ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

PAUL SCHERRER |

o=

NSTITUT

=

s-BASED MAPS FROM TPS & LIE-SERIES
APPLIED TO PROTON-THERAPY GANTRIES

MASTER THESIS

in Biomedical Engineering - Medical Physics

Department of Information Technology and Electrical Engineering

ETH Zurich

written by

BSc TU VIENNA
PHILIPPE GANZ

supervised by

Prof. Dr. A. J. Lomax
Dr. A. Adelmann

June 01, 2017



Abstract

Proton therapy is a growing field in radio oncology. It gains its popularity due to the characteristic
energy deposition in the tissue, the Bethe-Bloch-Law, resulting in the Bragg-Peak. This allows
a decrease the unwanted integral dose and also the sparing of the surrounding healthy tissue.
To make full usage of this profitable property gantries are used to provide a beam delivery in
different angles. These gantries often contain a quite complex beam optics to ensure a clearly
defined beam, as the last beam line section before the patient.

Their design can be done in several beam optics programs, which contain different math-
ematical approaches. One of those is map tracking. In this method each beam line element
gets represented in a multidimensional transfer map. This mathematical description not only
simplifies the handling, but also allows a sophisticated beam line analysis. Furthermore, these
maps can be combined, to summarize sections in one map and to accelerate the simulation in
repetitive sections.

This thesis is based on the idea to implement an map tracking based algorithm in the OPAL
framework [1] based on Lie Algebra and Truncated Power Series [2]. Furthermore it was tested
it on the therapeutic proton therapy gantry ”PSI Gantry 2”.
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Chapter 1

Introduction

1.1 Motivation

In 2015 cancer was the cause of death in nearly 8.8 million cases, which makes it to the leading
cause of death worldwide. [3, Chapter 1.1] An established non invasive method for its treatment
is radiation therapy. Just three months after the discovery of x-rays of Wilhelm Rontgen (1845
- 1923) in 1895 the first treatments took place. Approximately half a century later, in 1946, the
accelerator technology has evolved on a level that Robert R. Wilson (1914 - 2000) proposed the
use protons (and heavy ions) for the dose delivery [4, Chapter 1.1].

The depth dose distribution of a proton beam is described in the Bethe-Bloch-Law and forms
the Bragg-Peak. This property opens new possibilities for treating tumors for example in the eye,
brain or spine, due to its finite range. It also can lead to an optimized treatment in which the
surrounding healthy tissue receives less dose, resulting in a lower integral dose, which reduces the
risk of secondary tumors. This issue is of great importance in a treatment of pediatric patients.

In complex treatment cases it is necessary to deliver multiple fields at different angles to gain
an adequate dose distribution, avoiding the radiation of organs at risk. Gantries provide this
wanted characteristics.

In an beam optical view, the design of those can be challenging, considering the beam dis-
persion or beam scanning. For the calculation, different approaches are possible. In this thesis
we will focus Map Tracking (MT), in particular on the map creation in Lie-Algebra and the
implementation using Truncated Power Series Algebra (TPSA). In this method a mathematical
object in form of a (non-) linear "map” gets created for each element. This does not only provide
a handy mathematical description of the beam line, but also opens the possibility for beam line
analysis or computational speedups.

1.2 Theoretical Introduction

The theoretical introduction is widely adopted from M. Berz [2], F. Hinterberger [5], A. Adelmann
[6] and M. Bartelmann [7].
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1.2.1 Beam Optics Formalism
Particle

In beam optics the particle gets described by its kinetic attributes, hence the rest mass, charge
and the kinematic characteristics. Since the kinematics were defined by the initial position and
the movement, a three dimensional system is described by six variables, represented in the six
dimensional phase space. In this thesis these six variables refer to a in particle physics widely
used convention.

X
Pa
. |y
. 1.1
b (1.1)
z
1)
E 1
_E 1 1.2
Poc o )
1 1 i .
Pi= pmui = pymog, 6=y, (1.3)

In the upper formulas E represents the total energy of the particle and P, the momentum of
the reference particle. S is the relativistic quantity g = L?(ZI’ defined by the ratio of the absolute
particle velocity « to the speed of light c.

Using a Frenet-Serret Coordinates (FSC) referring to a Reference Particle (RP) which has
the ideal design properties, the variables z, y and z display the spatial offset to the RP and
the transversal momentums p, and p, (Eq. (1.3)) describe the beam widen or focusing. For an
easier handling and clear represented value of the longitudinal beam momentum p,, the energy
derivation § (Eq. (1.2)) get introduced.

The definition of these variables may vary by some constants in different literature, but the
meaning and physical representation still remains the same.

Frenet-Serret Coordinates

The FSC is a coordinate system which origin refers to the moving object, i. e. the RP, using the
normal, binormal and tangent derivative of the trajectory as unit vectors. The other particles
can now be described in relation to this idealistic particle.

This coordinate system has the advantage to provide an elegant description of the beam pa-
rameter even in curved trajectory as in a synchrotron (ring), cyclotron (spiral) or bunch compres-
sor (chicane) in which parameters in the Cartesian coordinate system seems more cumbersome
to handle.

Philippe Ganz 2
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Figure 1.1: Frenet-Serret Coordinates; Where the red centered dot represents the RP, which
moves along the blue dotted reference trajectory and defines the orientation of the red spatial
axis. The green axes indicate the direction of the momenta (p, and p, of the RP = 0). Where
the gray dots symbolize other particles of the bunch.

Particle Bunch

Sigma Matrix In order to describe the whole particle bunch in a compact form, the Sigma Ma-
trix (3) provides a handy representation. Here, the correlation between each particle parameter
v get summarized in one Matrix.

Bij = ((vi = (i) (v = (v;))) = (vivy) — (i) (vj) i, j €{x, y, 2} (1.4)

N
The (-) operator denotes the overall mean, defined as (v;) = % Z Vi n, where NN is the total

n=1
number of particles. This definition leads to the symmetric matrix:

(@%)  (xpe)  (zy)  (zpy)  (x2)  (20)
(pom)  (P2) (Do) (Paby) (P22) (Dab)
s | wo) e WP py) w2 (w0)
(pyx) (pypz) (pyy)  (P3)  (Py2) (pyo)
(zz)  (2pa)  (zy)  (2py)  (2%)  (20)
(0z)  (Opz)  (0y)  (Opy)  (0z) (&%)

This representation also provides an easy way to identify dependencies in between the three
orthogonal planes. Defining o; as a (2 x 2) Matrix.

(1.5)

Philippe Ganz 3
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An ¥ in the block diagonal as in Eq. (1.7) is considered as uncoupled, because no correlations
in between the canonical pairs exist. Any matrix entry outside of these arranged sub matrices
”couples” the beam.

ox 0 O
c=(0 o, O (1.7)
0 0 oy

TWISS - Parameter If the beam is uncoupled, for example provided by a synchotron or
sufficient decoupling optics, the beam can be described with the Twiss-, also known as Courant-
Snyder-, parameter. Due to the uncoupled property the different planes do not influence each
other, so they get handled separately.

Considering o; analogous to Eq. (1.6), the (2 x 2) sub matrix now gets represented as:

oi = ( B _ai) & i=x,Y, 2 (1.8)

—Q Y

These Twiss parameter provide a good way to describe the elliptical shape of the phase space in
each plane, where o can be interpreted as the tilt of the ellipse and 3, the so called ”envelope
function”, describes the ratio of the ellipse axes. 7y is a on a and § dependent property v = IJ%Q2 .
€ is the beam emittance, the bunch volume in the six dimensional phase space, which not only
describes the scaling of the ellipse but also is a quantity for the beam quality. The beam line
elements change the form and tilt of the ellipse.

The particles rotate in the phase space along the ellipse. This angular movement in between
two points s; and sy get described phase shift p. This quantity can be calculated from the
envelope function f.

EP) 1
= —ds i=uz,y,2 (1.9)
S1 ﬁz
If the beam line is a closed, the betatron tune v plays an important role to avoid unstable
resonances. It is defined by Eq. (1.10), where p* denotes the phase shift of one complete turn.
The closer v is to a natural number or a rational number with small numbers in the dividend
and divisor, the higher is the chance to meet an unwanted resonance.

Hi

_ M

_27rd8 1=x,Y,2 (1.10)

Vi

1.2.2 Basic Idea of Map Tracking

In map tracking, each element gets represented by a so called transfer map, which describes its
effect on the beam. To calculate the final particle properties (v(f)) the map (M) just has to be
applied on the initial particle properties (v(?), as in Eq. (1.11). This procedure is well known
and also used in other fields as for example in light optics.

o® [0 o0

Philippe Ganz 4
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o) = Mo p® (1.11)

Note, that in this thesis the calligraphic M represents a nonlinear map and the "normal” M the
linear transfer map.

Due to the known positions of the beam line elements, the position of the reference particle
s is the preferred choice, in contrast to the energy dependent description using the time ¢, for an
independent variable.

This map formalism brings advantages in the mathematical handling, beam line analysis
and can in some also decrease the computational time in relation to time dependent Particle
Tracking (tdPT) algorithms.

In order to track the whole bunch in a fast manner, the transfer map can also be applied on
3 itself. Due to the terminology, calling the entries of the 3 moments, this procedure is known
as moment tracking. In this case, the operation is as followed.

s = Mox® oM™ (1.12)

Where the () indicates the initial and (/) the final state. Note that here the M represents a
linear transfer map and M7 its transposed. It is also possible to track with higher order maps
M, but in that procedure just artificial momentums without an physical meaning would get
unnecessarily calculated.

Time dependent Particle Tracking

As an alternative to MT | tdPT is established method in accelerator physics. Here the particle get
tracked in discrete time steps trough electric and magnetic vector fields. At each of those steps,
the deflection gets calculated (Eq. (1.13)), which forms the basis to find the particle position and
the parameters for the propagation to the next step. Here time step size, plays an important role
for the simulation outcome, because in between those steps, the particle moves linearly according
to its momentum.
@:q(ﬁx §+E) (1.13)
dt
Due to the implementation tdPT programs do not provide maps for a beam line analysis or the
possibility to accumulate the beam line elements. Latter point can lead to high simulation times,
especially in repetitive systems.

1.2.3 Hamiltonian Mechanic

Hamiltonian mechanics are a different mathematical way of describe mechanical systems. In this
approach the system gets defined by a so called Hamiltonian H, which in most cases refers on
the total system energy. This time dependent Hamiltonian can now be used to determine the
behavior of the system, using Eq. (1.16) the Hamiltonian equations.

H:= H((T(t)ﬁ(t)) (1.14)

H = T(ﬁ) + V(q’) (1.15)
dp H dq H
dt oq dt op

Philippe Ganz 5
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Where p’ denotes the momentum and ¢ the position, which relate to the kinetic and potential
Energy (T( and V(g).

Map tracking finds its origin in the Hamiltonian mechanic. The basic idea is to transform
the Hamiltonian H in a form in which it describes the six canonical variables v (Eq. (1.1)) with
the independent variable s. The canonical pairs get now formed in each plane form the spatial
¢ =z, y, z and momentum j' = p,, p,, d coordinates as in Eq. (1.17).

H:= Dz (‘T, p:v) (y> py) (57 5) (117)

1.2.4 Creation of Hamiltonians
Magnetic Interaction
This section focuses on the determination of the magnetic vector field é(s) = (By, By, BZ)T

along the design path and its effect on the particle.

Multipole Expansion The multipole expansion provides a straight forward way to calculate
the magnetic field inside of magnets.

B, +iB, =Y (it +b,)- (”” :f ’y) (1.18)
0

n=0

The magnetic field gets described with B = (By,s By)T, where a and b represent the skew and
“normal” magnetic field on the pole. 7y is element aperture and n is the number of magnetic
pairs —1.

For an ideal multipole the coefficients a,, and b,, are zero for all, except for one n, so the
element has pure n + 1-pole properties.

. . , T+ , 22—y +i-22
By + 1B, = (iag + bo) + (iay +by) - (y) + (iag + bs) - (y2y> +... (1.19)
N—— To o

Dipole
Quadrupole Sextupole

Keeping in mind, that this expansion neglects the fringe fields ("hard edge model”) and assumes
plane pole faces, which can lead to necessary modifications for the field before and after the
magnet.

Vector Potential The magnetic analogy to the electric potential is the vector potential A
It mandatory in the creation of the Hamiltonian for the description of the general canonical
momentum.

B=VxA (1.20)
The combination of the multipole expansion (1.18) with the the vector potential (1.20) leads to
0A, 0A,
B, +iBy = — — 1.21
Y t+1 ox t ay ( )

Philippe Ganz 6
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Ay =0 (1.22)

A, =0 (1.23)
~ relSi ( +iy)""

A, =—Re <T§(zan +by) o (1.24)

It can been seen, that in the multipole expansion just an longitudinal vector potential component
exists. This is a direct result of the hard edge model with no pole face rotation, since then the
longitudinal magnetic field is considered zero.

The vector potential affects the particle momentum according to the definition of the general
cannonical momentum. [7, Chapter 20]

B =j+ed (1.25)

Relativistic Hamiltionian

For the construction of a beam line element Hamiltonian, we need to consider the relativistic
definition of the kinetic energy 7', using the general cannonical momentum, and the - in this
application electric - potential V.

T =\ (e) + (me2)® 5= (P —eA) (1.26a)

Applying those definitions with Eq. (1.15) leads to the origin for the map creation.

-,

Hyy =ed + \/((]3 - eA)c)2 + (me?)? (1.27)

In this form, the Hamiltonian uses different dependent variables as in (1.1) and the time ¢ as
independent variable. Furthermore it is not generalized for curved trajectories, as in a dipole.
These three differences require each an canonical transformation to change the Hamiltonian vari-
ables to the wanted form as in Eq. (1.17) and general for curvature (attached in Sec. ” Canonical
Transformations”). These transformations result in Eq. (1.28) for a straight and Eq. (1.29) for
a curved trajectory.

LIV S A S SR C S S
H = By \/<ﬁ0 +4 PoC) (px am) (py lly) (ﬂo'yo)Q + ag (128)

Hzi—(lJrhx) <1+ qq)>2(pxaz)2(p —a)27;+(1+hx)as
Bo Bo FPoc v (Bovo)?

(1.29)
Where the vector potential is normalized according to Eq. (1.30) and the momentum to Eq.
(1.3).

i=xz,, s (1.30)

Philippe Ganz 7
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Hamiltonians of beam line elements
In this section previous formulas get combined to form the Hamiltonian for the different beam

elements. All of those build up on Eq. (1.28) for a straight and Eq. (1.29) for curved trajectory.

Drift Space A drift space represents a field free beam line section. The vector and electrical
potential are zero and lead to a following Hamiltonian:

2
Hprigt = LA \/<1 + 5) S % (1.31)
Bo Bo (Boyo)

Dipole The dipole is an element with a curved trajectory. Its only field is magnetic, which
leads to an longitudinal vector potential A,. For a description of the magnetic field By relative
on the beam, it gets normalized with the inverse magnetic beam rigidity to k.

by q ha?
Ay=22L (g 2 1.32
o Po (x 2(1+hx)) (1.32)
bo q
fo = = L 1.
) (1.33)
5 1 2 1 ha?
o= o (L o) i eiemn (e )
P o | )\/ Bo e (Bovo)? ( Jho 2(1+h1£) )
1.34

Dipole - Pole Face Rotation An exit or entrance pole face rotation would lead to an addi-
tional magnetic field at the magnet ends.

Figure 1.2: Pole Face Rotation; In this figure, the black line represents a dipole magnet with
orthogonal edges. The green magnet edge is a pole face rotation of the angle ¥, where the red
dotted line indicates the reference trajectory.

Philippe Ganz 8
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Those fields can get described with Eq. (1.35a). Hence the occurring longitudinal magnetic
field leads to a vector potential in the dispersion plane a,.

B, = —BO% tan () (1.35a)
B, = Bo G - ftan(xp)) (1.35b)
B, = By? (1.35¢)

l

Wheres £ represents the longitudinal position in the entrance or exit fringe field, which has the
length I. Deriving the normalized vector potentials lead to Eq. (1.36). Due to the already second
order of y in a, the quadratic general canonical momentum therm in the x-plane is of the 4"
order. This would result in additional 3' order effects in the y-plane on the particle bunch.

1 ko

@ =5 (€ -v?) (1.36a)
as = —%% (y> — 2%) tan () (1.36Db)

For a linear approximation just gets as considered. The form of this potential is similar to the
quadrupole vector potential. Which make it possible to handle this potential independently as
a fictional quadrupole. Using a ”thin lens approximation” results in a Hamiltonian according to
(1.37) with the form of a "Kick Map”. These maps can now be added before and after the ”pole
face rotation free” dipole to get a linear approximation for the pole face rotation.

1
HThinLens = 5(12 - yQ)kO tan (\II) (137)

Quadrupole The Hamiltonian of a quadrupole is created using Eq. (1.28) and Eq. (1.22)
with n = 1 for the vector potential . For a simplified representation, ki gets introduced which
represents the normalized field gradient.

161, 4 9
A== (22— 1.
= 3 (x y) (1.38)
b g
k1 = o Bo (1.39)
§ 1 2 1 1

Huaruoezi_ +6) _%_ 2_74‘*]6 (EQ—Q 1.40
Quadrupole = g, \/<ﬂo Pe =Py (Bovo)® 2 i v) (140)

1.2.5 Truncated Power Series Algebra

The idea of a DA is to ”solve analytic problems with algebraic means”. DA are a method to
bring functions and operations on them in a for the computer treatable form, similar to numbers
[2, Chapter 2]. The TPSA is a special form of a DA. Here the Taylor expansion 7 is used
as equivalence relation, which transforms numbers and functions in truncated polynomials Eq.
(1.42).

Philippe Ganz 9
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(1.41)

() .
f=MEY fn, (Fan)" +0 (753} (1.42)
n=0 : H/_/

error therm

Taylor series

Where f(g( )
map M. This map can be represented equivalently in a Taylor series T of f.
Right away from the definition in Eq. (1.42) it can be seen, that this approach needs to have

an ) — oo to transform the original function precisely. In reality, these series get truncated at

a certain order, which leads to the error therm O (U&t)l). The physical role of this error therm

) is a general function on the particle parameter, which acts similar to an element

has an important meaning in context of the precision or the symplecticity of the map, which gets
discussed later.

In order to handle these polynomials, the TPSA defines own operations, even the derivative,
to act consistent to in the classical algebra (Fig. 1.3).

fg |~ FG f T F

+ - @ @ a ao
+ R @ o1 ot
f.g T F.G of, -1t | 8,F, 65'F

Figure 1.3: Graphical representation of DA and its operators.

In this flow chart representation the functions f, g € C* where f : [a, b] C RY — IR. The
ower case characters, on the left side, symbolize the function in the classical analytical space
and the upper, on the right side, case represent the same (transformed) functions in the DA. In
TPSA T denotes the multidimensional Taylor Series Operator.[2]

Considering, that the maximal number of possible monomials depends on the dimension v
and the truncation order n, its behave according to the binomial coefficient in (1.43).

_(n+v—1Y\ (n+v—1)!
K—(V1>—nm/nz (1.43)

Philippe Ganz 10
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3003
3000 { —e~ total number of monomials
number of monomials of arder n

2500
i
=
E 2000
=]
=
g
- 1500
E
= 1000
=
=

500

17 om B 57
09 @yp—p il th 126

0 1 2 3 4 5 & 1 8
truncation Order n

Figure 1.4: Number of monomials in ,, Dg; the orange line represents the number of monomials
of order n and the blue line the total number.

1.2.6 Map Creation - Lie Algebra

The application of the Lie Algebra in accelerator physics gets introduced by Dragt in [8]. In its
principle the Lie Operator Eq. (1.45) and the Lie Transformation Eq. (1.46) get defined.

Fi= oz wi) (1.44)
" /Of do  Of Do )
fi=1f,0ol = 1.45
f [f ] ; (aqz 8pz 8}% aQZ ( )
1 1
oSt Sk Cf. Z.r.2
e *Zk!'f' =l+ifid gif 4 (1.46)
k=0
(1.47)
In other words:
” A Lie Operator is a Poisson bracket, waiting to happen.” - Volker Ziemann

Assuming total derivative of the function f:
/2
”Z dgi 0f  dp: Of (1.48)
ds 6qZ ds Op; '

i=

Where ¢; and p; are the canonical, spatial and momentum, pairs. Combining this total derivative
with Hamilton’s equations of motions (Eq. (1.16)) leads to the following relation.

OH 0f OH of
Z (apz 3(]1 0q; 5}%) = (149)

Philippe Ganz 11
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Solving this differential equation while assuming f describes the beam parameter, the map M
can get extracted.

fis) =€ fis) (1.50a)
M = e s (1.50b)

Due to the distributivity of Lie operator, it is possible to decide up to which order the effects
get observed. This can be done in simply truncating the Lie transformation Eq. (1.46) after the
wanted therm.

M= gte gl g s (1.51)
~—~
centroid Quadrupole Sextupole Octupole

The separation of H in its orders H;, where ¢ = 0, 1, 2, 3..., illustrates the determination of
effects in the according orders. Furthermore, it also points the symplectic nature of each map
out [8, Chapter 7.1.].

1.2.7 Map Analysis

This section is widely extracted out of Wolski’s publication [9]. These calculations may seem
extensive and sometimes bear the problem of the reassignation of matrix eigenvalues,/ -vectors to
the according plane, but they are a general approach and can also be applied on coupled beam
/-lines.

One of the advantages of map tracking is the stored information in each transfer map M.
These linear maps contain information about the beam line as stability and symplecticity. To get
characteristics about the bunch, as the beam emittance, the 3 has to get analyzed. A comparison
of the two matrices show the match of the bunch to the beam line.

Sigma Matrix 3

The Sigma matrix 3, not only contains information about the beam coupling, but also about its
emittance €. This information is stored in eigenvalues of the accumulated oS Matrix, where S
is the Skew matrix [9, Section III.B.].

S 0 0 0 1
s=[o0 s o 9—(1 0 (1.52)
0o 0 ¢ a
Ex = i)\l’g (1.53&)
Ey = i)\3_4 1.53b
Y )
Ey = Z')\5,6 (153C)

Transfer Matrix

The transfer matrix contains diverse information about the beam line (element), as
1. Coupling
2. Stability & Symplecticity
3. Phase Shift (— tune).

Philippe Ganz 12
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Coupling Analogous to 3, all elements in in M outside of the (2 x 2) diagonal blocks lead to
a beam coupling. Considering higher order maps, this rule applies on every monomial containing
elements of two different canonical pairs. These therms not only couple the beam, but also can
be used to decouple it.

Dispersion The dispersion are represented in the linear transfer matrix M at 7, = myg,
Npz = Mag, Ny = M3 and 1,y = mae, Where in m; ; i denotes the row and j the column
index in M. These therms can lead to chromatic aberrations as in a beam widening 7,;, while
creating an energy deviation along the dispersal axis 7;. In the first order such therms occur in
the bending plane of dipole maps. In higher orders those effect get described by the monomials
containing 0. In quadrupoles they already occur in the second order.

This effect may be unwanted in some applications as in gantries, but it also gets used in
energy spectrometer or energy selection systems.

Stability & Symplecticity The stability gets extracted by the absolute value of the transfer
map eigenvalues. Considering the definition of eigenvalues, its absolute value unequal to one
would mean an stretch or compression along the according eigenvector. In a visualization, the
eigenvalues have to lie on the unit circle, the argument needs to be |A\| = 1. Every different value
lead to a manipulation of the beam emittance along the according eigenvector and lead to an
unstable beam behavior.

MM = éA (1.54)
The symplecticity describes the conservation of the beam emittance. It gets defined in
MTSM =8, (1.55)

where M is the symplectic map and S represents the skew matrix form Eq. (1.52).

Neglecting this criteria lead to a violation of the Hamiltonian model itself. In ring beam lines,
i. e. synchrotrons, is this criteria of highest importance. For long time simulations in storage
rings, the map can even get adjusted, to the cost of its precision, full fill this symplecticity criteria
[10].

Phase Shift There are several ways to calculate the phase shift. In the following, two ways
for an coupled beam get introduced.

Phase Shift with Eigenvalues In symplectic maps the eigenvalues always occur in com-

plex eigenvalue pairs Ayj. Its value can be interpreted by
Aij = eF2mivk k==, vy, 2. (1.56)

Using Euler’s formula leads to following form:

exp™®® = cos () £ isin (z) (1.57)
Ak + A =2Re (Ayr) = 2cos (2my) (1.58)
1
Vg = 5 arccos (Re (A1k)) (1.59)
™

In this derivation, the betatron tune gets denoted with v. The phase shift ;1 can now get extracted
according to following relation.

i, = 2TV k=uzy, 2z (1.60)
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Phase Shift using Rotation Matrix In this approach a rotation matrix R gets intro-
duced, which contains easily extractable information about the phase shift pu.

Roguy 0 0 .

@ cos (@)  sin(a)

R(#mal"yvﬂz) = 0 R2(uy) 0 3 R2(a) = ( sin (O[) cos (O[)) (161)
0 0 R

The creation of R requires the eigenvector matrix E of the transfer map M, which are used to
introduce the transformation Matrix N which acts as a symplectic rotation, thus perseveres the
eigenvalues.
If the bunch matches the beam line, as in a synchrotron, R can get created according to
R, 0, ) = NT"MN. (1.62)
If the bunch missmatches, the calculation is according to Eq. (1.63) and uses additional
information from 3. The creation of two different N use the data from 3 before and after the
map. Furthermore, additional constrains has to be drawn to for Ny avoid degeneracy due to the
relative property of the phase shift Eq. (1.63).
R ) =N 'MN; (1.63)

My Mz

Transfer and Sigma Matrix

In periodic applications, such as rings, the beam should be invariant to the single turn matrix
to be stable.
r—>Mz X -sMEIM' =% (1.64)

To conform upper condition, it is necessary that XS and M has the same eigenvectors E. If
those match, the beam is called a ”matched distribution”.
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Chapter 2

Implementations

2.1 OPAL-map

2.1.1 Introduction

OPAL-map is an in the future available map tracking method in the OPAL framework [1].
Its mathematics is based on the map tracking method introduced in Sec. ”Basic Idea of Map
Tracking”.

2.1.2 Flow Chart

As in all OPAL simulations, the system gets defined in the input file, from which the information
get split up in the different classes, including for the beam line ”OPAL beam line” and the bunch
description ”particle bunch”. OPAL-map now iterates along the beam line elements from ” OPAL
beam line” and creates the maps for each element or even the slices of them. These get stored
in "map beam line”. With this data, the maps of the beam line could now be analyzed ”map
analysis”.

In the further steps, the particle data of ”particle bunch” get extracted and the maps of
”"map beam line” applied to track the particle along the beam line. In this loop, the individual
particles form the inner and the beam line maps the outer loop. After each slice/ element, the
”particle bunch” gets updated and its data finally extracted to the output files.

In the following drawn scheme, the green boxes represent the in- and output, the user inter-
face. The blue boxes symbolize the already implemented OPAL structures and the red show the
newly created OPAL-map elements (Fig. 2.1).
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Creation of M

—— OPAL map map
P beam line beam line analysis
apply M update
particle e
bunch

Figure 2.1: OPAL-map flow chart

2.1.3 DA Package

The OPAL Differential Algebra Package [1, DA], bases on TPSA and is used for the map creation.
It provides besides the TPSA operations also the multidimensional Taylor expansions for certain
functions as for root, exponentiation, fractions and many more. It also contains more specific
operations as the Lie transformation.

To keep the computational time as effective as possible, a global truncation order limits the
length of the polynomials and so the order of the map. Considering that for a certain map order
the Hamiltonian always needs to be one order higher, which can be seen in its Lie algebraic
creation.

2.1.4 Map Analysis

The map analysis is done according the theoretical background of Wolski [9] and mentioned in
the previous section. For the determination of the eigenvalue and -vectors the the GNU Scientific
Library (GSL) [11] were used.

2.2 COSY Infinity

COSY Infinity is a map tracking based beam optics program [12]. It also uses TPSA [2] and
therefore provides the possibility to create higher order maps, which were used to verify the
OPAL-map maps.

Important to know, is that COSY Infinity and OPAL-map use different constants. COSY
Infinity uses the atomic mass in amu and calculates to the energy. This is a reasonable method,
but results in too many digits and differs form the constant table (Tab. 2.1).

Program Proton [fo;VJ Electron [MC‘“;V]
OPAL-map 038.2720813(58) 0.5109989461(31)
COSY Infinity  938.27199893682...  0.51099890307660...

Table 2.1: The difference in constants of COSY Infinity and OPAL-map

The effect of the constants will be shown and discussed in the results section.
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2.3 pyAcceLEGOrator

pyAcceLEGOrator [13] is a python based beam optics code. It used the hard coded algebraic
solution to create the linear transfer maps and therefore provides a handy reference to the Lie
algebra maps.
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Chapter 3

Results

3.1 FODO Cell
In this example, a simple FODO cell gets simulated.

Quantity Value
particle Proton
Erin 100 MeV

The Quadrupole settings:

Name Field Gradient Length

Q1 8.64195Tm  0.3m
Q2  —11.57456%  0.3m
Q3 8.64195Tm  0.3m

Table 3.1: Quadrupole settings of FODO cell. This setting was chosen after an 15° order opti-
mization with COSY Infinity.
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0.4
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A COSY Infinity
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position [m]

Figure 3.1: ”FODOQO” envelopes plot (15 Order); The blue line represents the envelopes of OPAL-
map and the red triangles the data points of COSY Infinity. The green lines indicate the position
of the quadrupoles

In Fig. 3.1 the comparison of the COSY Infinity and the OPAL-map envelopes is plotted. The
green lines in the plot indicate the quadrupoles, neglecting the aperture and the consequential
particle loss. For a better visualization, the envelope of OPAL-map has a continuous line and
the data points of COSY Infinity are represented with triangles. It can be seen, that each COSY
Infinity data point lies on the element edges, so in the initial position and the end of each map.
This demonstrates the advantage of the possible huge step size, with the disadvantage of the lack
of information in between.

An example has been chosen to visualize, higher order effects in this small system. For this
purpose, a strongly divergent beam containing nine particles was chosen. Defining a transversal
momentum of p; = iO.lSp—;. This momentum gets assigned to the particles in the x and/ or y
plane in every possible combination. So a particle have none, one or two transversal momenta,
either positive or negative.

In the first simulation Fig. 3.2, the longitudinal momentum of each particle gets adjusted, so
that the energy deviation § = 0.

In a second run Fig. 3.3, the longitudinal momentum of each particle was defined with p, = py,
ignoring the transversal momenta. This definition leads to an energy deviation § = 5.325 - 1073
or 1.064 - 10~2, depending, if the particle has one or two assigned transversal momenta.

The idea of those two runs can be seen in the x plane of the complete FODO map at the
focal point (s = 3.5m, Fig. 3.4), where all the second order therms have are related to the
energy deviation. For the purpose of completeness, the whole transfer matrix gets provided in
the appendix B.
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Transfermap FODO

coefficient delta
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Figure 3.4: The transfer map of the FODO for the x coordiante up to the third order

The big difference between Fig. 3.2 and Fig. 3.3 can be seen in the focus point at s = 3.5m.
Considering the first order, both simulations show similar trajectories and a good focus. In
higher orders, the two simulations start to differ.

In the first run with no energy deviation § = 0, the defocussing starts at the 3¢ order, in
contrast to the second run, where this chromatic aberration already starts at the 2°¢ order.

The explanation can be seen in the transfer matrix. The 2" order effects are all related to
the energy deviation ¢ (with « and p,). There is no additional effect in the first run, because
all monomials with § (5-) = 0. The 3™ order effects contain various relations also monomials
() # 0, so even a beam with no energy deviation starts to defocus.

To analyze the impact of the different particle mass constants in OPAL-map and COSY
Infinity, mentioned in Sec. ”COSY Infinity”, their maps get compared. For that, the absolute
difference of the coefficients gets calculated, neglecting a weighting for the monomial order. In
the following plot the maximum and the mean difference are shown.

For the separation the influence of the different constants and the map difference itself, the
COSY Infinity constants have been used in OPAL-map and its map compared in similar manner.
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Figure 3.5: ”FODO” map comparison; In the plot 2 different scenarios are shown, once OPAL-
map uses the same constants for the particle mass Ey as COSY Infinity (COSY Ep) and once
its own (OPAL Ej). Now the value of the mean or the maximal difference (max) of all map
coefficients are shown.

3.2 FODO + Dipole

This simulation models a FODO cell of the synchrotron example in following section. Its beam
gets defined by:

Quantity Value
particle Electron
Fiin 999.49 MeV

Table 3.2: Synchrotron electron beam settings

The beam line setting settings:

Name Field/-gradient Length
Qf —10.9409%m 0.2m

Bl —2.3287m
Qd 11.0410%m 0.3m
B2 —2.3287m
Q3 8.6420"m 0.3m

Table 3.3: Settings taken from Synchrotron example

The drift length in between all elements is [ = 0.5m.

Philippe Ganz 23



ETH Zurich & PSI Villigen Chapter 3. Results

0.04

0.03
0024 L S | [ I |

0.01 4 M
——

0.00 W

ax [m]

0.01 A1
€ 0024 ™ s i s
& 0.03 -

OPAL - map
0041 L COSY Infinity
0.05 . r r : :
0 1 2 3 4
position [m]

Figure 3.6: "FODO + Dipole” envelopes plot (15* Order); The blue line represents the envelopes
of OPAL-map and the red triangles the data points of COSY Infinity. The green lines indicate
the position of the quadrupoles, and the red the position of the dipoles

In Fig. 3.6, similar to 3.1, the triangles represent the data points of COSY Infinity. It can be
seen here, that COSY Infinity’s element maps has been sliced, similar as in OPAL-map, to gain
more data points, even inside the elements itself. In this example, the dipoles bend along the
y-axis, which makes the x- to the dispersal plane.

A similar map comparison as in Fig. 3.5, has been done, considering a higher beam energy,
a lower particle mass and the presence of dipoles.
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Figure 3.7: "FODO + Dipole” map comparison; In the plot 2 different scenarios are shown, once
OPAL-map uses the same constants for the particle mass Ey as COSY Infinity (COSY Ep) and
once its own (OPAL Ej). Now the value of the mean or the maximal difference (max) of all map
coefficients are shown.

Here does the error, caused by the different constants, not influence the comparison signifi-
cantly.

With dipoles in the beam line, the dispersion can be tracked. Since this section was taken
out of the synchrotron example from the next section, an initial dispersion 7.y was chosen, to
match the ring conditions.

Dispersion Value
N0 0.5069938765m
Mp0 -0.1681363086

Table 3.4: Inital Dispersion taken from Synchrotron example
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Figure 3.8: "FODO + Dipole” dispersion plot; Here the dispersion along the beam line gets
illustrated. The blue line illustrates the simulation in OPAL-map and the red dots the simulation
in pyAcceL. The green line indicate the position of the quadrupoles and the red lines of the
dipoles.

3.3 Synchrotron

The beam parameter and the beam line setting are similar to previous example "FODO +
Dipole” (Tab. 3.2 & Tab. 3.3), which represents a single FODO cell in this ring. The whole
beam line setting, also for the irregular section, is provided in the demo scripts of pyAcceL
”collider_madx.ipynb”.
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Figure 3.9: Synchroton envelopes of in 15* order; The blue line shows the OPAL-map and the
red dots the pyAccel. simulation. The red elements indicate the dipoles, where the green stand
for the dipoles.

In Fig. 3.9 the OPAL-map gets compared to the analytical maps of pyAcceLEGOrator, which
data points get represented with red dots.

The eigenvalues of the single turn map provide the betatron tunes v (Tab. 3.5). The assign-
ment of the eigenvalues to the planes was chosen freely.
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Tune Value
v, 9.610-107°
vy 2.604 - 1071

Table 3.5: Beta tunes of Synchrotron

For the dispersion, the same initial values has been chosen as in the "FODO + Dipole”
example (Tab. 3.4), to gain the matched shape.
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U
-0.1 pyAccelLEGOrator
0 25 50 75
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Figure 3.10: Synchrotron dispersion plot; Here the dispersion along the synchrotron ring, simu-
lated with OPAL-map (blue line) and pyAcceL (red dots) is shown. The green lines indicate the
quadrupoles and the red the dipoles.

The figure also shows the absence of dispersion in the aperiodic region, which can be used
for example the placement of the Radio Frequency (RF) Cavity.

3.4 PSI Gantry 2

The Paul Scherrer Institute (PSI) Gantry 2 is upstream scanning proton therapy gantry with an
isocentric layout as in Fig. 3.11.
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Figure 3.11: Gantry 2 Elements

Symb  Part Quantity in OPAL-map

C  collimator 1 not impl.
A dipole 3 v

Q quadrupole 8 v

H sextupole 2 deac.
W  scanning magnets 2 deac.

M monitor 3 v

S steering magnet 1 deac.

P vacuum pump 2 —

X  x-ray source 1 —

The PSI gantry 2 example uses the current beam line setting for 70MeV of the real gantry.
Consider, that the sextupole of Gantry 2 are deactivated and for the simulation the sweeper
magnets are chosen to not deflect.

Quantity Value
particle Proton
FErin 73.81 MeV

Table 3.6: PSI Gantry 2 proton beam settings

This setting represents the lowest energy application, which also has the lowest particle flux
due to the degrading process after the cyclotron (COMET). A low flux at a certain energy leads
to a low beam intensity, which in turn leads to a low dose rate and a longer treatment time.
In proton therapy, longer treatments not only are more expensive, but also limits the usage of
sophisticated methods, as breath hold technique or hypo fractionation. [14]
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Figure 3.12: PSI gantry 2 envelopes in 15% order (no dipole face pole rotation); The blue line
represents the envelopes in the OPAL-map simulation, the orange line OPAL-T and the red
triangles COSY Infinity. The green elements represent the quadrupoles and the red elements the
dipoles. The black vertical lines indicates the monitor positions, where the blue vertical lines
stand for an aperture.

In Fig. 3.12 OPAL-map not only gets compared to COSY Infinity, but also to OPAL-T. The
latter is a tdPT based algorithm of the OPAL framework and uses a hard edge model for the
fringe fields.
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Figure 3.13: PSI gantry 2 map comparison; In the plot 2 different scenarios are shown, once
OPAL-map uses the same constants for the particle mass Ey as COSY Infinity (COSY Ej) and
once its own (OPAL Ej). Now the value of the mean or the maximal difference (max) of all map
coefficients are shown.

Fig. 3.13 shows the differences in the transfer maps. The plot has been done analogous to
the other map comparison Plots, comparing the non weighted coefficients.
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Figure 3.14: PSI gantry 2 Dispersion plot; Here the dispersion along the PSI gantry 2 beam line
gets simulated, simulated with OPAL-map (blue line) and OPAL-T (orange dots) is shown. The
green lines indicate the quadrupoles, the red elements the dipoles and the black vertical lines the
monitor position.

The dispersion (Fig. 3.14) in therapeutic gantries has a high priority, because it influences
the beam spot and creates a spatial energy deviation, which hinders the treatment.
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Figure 3.15: PSI gantry 2 envelope plot in different orders; Here, the envelopes were calculated
with OPAL-map in the first (green), second (blue) and third order (orange). The green lines
indicate the quadrupoles, the red elements the dipoles, the black vertical lines the monitor
position and the blue vertical line an aperture.
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Figure 3.16: PSI gantry 2 difference in envelope plot with OPAL-map in the first three orders
orders; Here, the rms difference in between the first and second (blue) and the first and third
order simulation got printed. The green lines indicate the quadrupoles, the red elements the
dipoles and the black vertical lines the monitor position.

Considering, that in Fig. 3.16 Gantry 2 is still simplified using no fringe field and no pole
face rotation.
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Transfermap Gantry2

coefficient

.99841426108339e+00
.80499976777692e+00
.17859777518194e-01

.89478372039282e+00
.99792859086408e+00
.36210501042244e+01
.56250633915830e-01
.18540546639822e+01
.19079887330289e-02
.43664901906849e-01
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Figure 3.17: The transfer map of the PSI Gantry 2 for the x coordiante up to the second order
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Figure 3.18: PSI gantry 2 simulation timing; #nodes = 1, #particles=1000, #maps=105; The
blue line denotes the total simulation time (mainTimer), the orange represents the particle
tracking (mapTracking), the green line the creation of the .h5 data files (Write H5-File), the red
line the accumulation of the beam line maps (mapCombination), the purple the analysis of the

maps (mapAnalysis) and the brown the map creation (mapCreation).

Fig. 3.18 shows the computational times of a Gantry simulation, relative to the truncation

order.
2.70GHz.

The processor used for the simulation was a Intel(R) Core(TM) i7-6820HQ CPU @
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Figure 3.19: PSI gantry 2 envelopes including pole face rotation in 1% order; In this plot the pole
face rotation gets implemented, using the map tracking algorithms OPAL-maps (blue line) and
COSY Infinity (red triangles) and the particle tracking code OPAL-T (orange line). The green
lines indicate the quadrupoles, the red elements the dipoles, the black vertical lines the monitor

position and the blue vertical line an aperture.
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Chapter 4

Discussion

4.1 Map Comparison

The map comparison showed, that the influence of the different particle mass constants Ey in
the linear case is in the order of magnitude of 1- 1077, whereas the map difference of drift and
quadrupole elements is around 10~'* and dipoles 10~7. These differences now propagate, as
expected, exponentially in higher orders.

These insights open the question about the required map precision.

4.1.1 Map precision

The required precision is dependent on its application. A synchrotron storage ring for example
has to full fill the its criteria for a high repetition of the single turn map Mg of about 10°
and even more. In a mathematical way, the criteria get tested on accumulated map M = Mg);
Where, on the other hand, a transport beam line, on the other hand, just gets passed once.

In the context of proton therapy, the key factor for its inaccuracy does not come form the
beam optics side. Here the problem lies in the treatment planing and its inaccuracies of the of the
treatment itself. This error starts in the imaging process and its conversion to stopping power.
After the vacuum of the beam line, the beam scatters at the beam nozzle, the air to the patient
and in the patient. Additional uncertainties as inter and intra fractional tumor movement or
other diverse uncertainties from the patient, as a change of weight, different positioning, and
many more, lead to increase of the Planning Target Volume (PTV).

Regardless of those uncertainties, a wrongly adjusted beam line lead to unwanted systematic
problems, which could cause repetitive under and over dosage with fatal consequences, especially
using the Pencil Beam Scanning (PBS) technique. [4, Chapter 13]

Taking into account upper effects, I suggest that the accuracy of the beam positioning in the
order of magnitude 0.1mm would still be sufficient for a successful treatment. This assumption
leads to a transfer map precision of the whole beam line in the order of magnitude 1-107%.

Assuming that the theoretical implementation of the PSI Gantry 2 beam line is correct
and the map differences of COSY Infinity and OPAL-map, in the order of magnitude 107, is
approximately the uncertainty of the map itself, lead to the conclusion, that the OPAL-map
algorithm is enough precise for this simulation.
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4.2 Envelopes

In all shown examples, the envelope plots show a good match, except in Fig. 3.19. Here a big
mismatch occurs in the y plane, between the tdPT and the map tracking s-bases algorithms.

4.2.1 Pole Face Rotation

In the non dispersal y plane in OPAL-T no additional effect occurs if a pole face rotation (PFR)
gets implemented (Fig. 4.1).

OPAL-map
— 0.01 -
E
g
0.02 A —— OPAL-map
mrr [ —— OPAL-map_PFR
0.03 T T T .
0.00
— 0.01 A
£
>
© 0.02 1 mn nn minin! —— OPAL-T
mrr 1 1 [ —— OPAL-T_PFR
0.03 T T T .
35 40 45 50
position [m]

Figure 4.1: PSI gantry 2 envelope comparison in y-plane in- and excluding pole face rotation
(PFR); In the upper plot the simulation with OPAL-map and in the lower plot the simulation
with OPAL-T is shown. The solid lines represent the envelope including (green) and excluding
(blue) the pole face rotation (PFR).

The absence of any effect can be explained with the fringe field implementation with field
maps. [1, Section "Field Maps”] In the OPAL-parallelT these field maps define the magnetic
field in the transition to and off the element.

The used hard edge model, uses an Enge function (4.1), but with an extreme setting to
suppress the size of the fringe field.

1

F == n
(z) 1+ 6227:0 cn<%)

(4.1)

Where N denotes the edge function order, ¢, element dependent fitted parameters and D
the aperture of the magnet.

The hard edge model uses N = 0 which turns the function into a simple F' = % and the
influence range of the fringe field gets defined with 5-10~!'m. This special implementation not
only suppresses any field outside of the magnet, but also leads to a rapid changes of the magnetic
field in the tracking algorithm, which leads due to the Maxwell equations in high fields in the x
and y plane. This can be seen in small "horns” at the dipole edges (a good example can be seen
in Fig. 4.3 in the entrance of AMF3).
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The influence range in the hard edge model is approximately zero, which simplifies the system
in the way, that only a B, (s) dependence exists and B, and By are zero. Hence just an effect
in the dispersive = plane can be observed.

The default fringe field map in OPAL-T uses proper values for the Enge Model (Fig. 4.2).
Here the field outside the magnet gets defined in a realistic way, which leads also to s dependent
B, (s) and Bs (s) components, which lead to an vector potential in s and x as mentioned in 1.2.4
”Dipole - Pole Face Rotation”.

Harde Edge
_0.g | — 1DPROFILE1-DEFAULT

s 40 5 50
s [m]

Figure 4.2: PSI gantry 2 magnetic fields in y-axis; In this figure the difference in the magnetic
field using the default OPAL field map (IDPROFILE1-DEFAULT, red line) and the hard edge
model (orange line) gets illustrated.

Unfortunately, at this moment the A, effects are not implemented in OPAL-map. Now
comparing OPAL-map and OPAL-T using the hard edge or the default field map, leads to Fig.
4.3.
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Figure 4.3: PSI Gantry 2 envelopes field map comparison; In this plot, the pole face rotation
of the three dipoles (red elements) got implemented. The first order OPAL-map (blue line)
envelopes is now used as a reference to compare OPAL-T with the hard edge model (HE, orange
line) and the default field map (DFM, red line). The green lines indicate the quadrupoles, the
black vertical lines the monitor position and the blue vertical line an aperture.

In this figure a good match can be seen in the x plane. The y plane, on the other hand, shows
different envelopes after the dipoles, caused by the effect explained above. It can be seen clearly
at the entrance of AMF1. Here, the OPAL-T hard edge can be used as a reference to see the
linear effects of OPAL-map and the non-linear on OPAL-T, which uses the default field map.

4.3 Dispersion

The dispersion of OPAL-map, OPAL-T and the analytical solution of py AcceLEGOrator (pyAcceL)
show a good match.

The dispersion is an important property for therapeutic gantries. In many cases it is the
goal to reach a completely achromatic behavior 3,6 = X326 = 0. Dispersion at the isocenter
would cause many difficulties for a precise dose delivery, because it not only increases the beam
spread 7,; = X2 but also results in a spatial energy deviation 7, = ;6. In proton therapy
the particle energy is related to the debt of the Bragg Peak, which forms the basic principle of
particle therapy. These two effects would now lead to a widening of the focal spot in along the
dispersal axis and rotation of the focal plane along the y axis.

In the comparison of the dispersion of OPAL-map and OPAL-T 3.14 shows slight differences.
This is because OPAL-T has no possibility to gain the information for the dispersion out of
the beam line, so the information gets attained out of the Sigma Matrix (%) n, = %16 and
Npz = 22,6 and scaled with the beam emittance in the z- and z-plane. This procedure not only
is computationally more expensive, but also bears statistical influences and a dependency in the
initial 3. These artificial effects can be seen at the first quadrupole triplet.
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4.4 Complexity

To understand the timings Fig. 3.18 is important to understand the mathematical operations,
focusing on the two biggest components the ”mapTracking” and ”mapCombination”. For further
explanations, the data types for the map gets denoted, as previously with M and its its elements
S, a truncated power series. In , D, M is an vector with the size of the dimension v, in our case
v = 6, containing the data S, which is a polynomial of order n.

Sx
Spa
Sy
Spy
Sz
So

M = Sr=kyx+ky, pr+ ...+ kaysxyd + ... (4.2)

Where k; is the coefficient of the monomial 7.

4.4.1 Accumulation of element maps
- ?mapCombination”

This procedure describes the application of one map on an other My o Mj. In this operation all
the terms of the polynomial of each dimension S; of the left hand side get multiplied, according
to its monomial, with the contained series S; of the right hand side.

S'x Sz
8/])35 Spe
_ _| Sy Sy
M= MygoM; = S'p, o Sp, (4.3)
S'z Sz
S’ Sé
S'e=Ka, - v+Kzy, po+Koy - y+ka, py+ .. (4.4)

Kzy Sx+kxp, -Spy+ Kz, -Sy+ ..
M= Epg o - St+kp, p, Sps+Kkpsy-Sy+ ..

k'6y - Sx+k'op, - Spr + Koy - Sy + ...

Assuming a full map and the full extend of the mathematical operation leads to a scaling ac-
cording to (4.6), visualized in Fig. 3.18.

T=v) K-P¥ (4.6)
j=1

K<”+”1>M P:Zn:[( (4.7)

_ | _ |’
v—1 n! (v —1)! =

In this formula T denotes the total numbers of Multiplications, where K and P represent the
number of monomials with the order n and the total number, in the dimension v.

Philippe Ganz 38



ETH Zurich & PSI Villigen Chapter 4. Discussion

Considering that the truncation order O of the map will rise according to O (M; o M) =
O (M;)+ O (Myz). Thus, this process would rise the order n of the map M , creating non wanted
therms. In the OPAL-DA package, the number of multiplications is decreased drastically, by
neglecting all the calculations, which would result in a order higher as the truncation order and
also neglecting the constant therms.

4.4.2 Tracking through maps
- "mapTracking”

This process describes the application of the transfer map M on the bunch. For one particle, the
polynomial in each dimension S; get evaluated using the particle properties. For one particle,
this process scales with the size of the ,, D, times the dimension (4.8) (Fig. 4.4).

T=v-P (4.8)

Where v is the dimension and P ((4.7)) the number of possible polynomials in of the ,,D,,.

—&— map applied on map
map applied on particle

103:

10°°

1019

1ot#

# Multiplications

10°

iy

1 2 3 a 5 6 7 8
Truncation Order n
Figure 4.4: Number of multiplications in ,, Dg in order n; This figure illustrates the effect of the

complexity in calculations in ,,Dg, if a full map gets applied on an other map (blue) or used to
track a particle (orange).
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Conclusion

OPAL-map is a map tracking program, which creates is maps with Lie series calculating these
with Truncated Power Series Algebra (TPSA). This procedure allows to generate higher order
maps form the pre-defined element Hamiltonians. [2]

For a reference the output was compared with other beam optics programs: COSY Infinity
[12], pyAcceL [13] and OPAL-T [1]. Where each of those programs brings a different calculation
appoach: COSY Infinity uses similar mathematics for the map creation, pyAcceL the first order
analytical solution for the maps and OPAL-T tdPT.

The differences in between the maps of COSY Infinity and OPAL-map were analyzed. It was
seen, that the linear coefficient in a drift or quadrupole map differ the order of magnitude 10~
and the one of dipole maps in 1077,

For proton therapy we assumed an spatial precision of 0.lmm, which would lead to a map
precision of 1-107%. Hence OPAL-map can be used for the simulation of PSI Gantry 2. For
repetitive beam lines as synchrotrons the precision criteria would increase, but could also change
to a symplecticity criteria [10].

The envelopes of all codes match, except in between OPAL-map and OPAL-T in 4.3. This
can be explained due to the absence of higher order fringe field effects, which is currently not
implemented in OPAL-map. This plot also points out the focusing effect of the pole face rotated
dipoles in PSI Gantry 2.

An other advantage of OPAL-map can be seen in the calculation of the dispersion (Fig. 3.14).
Where tdPT programs, as OPAL-T, need to extract the data form 3, MT program can calculate
it form their maps. Latter procedure is computationally less expensive and does not contain
statistical or artificial, due to a coupled beam, errors.

Unfortunately, OPAL-map can only analyze the PSI Gantry 2 in the first order which is not
sufficient enough, due to the higher order form the fringe fields at the bending magnets, which
is currently not implemented.

On the other hand, OPAL-map can provide due to its map analysis the dispersion and the
complete 15¢ order transfer map which can be used as a fast simulation for optimize programs,
as OPAL opt-pilot.
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5.1 Outlook

OPAL-map is a map tracking code in its early stages which potentials is not sufficiently explored.
The current stand of the program forms a solid foundation, but there are many possibilities, in
which it can develop.

In my opinion, the non linear fringe fields should get addressed first to provide widen the
practicability. In a second step the performance should get improved in parallelize the particle
tracking and even make it optional.

Furthermore, the implementation of space charge effects could lead to a bigger applicability
especially in the field high intensity beams.

I would also suggest to implement an lateral offset to the beam line elements, this would
provide the possibility to simulate Fixed-Field Alternating Gradient (FFAG) lattices, which also
gets, in conceptional studies, applied on gantries [15].

Philippe Ganz 41



Chapter 6

Acknowledgement

Last but not least, I want to take this opportunity to thank of my supervisor Prof. Dr. Antony
John Lomax. He not only gave me the chance to work on the project, but also gave the freedom
to guide its scope in my preferred direction.

Second, but at least as grateful, I want to thank my supervisor Dr. Andreas Adelmann for
his great support. His advices were always as friendly as competent and there was no time, he
refused to help, even in unorthodox situations.

Special thanks belong to Matthias Frey, who did’t just once helped me, at the brink of despair,
in programming issues.

I also want to mention Valeria Rizzoglio, her simulation skills and good timed inputs were
from great importance for the project. Grazie mille.

During my thesis Prof. Dr. Peter Arbenz provided me an office to whom and his group I want
to convey my gratefulness for sharing the facility and the warm atmosphere.

At the end, T also want to thank Marija Kranjcevi¢ who always took care of a nice environment
and being accommodative independent the problem kind.

42



Chapter 7

Acronyms

DA Differential Algebra............... iii
FSC Frenet-Serret Coordinates.......... 2
MT Map Tracking ..................... 1
PBS Pencil Beam Scanning............ 34
PSI Paul Scherrer Institute ........... 27
tdPT  time dependent Particle Tracking..5
pyAcceL pyAcceLEGOrator.............. 37
RF Radio Frequency ................. 27
RP Reference Particle ................. 2
by Sigma Matrix...................... 3

TPSA Truncated Power Series Algebra ... 1
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Appendix A

Units

quantity symbol ST unit C, N unit e, V unit
charge q As C e

charge density P Asm™3 Cm™—3 em 3
current I A Cs™! es™!
electric field E kgmA~1s™3 NC! Vm?
mass m kg kg MeV c—2
potential 0] kgm?A~!'s™® NmC™! \%

speed of light c ms~! ms~! 1

vacuum permittivity o A?5%*kg™'m™3 C?N'm2 eV im!

Table A.1: Symbols and their corresponding units.
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Appendix B

complete transfer matrix FODO

Transfermap FODO 0.00000000000000e+00 -1 -1 -1 -1 -1 -1
Fips 6 Tps 155
Tps 155 6 -1.30994408340286e-01 1 0 0 0 0 0
-1.02619697697268e+00 1 0 0 0 0 0 -9.99998095304626e-01 0 1 0 0 0 0
-1.99970538528579e-01 0 1 0 0 O 0 -6.07789631208956e+00 1 0 0 0 0 1
~7.43993992258748e-01 1 0 0 0 0 1 4.10400877706696e-01 0 1 0 0 0 1
6.81372414922869e+00 0 1 0 0 0 1 2.78391799649967e+00 3 0 0 0 0 0
4.24058384937832¢-01 3 0 0 0 0 0 1.30967076471882e01 2 1 0 0 0 0
-2.01179574465487¢+00 2 1 0 0 0 0 2.00143296811563¢+00 1 2 0 0 0 0
1.21249388325331e-01 1 2 0 0 0 0 5.14298898489970e+00 1 0 2 0 0 0
1.52926590368216e+00 1 0 2 0 0 0 1.41942055505528e+01 1 0 1 1 0 0
3.42916108688955¢+00 1 0 1 1 0 0 1.01094083358616e+01 1 0 0 2 0 0
1.76109899012140e+00 1 0 0 2 0 0 2.79811117739509¢+01 1 0 0 0 0 2
2.60280764146783e+01 1 0 0 0 0 2 -7.99521171884365e-02 0 3 0 0 0 0
-1.33623600329734e+00 0 3 0 0 0 0 -8.42266896663066e-01 0 1 2 0 0 0
-2.77504233826512e+00 0 1 2 0 0 0 -1.32259721108888e+00 0 1 1 1 0 0
-5.85149886953810e+00 0 1 1 1 0 0 -2.47662162242065¢-01 0 1 0 2 0 0
-3.92870468155939¢+00 0 1 0 2 0 0 1.77942462640648e+01 0 1 0 0 0 2
-1.84339358344320e+01 0 1 0 0 0 2 -3.50371063842196e+01 3 0 0 0 0 1
-2.23431763165446e+01 3 0 0 0 0 1 -2.10546929824418e+01 2 1 0 0 0 1
8.34290748370170e+00 2 1 0 0 0 1 -1.57581351437621e+01 1 2 0 0 0 1
-8.76076780234036e+00 1 2 0 0 0 1 -6.43783411570221e+01 1 0 2 0 0 1
-4.96248117644509¢+01 1 0 2 0 0 1 -2.06991810683050e+02 1 0 1 1 0 1
-1.32620538951324e+02 1 0 1 1 0 1 -1.65116496288906e+02 1 0 0 2 0 1
-9.05182976745489e+01 1 0 0 2 0 1 -1.24840887702446e+02 1 0 0 0 0 3
-1.87516900112715e+02 1 0 0 0 0 3 -9.47692916953547e+00 0 3 0 0 0 1
7.60422966713986e+00 0 3 0 0 0 1 -8.88534637058453e+00 0 1 2 0 0 1
3.65360097532672e+01 0 1 2 0 0 1 -2.59737692620079e+01 0 1 1 1 0 1
9.16576791159192¢+01 0 1 1 1 0 1 -2.60349810742345e+01 0 1 0 2 0 1
5.83021391835188e+01 0 1 0 2 0 1 -1.40885000883137¢+02 0 1 0 0 0 3
-1.43197780979596e+01 0 1 0 0 0 3 1.07101169347228e+01 5 0 0 O 0 0
4.69597202154060e+00 5 0 0 0 0 0 3.71253818563601e+00 4 1 0 0 0 0
-2.95863471701198e+00 4 1 0 0 0 0 9.36351193211867e+00 3 2 0 0 0 0
5.13933937882824e+00 3 2 0 0 0 0 3.54712724873003e+01 3 0 2 0 0 0
2.00086103686888e+01 3 0 2 0 0 0 1.02520683842213¢+02 3 0 1 1 0 0
5.05260940540323e+01 3 0 1 1 0 0 7.53293216195117e+01 3 0 0 2 0 0
3.36113373648445e+01 3 0 0 2 0 0 3.02900574976174e+02 3 0 0 0 0 2
2.77468301425413e+02 3 0 0 0 0 2 3.35812261766197e+00 2 3 0 0 0 0
-2.31192252348781e+00 2 3 0 0 0 0 -2.03238640149875e-01 2 1 2 0 0 0
-1.72184066285795e+01 2 1 2 0 0 0 5.73643596709274e+00 2 1 1 1 0 0
-4.45968553991475e+01 2 1 1 1 0 0 1.27661893235302¢+01 2 1 0 2 0 0
-2.79438133490200e+01 2 1 0 2 0 0 3.40466272475879¢+02 2 1 0 0 0 2
6.65567294395602¢+01 2 1 0 0 0 2 2.18886899568646e+00 1 4 0 0 0 0
1.91392531523853e+00 1 4 0 0 0 0 1.48641876180051e+01 1 2 2 0 0 0
1.53477262508380e+01 1 2 2 0 0 0 4.43917826912743e+01 1 2 1 1 0 O
3.61071320478062e+01 1 2 1 1 0 0 3.37323968152001e+01 1 2 0 2 0 O
2.07499053985411e+01 1 2 0 2 0 0 1.34605899651014e+02 1 2 0 0 0 2
1.21586965879912e+02 1 2 0 0 0 2 3.41457621394321e+01 1 0 4 0 0 0
2.23751904278160e+01 1 0 4 0 0 0 1.92857648865999¢+02 1 0 3 1 0 0
1.15059523710264e+02 1 0 3 1 0 0 4.14178206771787e+02 1 0 2 2 0 0
2.24188450636375e+02 1 0 2 2 0 0 5.39915657574168e+02 1 0 2 0 0 2
6.88810786835147e+02 1 0 2 0 0 2 4.05840094993689¢+02 1 0 1 3 0 0
1.97855906338854e+02 1 0 1 3 0 0 1.95580741369029¢+03 1 0 1 1 0 2
2.02373663075744e+03 1 0 1 1 0 2 1.54321274984493e+02 1 0 0 4 0 0
6.70211227781389¢+01 1 0 0 4 0 0 1.72240495955779¢+03 1 0 0 2 0 2
1.49358994460323e+03 1 0 0 2 0 2 5.52156207863706e+02 1 0 0 0 0 4
1.08870206152438¢+03 1 0 0 0 0 4 1.17074935715795e+00 0 5 0 O 0 0
~7.79832250256185e-01 0 5 0 0 0 0 2.75829811796078e+00 0 3 2 0 0 0
-5.89944727787898e+00 0 3 2 0 0 0 7.98371042966058e+00 0 3 1 1 0 0
-1.35714830807599e+01 0 3 1 1 0 0 7.58108219051513e+00 0 3 0 2 0 0
-7.88592510504037e+00 0 3 0 2 0 0 1.04607844171765e+02 0 3 0 0 0 2
2.07532826759046e+01 0 3 0 0 0 2 -6.03605479393387¢+00 0 1 4 0 0 0
-2.77198240248643e+01 0 1 4 0 0 0 -2.86370238870190e+01 0 1 3 1 0 0
-1.33338627318518e+02 0 1 3 1 0 0 -4.74493776390555e+01 0 1 2 2 0 0
-2.46171321022608e+02 0 1 2 2 0 0 2.04387951399929¢+02 0 1 2 0 0 2
-2.60486024074888e+02 0 1 2 0 0 2 -3.13918723044320e+01 0 1 1 3 0 0
-2.08072336009831e+02 0 1 1 3 0 0 6.29962266324244e+02 0 1 1 1 0 2
-8.03504748671027e+02 0 1 1 1 0 2 -5.62503504498030e+00 0 1 0 4 0 0
-6.78794591587843e+01 0 1 0 4 0 0 5.47269186214406e+02 0 1 0 2 0 2
-5.50006895117139e+02 0 1 0 2 0 2 8.45410038675708e+02 0 1 0 0 0 4
5.75845040597092e+02 0 1 0 0 0 4 0.00000000000000e+00 -1 -1 -1 -1 -1 -1
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Appendix B. complete transfer matrix FODO

Tps 165 6
-1.28079421796587e+00
.99974861517258e-01
20262403512728e+01
.17320919492645e+01
.02503860781498e+00
.15802928338253e+01
.56304146780108e-01
.85395019209712e-01
.05664711790012e+00
.40979065053272e+00
.94318801717064e+01
.54045534872191e+01
.02146764013813e+02
.26299613861916e+02
.87234723483412e+01
.45590713951376e+02
12837898464518e+02
84825482226174e+02
49321713894786e+01
67116253244367e+01
98657246103965e+01
90216297565713e+01
97703598663921e+02
31190732334140e+03
94656391416748e+03
57499937603824e+02
00044455638800e+03
.51300977728955e+03
.98788391217554e+01
.22419344056241e+01
.49949667475585e+00
.64028426513492e+01
.24776335048579e+01
.72602645048830e+01
-1.30256655303793e+02
-5.29591677106526e+02
-7.30313425261920e+02
-1.07483011639000e+03
-3.47554878209746e+02
-1.90569371766442e+03
-1.32654698042186e+00
=7.02302932945228e+00
2.88803533677383e+00
-2.43336338580521e+01
-8.57214413779894e+01
-4.84613008836258e+02
-6.72791434850101e+01
-9.42571723639016e+02
-1.75660549739085e+00
-5.19446299334552e+00
-3.82231936919193e+01
-1.72614880528381e+02
-2.61937155210405e+02
-2.24700163729300e+02
-1.39112539944064e+02
-6.74836549429177e+02
-1.60959042510642e+02
-1.05164713860096e+03
-2.80616845107011e+03
-3.09046775932426e+03
-3.84623894625317e+03
-1.49347321949504e+04
-2.72024746830315e+03
-2.38419285722741e+04
-3.28513079126854e+03
—7.98677528904790e+02
-1.29263276613380e+04
-8.50918565654172e+03
0.00000000000000e+00
Tps 155 6
-1.40404846561325e+00
-9.99984524843216e-01
1.06189119697454e+01
1.92466600997602e+01
-4.83305482668460e+00
-7.18372030901607e+00
-1.72202092330207e-01
-1.32219858219234e+00
-1.31564632665247e+00
-2.65308519125277e+00
-1.00848359587152e+01
-4.18701533108219e+01
-5.96415862357486e+01
-4.62504587434304e+01
-2.99324650357215e+01
-1.09932776516732e+02
.63403359928884e+01
49269925299390e+01
34049827518613e+01
27569071090964e+01
13479771343116e+00
13702458828611e+01
17932118514565e+02
74760222231202e+02
24793351117663e+02
.04413602674785e+02

U [
MR R RN R D N0 R 00N R

RPRORRPNONOIN - P

[
SIS NNINY

MOk WO RN OO

.08345934088543e+02
.70743801004457e+02
.71354264048856e+01
.43415826501221e+01
.64518080292754e+00
.34568693901185e+01
.23208048138549e+01
.06681871919480e+01
.22392862121214e+01
.67027607344495e+02
.86200792932391e+02
.68956674817416e+02
.91088869428420e+02
.70935055931097e+02
.35842075109514e+00
.58408022558387e+00
.13477831524251e+00
.52360576425779e+01
.84763422289507e+01
.61681302032955e+02
.31162416142156e+01
.30223742801969e+02
.65529361780429e-01
.59368232007630e+00
.28222387519607e+01
.86112831136932e+01
.17734691301974e+02
.38948944010626e+01
.89414379970452e+01
.73702440761652e+02
.47254170030699e+01
.50484799329717e+02
.27300828881376e+03
.72936913883461e+02
.84071448437227e+03
.31777268067071e+03
.37011902712452e+03
.43042781232997e+03
.08068982965595e+02
.22552811972271e+02
.59285727994283e+03
.84589585385840e+03
.00000000000000e+00
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.28626015289046e-15
.00000000000000e+00
.64798308373764e+01
.06982988449752e+00
.71407623472574e-01
.36582154331609e+00
.66263395824743e+00
.99023840411362e+01
.39413763510236e+01

77300464737216e+01

.53045998445865e+01

42515392648601e-01
19922257315348e+01
18093458913515e+02
21068730837990e+02
23603121636431e+02

.16462921423769e+02
.87741190064133e+00
.01182007227041e+00
.16970970212789e+00
.82848084795359e+01
.26548059479708e+02
.22736236061913e+01
.24010599565659e+02

86614366162964e+00
08108581731976e+01
96928708303105e+01
96579403342028e+00
43050405340039e+00

.37211488557621e+00
.79768966128738e+01
.62591981827577e+01
.11059090060209e+01
.51848424774929e+01
.85750731862969e+01
.95643277355737e+02
.66138002987570e+02
.15324540761758e+03
.80154362389132e+02
.58977998678807e+03
.33734882854660e+02
. 71747993719382e+03
.46179559533420e+02
.73269980969561e+02
.84555478916454e+01

07892060685083e+01
07615355834090e+03
11261658139000e+03
22308710859384e+03

.89484170304707e+03
.58889348276695e+01
.75412181117510e+01
.65919024225999e+00

HOOO0OOO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0OO0OO0OOOORKRRERHEREREHERERNNNNNNNN®®H P OO

FEEOMNNNNWPROOOOOO0OO0OO0O0OO0OO0O0O0OORRERRERHERERNNNNNWROOOOORNOOOOOKRNOOO

P OOOOOOOOOOOONNNNNNPRRHRREREHERERELWWOOOOOONNKEREOOOO

HEP WOOOONHOOOOOOOOOONNNNPRHLELLHWOOOONHROOOOONROOOOONKOOOO

P OOORLERRERNNWWARNOORRLNWOROORHENWOROORRLRNWOROROROO

HNOOOHRNOOOOOORHLENNWROOHRNOOORNOOORNOOOOORNOOOOORNOOOOOO

P WONONPRHR WONRLRORWONROHRORLRWONHRORORWONROROROROR®

0O 0 0000000000000 00000000000000000000O000O00O0O

BN OBRNONONOOONONOOOOONONOOOOONONOOOOOOOOOWHR

-1-1-1

HOOONHROOOOONBRRLWONROONHOOONLOOONHROOOOONLOOOOONROOOOOOO

C 0000000000000 0O0O0000000000000000000000000000O00O0O0O0O0O RO

PR P WR PR, PR ANONONOOONOOOONOOOONOOOOOOWRLRHRERILEENOOOOOOROO
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Appendix B. complete transfer matrix FODO

12301510386757e+02
83570267118253e+02
11235711821529e+00
99915510004025e+02
67492771416452e+02
34510080050207e+02
40500997129049e+02
82713998389005e+03
01094375948748e+04
11806481529668e+04
37833750178960e+03
01155238172603e+04
24749662621335e+04
33392347319989e+03
68893828307430e+04
39472708565487e+03
00000000000000e+00
15 6

.00000000000000e+00

Tps

OCRHROWNNTWNONR R R NTONS®R

C0O0O00O0O0O0OO0O0O0OO R

0

COOO0OOOONNNND R

0

CORRLRNNWMAOORNOOO

0

NAHRWONRLROONROOON

[

©cooocooooco0o0oo0o000O0O

[

T WRWR, R R ®R R R ®R

-1-1-1-1-1-1

0 0 0 0O

1

00000000000000e+00 -1 -1 -1 -1 -1 -1
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Appendix C

Canonical Transformations

C.1 Canonical transformation of the independent variable
t—s
As mentioned in section 1.2.3, the bunch position s provides an easy handling of the application

of the maps. The change independent variable can be done using the action S considering the
principle of Least Action:

t1
08 =9 {/ Ldt] =0 (C.1)
to
t1
S = (pzra7 +py?J +p.z— H) dt (028,)
to
1 dx dy dt p d-
= F e e . —H—|d c) == 2b
/20 ( dz erdeer dz) : 1©) dz (C.2b)
= / (pex’ + pyy +p. — Ht') dz (C.2¢)
20
= / (P22’ + pyy’ — H' +p.) dz (C.2d)

Using equation (C.2d) the Hamiltonian H can be redefined.

(@, ps)  (y,py) (=t H) (C.3)
H1 =Dz (04)
Rearranging equation (1.27) leads to:

2
p. = Hy = \/ % — (m6)* = (pe — Asq)® — (b — Aya)” + Asg (C.5)

To keep the values low, it is a good approch to normalize the momenta design momentum F.
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Therefore the whole equation (C.5) receives above normalization.

go= 2 i=1,y, 2
(2 PO b b)
. H,
Hy = —
1 7
. A; .
a; = q— i=z z
i qPO » Y

le\/(E_czqq))—(mC)z—(px—qu)Q—(py—qu)2+Azq P%
G JEa® (meNT o o e
Hl—\/ (Poc)2 <Po> (Pz x) (py y) ta;

(C.6a)
(C.6b)

(C.6¢)

(C.7)

(C.8)

C.2 Canonical transformation of the dependent variable

E—6

The normalized transverse momenta p, and p, now contain small values, but the normalized

E

longitudinal momentum 7 s still in order of magnitude of the speed of light ¢. For a smaller

value, a canonical transformation 2”9 kind is used.

1
Fy(z, Py, Py, —t,0: z2) =xPy + yPo + (Z — ct) ( + 5)
Bo Bo

The new momenta are parametrized with P, P, and .

~ 8F2 8F2 ~ 8F2
P 8q¢ Q 6P1 + 82
P, =p, X=z
Py:ﬁx Y:y
1 E Y
c|l —+6) == J==—ct
(30 ) Py Bo

The normalized longitudinal momentum is

_ £ 1 _1E-EQ
Pye By By EO

The transformed Hamiltonian K, neglecting the constant therm:

_5 1 q® 2 2 2 mc 2
K_BO—\/<6O+6—POC> — (Pr—az)” — (Py —ay) —(PO> —a,

(C.10)

(C.11)
(C.12)

(C.13)

(C.14)

(C.15)

Philippe Ganz
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Considering relativistic relations simplifies (C.15)

E
Eg = moc?, Py = yomov = 'YOBOC?; (C.16)

mc Eo 1
P Bl Gy (C.17)

c

Renaming the some parameters delivers the basic general Hamiltonian for a straight trajectory
(1.28).

K — H, P, — p;, Z— 8, Z =z (C.18)

I 0 1 g® \ 2 i 2 "
Bo Bo Poc v - L3 T as C.
Bo \/(50 0 Foc> (Pe — az)” — (py — ay) o ta (C19)

C.3 Canonical transformation for curved trajectories

In the following deviation, the lower case letters as x, y, z represent the Cartesian, whereas X,Y, S
represent the new FSC parameters.

z = (p+ X)cos (i) —p (C.20a)
y=Y (C.20Db)
z=(p+ X)sin <i) (C.20c)

Using the third type of generating Functions:

_OF , _ OF
3pi T 8XZ

€Tr; =

(C.21)

F3 (X, ps, Y, py, S,p2) = — {(p+X) cos (i) - p] Pz —Ypy — {(HX) sin (i)] p- (C.22)

The transverse momenta

Px = pg cos (S) + p. sin <S) (C.23a)
p P

Ps=p. <1 " f) (i) e <1 " f) sin <i) (C.230)

Considering the curved trajectory, the vector potential also has to be transformed, which results
are in the equations below.
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Ax = A, cos (S> — A, sin <S) (C.24a)

P P
Ay = A, (C.24b)
Ag = A, cos (S> + A, sin <S> (C.24c¢)

P p

The Hamiltonian for a curved trajectory can now be formed.
H="L (14 he) <1+5 qq,>2 (P — a)? — (py — ay)° (11 ha)
=—— x — —— | —(pz—az) — —ay) — —— T) as
Bo Bo Poc g P (Bov0)

(C.25)
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Appendix D

Complete Transfer Map PSI
Gantry 2

Gantry2
Fips 6
Tps 022 6
-5.89816075390077e-16 0
4.99841426108339¢+00 1
-1.80499976777692e+00 0
-3.17859777518194e-01 0
-6.89478372039282e+00 2
3.99792859086408e+00 1
-9.36210501042244e+01 1
-5.56250633915830e-01 0
-8.18540546639822e+01 0
-5.19079887330289¢-02 0
-1.43664901906849¢-01 0
-1.73826168418316e-01 0
6.57053307049404e+01 0
0.00000000000000e+00 -1
Tps 022 6
4.42233699501565e-17 0
1.87772176618226e+00 1
-4.78009069898658e-01 0
-8.53317191781775e-01 0
3.47470032861851e+00 2
-2.32637927492390e+00 1
2.94077348273114e+01 1
4.02246804955143e-01 0
-5.03223207545248e+01 0
-8.75903146620293e-04 0
-1.19484184366316e-01 0
1.37306526332084e-01 0O
1.01058818554427¢+02 0O
0.00000000000000e+00 -1
Tps 122 6
.14197648118929e+00 0
.66784233054528e+00 0
-3.08921935431020e-01 1
-1.11188305532118e+00 1
2.55309887510258¢-03 0
0
0
0
1

|
w

2.16668246999105e-01
-9.02297841098092¢+00
-1.08828372774235e+02
0.00000000000000e+00 -
Tps 122 6
-7.57546504985284e-02 0
1.11898636695509e+00 0O
1.83527019784464e-01 1
-2.12997753910986e-01 1
-4.08558133710974e-02 0
1.14347513912985e-01 0
9.23879618663931e+00 0
-1.36128920495746e+01 0
0.00000000000000e+00 -1
Tps 022 6
-4.73773806638681e-14 0 0 0 0 0 0
3.66838059778988e+00 1 O 0 0 0 O
-1.38829747639648e+00 0 1 0 0 0 0
1.00000000000000e+00 0 0 0 0 1 0
1.29942210732428¢+02 0 0 0 0 0 1
-1.68381067305892¢+02 2 0 0 0 0 0
1.01983629214248e+02 1 1 0 0 0 0
-8.52751008119755e+02 1 0 0 0 0 1
-2.64549146780650e+01 0 2 0 0 0 0
2.48154769627209e+02 0 1 0 0 0 1
-4.97749325662935e+00 0 0 2 0 0 0
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