇ ×B| off the mid-plane

As mentioned before, the higher multipole models do not include fringe
fields (for example figure 1.17 shows the field map of a quadrupole in OPAL).
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Figure 1.15: Vertical component of the refined field off mid-plane

Figure 1.16: |∇ ×B| off the mid-plane for the refined-field
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Figure 1.17: Vertical component in a quadrupole
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Weeks 5

1.1 New Multipole Model in OPAL

Since the pre-existing multipole model in OPAL only supports fringe fields
for dipoles and does not offer the possibility to use combined function mag-
nets, we decided to implement our new model. The field expansion used
in this implementation follows the description of section 1.4 for a straight
multipole.

The new element is called ”MultipoleT” and has the following attributes
(note - the model is extended later, some of these attributes are changed, see
next chapter): L - the length of the magnet (inherited from the component
base this is the length of the central field), VAPERT and HAPERT - the di-
mensions of the aperture (currently this element only support a rectangular
aperture), FRINGELEN - the length of the end fields, MAXFORDER - the
number of terms used in the field expansion (more precisely in the scalar
magnetic potential ψ), TP - the transverse profile. The TP attribute is a
vector consisting of the derivatives of the field expansion in the mid-plane.
Referring to section 1.4, TP contains the derivatives of the transverse profile
T (x).

To test the functionality of this model we built a simple lattice consisting
of 24 dipoles. We successfully found a closed circular orbit (figure 1.18)
and run the tracking code multiple times for different particle energies or
trajectory radii (figure 1.19 shows an open orbit).

The fringe fields can be observed at the ends of each dipole. Additional
care needs to be taken when setting the length of the fringe fields. For
small fringe fields, the values of the field start to diverge when the aperture
is increased over a certain threshold. This aspect is shown in one of the
following sections.
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Figure 1.18: Closed orbit in a DipoleT lattice

Figure 1.19: Open orbit in a DipoleT lattice

1.2 Maxwell’s laws

Following the same procedure as for the pre-existing model, we wrote a unit
test to make sure that the MultipoleT model satisfies Maxwell’s laws. The
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field for a dipole is shown in figure 1.20 (vertical component on the midplane,
the other two components being identically zero) and figures 1.21 and 1.22
(off the mid-plane, the third component Bx being zero everywhere).

Figure 1.20: DipoleT field on mid-plane

Figure 1.21: DipoleT field off mid-plane

The divergence and curl of the field are shown in figures 1.23, 1.24 and
1.25. While the divergence of B is exactly zero everywhere, the curl shows
some noise. This is most probably due to the precision in the calculation of
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Figure 1.22: DipoleT field off mid-plane

derivatives. However, the noise is 10 orders of magnitude smaller than the
field. Thus, we conclude that Maxwell’s laws are obeyed.

Figure 1.23: Divergence of the field off mid-plane

We also tested the MultipoleT element with the configuration of a quadrupole
(the field is shown by figure 1.26). The unit test showed that Maxwell’s
equations are also satisfied by the quadrupole as seen in figures 1.27 and
1.28.
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Figure 1.24: |∇ ×B| on the mid-plane

Figure 1.25: |∇ ×B| off the mid-plane

1.3 Convergence Studies

As mentioned in a previous section, the values of the aperture for which
the field does not diverge is highly dependent on the length of the fringe
fields. A smaller fringe field implies higher derivatives of the end fields. In
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Figure 1.26: QuadrupoleT field off the mid-plane

Figure 1.27: |∇ ·B| off the mid-plane

this case the field inside the aperture is more probable to diverge for smaller
dimensions of the aperture. Thus, when setting the length of the end fields,
one must make sure that the aperture is small enough for the field expansion
to converge everywhere. Figures 1.29, 1.30 and1.31 shows the behaviour of
the field when going off the mid-plane for different fringe field lengths.
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Figure 1.28: |∇ ×B| off the mid-plane

Figure 1.29: Field divergence regions
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Figure 1.30: Field divergence regions

Figure 1.31: Field divergence regions
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Weeks 6-8

1.1 Extending the new multipole model in OPAL

The previous implementation of the MultipoleT element in OPAL was ex-
tended to include more features such as: variable radius of curvature, asym-
metric fringe fields, rotation for skew fields, entrance angle. The full docu-
mentation as introduced in that of OPAL can be found below.

Some figures showing the field for a dipole and a combined function
magnet (10 T dipole + 100 T/m field gradient quadrupole) generated by
this model can be seen in Appendix A (the field corresponds to the variable
radius expansion).

Documentation for MultipoleT

A MULTIPOLET is in OPAL-T a general multipole with extended features.
It can represent a straight or curved magnet. In the curved case, the user
may choose between constant or variable radius. This model includes fringe
fields.

label: MULTIPOLET, L=real, ANGLE=real, VAPERT=real,
HAPERT=real, LFRINGE=real, RFRINGE=real, TP=real-vector,
VARRADIUS=bool;

L Physical length of the magnet (meters), without end fields. (Default:
1 m)

ANGLE Physical angle of the magnet (radians). If not specified, the magnet is
considered to be straight (ANGLE=0.0). This is not the total bending
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Figure 1.32: MultipoleT illustration (regions 1 and 2 represent the end fields)

angle since the end fields cause additional bending. The radius of the
multipole is set from the LENGTH and ANGLE attributes.

VAPERT Vertical (non-bend plane) aperture of the magnet (meters). (Default:
0.5 m)

HAPERT Horizontal (bend plane) aperture of the magnet (meters). (Default:
0.5 m)

LFRINGE Length of the left fringe field (meters). (Default: 0.0 m)

RFRINGE Length of the right fringe field (meters). (Default: 0.0 m)

TP A real vector, containing the multipole coefficients of the field ex-
pansion on the mid-plane in the body of the magnet: the transverse
profile T (x) = B0 +B1x+B2x

2 + . . . is set by TP=B0, B1, B2 (units:
T ·m−n). The order of highest multipole component is arbitrary, but
all components up to the maximum must be given, even if they are
zero.

MAXFORDER The order of the maximum function fn used in the field expansion
(default: 5). See the scalar magnetic potential below. This sets for
example the maximum power of z in the field expansion of vertical
component Bz to 2 ·MAXFORDER.

EANGLE Entrance edge angle (radians).

ROTATION Rotation of the magnet about its central axis (radians, counterclock-
wise). This enables to obtain skew fields. (Default 0.0 rad)
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VARRADIUS This is to be set TRUE if the magnet has variable radius. More pre-
cisely, at each point along the magnet, its radius is computed such
that the reference trajectory always remains in the centre of the mag-
net. In the body of the magnet the radius is set from the LENGTH
and ANGLE attributes. It is then continuously changed to be pro-
portional to the dipole field on the reference trajectory while entering
the end fields. This attribute is only to be set TRUE for a non-zero
dipole component. For a visualization see the next section. (Default:
FALSE)

VARSTEP The step size used in calculating the reference trajectory for VAR-
RARDIUS = TRUE (meters). It specifies how often the radius of
curvature is re-calculated. This has a considerable effect on tracking
time. (Default: 0.1 m)

Superposition of many multipole components is permitted. The reference
system for a multipole is a Cartesian coordinate system for straight geometry
and a (x, s, z) Frenet-Serret coordinate system for curved geometry. In the
latter case, the axis ŝ is the central axis of the magnet.

The following example shows a combined function magnet with a dipole
component of 2 Tesla and a quadrupole gradient of 0.1 Tesla/m.

M30: MULTIPOLET, L=1, RFRINGE=0.3, LFRINGE=0.2,
ANGLE=PI/6, TP={2.0, 0.1}, VARRADIUS=TRUE;

The field expansion used in this model is based on the following scalar
potential:

V = zf0(x, s) +
z3

3!
f1(x, s) +

z5

5!
f2(x, s) + . . . (138)

Mid-plane symmetry is assumed and the vertical component of the field on
the mid-plane is given by the user under the form of the transverse profile
T (x). The full expression for the vertical component is then

Bz = f0 = T (x) · S(s) (139)

where S(s) is the fringe field. This element uses the Tanh model for the
end fields, having only three parameters (the centre length s0 and the fringe
field lengths λleft, λright):

S(s) =
1

2

[
tanh

(
s+ s0

λleft

)
− tanh

(
s− s0

λright

)]
(140)

Starting from Maxwell’s laws, the functions fn are computed recursively and
finally each component of the magnetic field is obtained from V using the
corresponding geometries.
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1.2 VARRADIUS attribute

This section provides a couple of figures to better understand how the VAR-
RADIUS attribute modifies the geometry of the MultipoleT OPAL element.
The figures (1.33) and (1.34) are intended to show the difference between
the shape of the field when the VARRADIUS attribute is set to FALSE and
TRUE, respectively. The orientation, dimensions and field strength of these
two magnets are the same. As it can be observed, in the figure (1.33) the
end fields have the same curvature as the body of the magnet, while in figure
(1.34) the curvature of the end fields approaches zero as does the field

Figure 1.33: Constant radius dipole + particle trajectory

Figure 1.34: Variable radius dipole + particle trajectory
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1.3 Tracking ISIS with OPAL

The previously described element was used to model the dipoles and quadrupoles
existing in the ISIS synchrotron ring. We have built the 10-fold symmetric
lattice from an older description which used small dipoles/quadrupoles to
model the end fields. However, in our lattice there was no need for this
magnets since the end fields are taken care of by the new OPAL element.
Therefore, the old lattice file represented only a starting point from which
small adjustments were made to the length, fringe lengths or bending angle
of the magnets until we were able to contain the beam inside the accelerator.

Figure (1.35) shows the trajectory of the particle inside the accelerator
for 100 turns. The focusing/defocusing effects of the quadrupoles (and even
of the dipoles) are considerably visible. Figure (1.36) shows a phase-space
diagram for 2 turns and the ellipse fit.

Figure 1.35: Tracking one particle for 100 turns (trajectory in red)
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Figure 1.36: Phase space diagram (near closed orbit) + ellipse fit

1.3.1 Tracking CPU time

In order to obtain an approximation of the time required to track many par-
ticles (e.g. 106) for an arbitrary number of turns around the ISIS accelerator
we make a note of the CPU time required in tracking one particle.

When using the constant radius element for the ISIS dipoles, the total
CPU time was 2,628 for one particle and 100 turns. From this total time,
an amount of 2,411 was spent for the integration of the particle’s motion.

By contrast, the total CPU time was 503 for a particle and 1 turn when
using the variable radius model for the ISIS dipoles. Assuming a linear re-
lationship, this implies an approximate CPU time of 50,000 for 100 turns
which is by a factor of 20 higher then that required when using the simpler
model. This is expected since additional tracking needs to be done to deter-
mine the geometry of magnet in this case. We can reduce the tracking time
by setting a lower value for the VARSTEP attribute, but this also reduces
the precision with which the shape of the magnet is determined, making the
field less smooth. Decreasing the VARSTEP value by a factor of 4 increases
the CPU total time from 503 to 1892 for 1 turn. Therefore, we may consider
a linear relation between these two variables.

A possible solution to decrease the total CPU time and still use the more
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complex model is to use OPAL to generate the field map for the accelerator.
Afterwards, the field map may be used by OPAL or another tracking code,
thus avoiding the repeated computation of the shape of the magnets while
tracking.
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Appendix A

Field maps

Figure 1.37: Dipole field component Bz (variable radius)

Figure 1.38: Dipole field component Bx (variable radius)
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Figure 1.39: Dipole field component Bs (variable radius)

Figure 1.40: Combined function multipole(variable radius) - field component
Bz (Bx, Bs = 0) - mid-plane
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Figure 1.41: Combined function multipole(variable radius) - field component
Bz - off mid-plane

Figure 1.42: Combined function multipole(variable radius) - field component
Bx - off mid-plane
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Figure 1.43: Combined function multipole(variable radius) - field component
Bs - off mid-plane

Figure 1.44: Combined function multipole(variable radius) - field component
Bz - section in end field
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Figure 1.45: Combined function multipole(variable radius) - field component
Bx - section in end field

Figure 1.46: Combined function multipole(variable radius) - field component
Bs - section in end field
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