Distribution.cpp 175 KB
Newer Older
gsell's avatar
gsell committed
1 2 3 4 5 6 7 8 9 10 11 12
// ------------------------------------------------------------------------
// $RCSfile: Distribution.cpp,v $
// ------------------------------------------------------------------------
// $Revision: 1.3.4.1 $
// ------------------------------------------------------------------------
// Copyright: see Copyright.readme
// ------------------------------------------------------------------------
//
// Class: Distribution
//   The class for the OPAL Distribution command.
//
// ------------------------------------------------------------------------
kraus's avatar
kraus committed
13 14

#include "Distribution/Distribution.h"
15
#include "Distribution/SigmaGenerator.h"
16
#include "AbsBeamline/SpecificElementVisitor.h"
17

18 19 20 21 22 23
#include <cmath>
#include <cfloat>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
24
#include <numeric>
25

26 27
#include "AbstractObjects/Expressions.h"
#include "Attributes/Attributes.h"
28
#include "Utilities/Options.h"
29 30 31 32 33 34
#include "Utilities/Options.h"
#include "halton1d_sequence.hh"
#include "AbstractObjects/OpalData.h"
#include "Algorithms/PartBunch.h"
#include "Algorithms/PartBins.h"
#include "Algorithms/bet/EnvelopeBunch.h"
35
#include "Structure/Beam.h"
36
#include "Structure/BoundaryGeometry.h"
gsell's avatar
gsell committed
37 38 39
#include "Algorithms/PartBinsCyc.h"
#include "BasicActions/Option.h"
#include "Distribution/LaserProfile.h"
40
#include "Elements/OpalBeamline.h"
41
#include "AbstractObjects/BeamSequence.h"
42 43
#include "Structure/H5PartWrapper.h"
#include "Structure/H5PartWrapperForPC.h"
44 45 46 47

#include <gsl/gsl_cdf.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf_erf.h>
48 49
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>
gsell's avatar
gsell committed
50

51 52
#include "MagneticField.h"

gsell's avatar
gsell committed
53 54
extern Inform *gmsg;

kraus's avatar
kraus committed
55
#define DISTDBG1
adelmann's avatar
Cleanup  
adelmann committed
56
#define noDISTDBG2
57

kraus's avatar
kraus committed
58 59
#define SMALLESTCUTOFF 1e-12

60 61 62 63 64 65 66 67
SymTenzor<double, 6> getUnit6x6() {
    SymTenzor<double, 6> unit6x6;
    for (unsigned int i = 0; i < 6u; ++ i) {
        unit6x6(i,i) = 1.0;
    }
    return unit6x6;
}

gsell's avatar
gsell committed
68 69 70 71
//
// Class Distribution
// ------------------------------------------------------------------------

72 73 74
namespace AttributesT
{
    enum AttributesT {
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        DISTRIBUTION,
        FNAME,
        WRITETOFILE,
        WEIGHT,
        INPUTMOUNITS,
        EMITTED,
        EMISSIONSTEPS,
        EMISSIONMODEL,
        EKIN,
        ELASER,
        W,
        FE,
        CATHTEMP,
        NBIN,
        XMULT,
        YMULT,
        ZMULT,
        TMULT,
        PXMULT,
        PYMULT,
        PZMULT,
        OFFSETX,
        OFFSETY,
        OFFSETZ,
        OFFSETT,
        OFFSETPX,
        OFFSETPY,
        OFFSETPZ,
        SIGMAX,
        SIGMAY,
        SIGMAR,
        SIGMAZ,
        SIGMAT,
        TPULSEFWHM,
        TRISE,
        TFALL,
        SIGMAPX,
        SIGMAPY,
        SIGMAPZ,
        MX,
        MY,
        MZ,
        MT,
        CUTOFFX,
        CUTOFFY,
        CUTOFFR,
        CUTOFFLONG,
        CUTOFFPX,
        CUTOFFPY,
        CUTOFFPZ,
        FTOSCAMPLITUDE,
        FTOSCPERIODS,
        R,                          // the correlation matrix (a la transport)
        CORRX,
        CORRY,
        CORRZ,
        CORRT,
        R51,
        R52,
        R61,
        R62,
        LASERPROFFN,
        IMAGENAME,
        INTENSITYCUT,
139 140 141 142 143
        FLIPX,
        FLIPY,
        ROTATE90,
        ROTATE180,
        ROTATE270,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        NPDARKCUR,
        INWARDMARGIN,
        EINITHR,
        FNA,
        FNB,
        FNY,
        FNVYZERO,
        FNVYSECOND,
        FNPHIW,
        FNBETA,
        FNFIELDTHR,
        FNMAXEMI,
        SECONDARYFLAG,
        NEMISSIONMODE,
        VSEYZERO,                   // sey_0 in Vaughn's model.
        VEZERO,                     // Energy related to sey_0 in Vaughan's model.
        VSEYMAX,                    // sey max in Vaughan's model.
        VEMAX,                      // Emax in Vaughan's model.
        VKENERGY,                   // Fitting parameter denotes the roughness of
        // surface for impact energy in Vaughn's model.
        VKTHETA,                    // Fitting parameter denotes the roughness of
        // surface for impact angle in Vaughn's model.
        VVTHERMAL,                  // Thermal velocity of Maxwellian distribution
        // of secondaries in Vaughan's model.
        VW,
        SURFMATERIAL,               // Add material type, currently 0 for copper
        // and 1 for stainless steel.
        EX,                         // below is for the matched distribution
        EY,
        ET,
        MAGSYM,                     // number of sector magnets
        LINE,
        FMAPFN,
        RESIDUUM,
        MAXSTEPSCO,
        MAXSTEPSSI,
        ORDERMAPS,
        E2,
Andreas Adelmann's avatar
Andreas Adelmann committed
182
	RGUESS,
183
        SIZE
gsell's avatar
gsell committed
184 185 186
    };
}

187 188 189
namespace LegacyAttributesT
{
    enum LegacyAttributesT {
190
        // DESCRIPTION OF THE DISTRIBUTION:
191
        DEBIN = AttributesT::SIZE,
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        SBIN,
        TEMISSION,
        SIGLASER,
        AG,
        SIGMAPT,
        TRANSVCUTOFF,
        CUTOFF,
        Z,
        T,
        PT,
        ALPHAX,
        ALPHAY,
        BETAX,
        BETAY,
        DX,
        DDX,
        DY,
        DDY,
        SIZE
    };
212 213
}

gsell's avatar
gsell committed
214
Distribution::Distribution():
215 216
    Definition( LegacyAttributesT::SIZE, "DISTRIBUTION",
                "The DISTRIBUTION statement defines data for the 6D particle distribution."),
217
    distrTypeT_m(DistrTypeT::NODIST),
218
    numberOfDistributions_m(1),
219 220 221 222 223 224
    emitting_m(false),
    scan_m(false),
    emissionModel_m(EmissionModelT::NONE),
    tEmission_m(0.0),
    tBin_m(0.0),
    currentEmissionTime_m(0.0),
kraus's avatar
kraus committed
225
    currentEnergyBin_m(1),
226
    currentSampleBin_m(0),
227 228 229 230 231
    numberOfEnergyBins_m(0),
    numberOfSampleBins_m(0),
    energyBins_m(NULL),
    energyBinHist_m(NULL),
    randGenEmit_m(NULL),
232
    pTotThermal_m(0.0),
kraus's avatar
kraus committed
233
    pmean_m(0.0),
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    cathodeWorkFunc_m(0.0),
    laserEnergy_m(0.0),
    cathodeFermiEnergy_m(0.0),
    cathodeTemp_m(0.0),
    emitEnergyUpperLimit_m(0.0),
    inputMoUnits_m(InputMomentumUnitsT::NONE),
    sigmaTRise_m(0.0),
    sigmaTFall_m(0.0),
    tPulseLengthFWHM_m(0.0),
    correlationMatrix_m(getUnit6x6()),
    laserProfileFileName_m(""),
    laserImageName_m(""),
    laserIntensityCut_m(0.0),
    laserProfile_m(NULL),
    darkCurrentParts_m(0),
    darkInwardMargin_m(0.0),
    eInitThreshold_m(0.0),
    workFunction_m(0.0),
    fieldEnhancement_m(0.0),
    fieldThrFN_m(0.0),
    maxFN_m(0),
    paraFNA_m(0.0),
    paraFNB_m(0.0),
    paraFNY_m(0.0),
    paraFNVYSe_m(0.0),
    paraFNVYZe_m(0.0),
    secondaryFlag_m(0),
    ppVw_m(0.0),
    vVThermal_m(0.0),
    referencePz_m(0.0),
    referenceZ_m(0.0),
    avrgpz_m(0.0),
    I_m(0.0),
    E_m(0.0),
    bega_m(0.0),
    M_m(0.0)
270
{
271 272 273 274
    SetAttributes();

    Distribution *defaultDistribution = clone("UNNAMED_Distribution");
    defaultDistribution->builtin = true;
gsell's avatar
gsell committed
275 276

    try {
277
        OpalData::getInstance()->define(defaultDistribution);
gsell's avatar
gsell committed
278
    } catch(...) {
279 280 281 282
        delete defaultDistribution;
    }

    SetFieldEmissionParameters();
gsell's avatar
gsell committed
283 284 285 286 287 288 289
}
/**
 *
 *
 * @param name
 * @param parent
 */
290
Distribution::Distribution(const std::string &name, Distribution *parent):
gsell's avatar
gsell committed
291
    Definition(name, parent),
292 293
    distT_m(parent->distT_m),
    distrTypeT_m(DistrTypeT::NODIST),
294
    numberOfDistributions_m(parent->numberOfDistributions_m),
295 296 297 298 299 300
    emitting_m(parent->emitting_m),
    scan_m(parent->scan_m),
    particleRefData_m(parent->particleRefData_m),
    addedDistributions_m(parent->addedDistributions_m),
    particlesPerDist_m(parent->particlesPerDist_m),
    emissionModel_m(parent->emissionModel_m),
gsell's avatar
gsell committed
301
    tEmission_m(parent->tEmission_m),
302 303 304 305 306 307 308 309 310 311
    tBin_m(parent->tBin_m),
    currentEmissionTime_m(parent->currentEmissionTime_m),
    currentEnergyBin_m(parent->currentEmissionTime_m),
    currentSampleBin_m(parent->currentSampleBin_m),
    numberOfEnergyBins_m(parent->numberOfEnergyBins_m),
    numberOfSampleBins_m(parent->numberOfSampleBins_m),
    energyBins_m(NULL),
    energyBinHist_m(NULL),
    randGenEmit_m(parent->randGenEmit_m),
    pTotThermal_m(parent->pTotThermal_m),
kraus's avatar
kraus committed
312
    pmean_m(parent->pmean_m),
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    cathodeWorkFunc_m(parent->cathodeWorkFunc_m),
    laserEnergy_m(parent->laserEnergy_m),
    cathodeFermiEnergy_m(parent->cathodeFermiEnergy_m),
    cathodeTemp_m(parent->cathodeTemp_m),
    emitEnergyUpperLimit_m(parent->emitEnergyUpperLimit_m),
    xDist_m(parent->xDist_m),
    pxDist_m(parent->pxDist_m),
    yDist_m(parent->yDist_m),
    pyDist_m(parent->pyDist_m),
    tOrZDist_m(parent->tOrZDist_m),
    pzDist_m(parent->pzDist_m),
    xWrite_m(parent->xWrite_m),
    pxWrite_m(parent->pxWrite_m),
    yWrite_m(parent->yWrite_m),
    pyWrite_m(parent->pyWrite_m),
    tOrZWrite_m(parent->tOrZWrite_m),
    pzWrite_m(parent->pzWrite_m),
330
    avrgpz_m(parent->avrgpz_m),
331 332 333 334 335 336 337 338
    inputMoUnits_m(parent->inputMoUnits_m),
    sigmaTRise_m(parent->sigmaTRise_m),
    sigmaTFall_m(parent->sigmaTFall_m),
    tPulseLengthFWHM_m(parent->tPulseLengthFWHM_m),
    sigmaR_m(parent->sigmaR_m),
    sigmaP_m(parent->sigmaP_m),
    cutoffR_m(parent->cutoffR_m),
    cutoffP_m(parent->cutoffP_m),
339
    correlationMatrix_m(parent->correlationMatrix_m),
340 341 342 343
    laserProfileFileName_m(parent->laserProfileFileName_m),
    laserImageName_m(parent->laserImageName_m),
    laserIntensityCut_m(parent->laserIntensityCut_m),
    laserProfile_m(NULL),
gsell's avatar
gsell committed
344 345 346 347 348 349 350 351 352 353 354 355
    darkCurrentParts_m(parent->darkCurrentParts_m),
    darkInwardMargin_m(parent->darkInwardMargin_m),
    eInitThreshold_m(parent->eInitThreshold_m),
    workFunction_m(parent->workFunction_m),
    fieldEnhancement_m(parent->fieldEnhancement_m),
    fieldThrFN_m(parent->fieldThrFN_m),
    maxFN_m(parent->maxFN_m),
    paraFNA_m(parent-> paraFNA_m),
    paraFNB_m(parent-> paraFNB_m),
    paraFNY_m(parent-> paraFNY_m),
    paraFNVYSe_m(parent-> paraFNVYSe_m),
    paraFNVYZe_m(parent-> paraFNVYZe_m),
356 357 358 359 360 361 362
    secondaryFlag_m(parent->secondaryFlag_m),
    ppVw_m(parent->ppVw_m),
    vVThermal_m(parent->vVThermal_m),
    tRise_m(parent->tRise_m),
    tFall_m(parent->tFall_m),
    sigmaRise_m(parent->sigmaRise_m),
    sigmaFall_m(parent->sigmaFall_m),
363 364
    cutoff_m(parent->cutoff_m),
    I_m(parent->I_m),
adelmann's avatar
adelmann committed
365 366 367
    E_m(parent->E_m),
    bega_m(parent->bega_m),
    M_m(parent->M_m)
368
{
gsell's avatar
gsell committed
369 370 371 372 373 374 375
}

Distribution::~Distribution() {

    if((Ippl::getNodes() == 1) && (os_m.is_open()))
        os_m.close();

376 377 378
    if (energyBins_m != NULL) {
        delete energyBins_m;
        energyBins_m = NULL;
gsell's avatar
gsell committed
379 380
    }

381 382 383 384 385 386
    if (energyBinHist_m != NULL) {
        gsl_histogram_free(energyBinHist_m);
        energyBinHist_m = NULL;
    }

    if (randGenEmit_m != NULL) {
387
        gsl_rng_free(randGenEmit_m);
388 389 390 391 392 393 394
        randGenEmit_m = NULL;
    }

    if(laserProfile_m) {
        delete laserProfile_m;
        laserProfile_m = NULL;
    }
gsell's avatar
gsell committed
395 396

}
397
/*
398
  void Distribution::printSigma(SigmaGenerator<double,unsigned int>::matrix_type& M, Inform& out) {
399
  for(int i=0; i<M.size1(); ++i) {
400 401 402 403 404
  for(int j=0; j<M.size2(); ++j) {
  *gmsg  << M(i,j) << " ";
  }
  *gmsg << endl;
  }
405 406
  }
*/
gsell's avatar
gsell committed
407 408

/**
409 410
 * At the moment only write the header into the file dist.dat
 * PartBunch will then append (very uggly)
411 412 413
 * @param
 * @param
 * @param
414
 */
415
void Distribution::WriteToFile() {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    /*
      if(Ippl::getNodes() == 1) {
      if(os_m.is_open()) {
      ;
      } else {
      *gmsg << " Write distribution to file data/dist.dat" << endl;
      std::string file("data/dist.dat");
      os_m.open(file.c_str());
      if(os_m.bad()) {
      *gmsg << "Unable to open output file " <<  file << endl;
      }
      os_m << "# x y ti px py pz "  << std::endl;
      os_m.close();
      }
      }
    */
432 433
}

434 435 436
/// Distribution can only be replaced by another distribution.
bool Distribution::canReplaceBy(Object *object) {
    return dynamic_cast<Distribution *>(object) != 0;
437 438
}

439 440 441
Distribution *Distribution::clone(const std::string &name) {
    return new Distribution(name, this);
}
442

443 444
void Distribution::execute() {
}
adelmann's avatar
adelmann committed
445

446 447
void Distribution::update() {
}
adelmann's avatar
adelmann committed
448

449
void Distribution::Create(size_t &numberOfParticles, double massIneV) {
adelmann's avatar
adelmann committed
450

451
    SetFieldEmissionParameters();
adelmann's avatar
adelmann committed
452

453
    switch (distrTypeT_m) {
adelmann's avatar
adelmann committed
454

455
    case DistrTypeT::MATCHEDGAUSS:
456
        CreateMatchedGaussDistribution(numberOfParticles, massIneV);
457
        break;
458 459
    case DistrTypeT::FROMFILE:
        CreateDistributionFromFile(numberOfParticles, massIneV);
gsell's avatar
gsell committed
460
        break;
461 462
    case DistrTypeT::GAUSS:
        CreateDistributionGauss(numberOfParticles, massIneV);
gsell's avatar
gsell committed
463
        break;
464 465
    case DistrTypeT::BINOMIAL:
        CreateDistributionBinomial(numberOfParticles, massIneV);
gsell's avatar
gsell committed
466
        break;
467 468
    case DistrTypeT::FLATTOP:
        CreateDistributionFlattop(numberOfParticles, massIneV);
gsell's avatar
gsell committed
469
        break;
470 471
    case DistrTypeT::GUNGAUSSFLATTOPTH:
        CreateDistributionFlattop(numberOfParticles, massIneV);
gsell's avatar
gsell committed
472
        break;
473 474
    case DistrTypeT::ASTRAFLATTOPTH:
        CreateDistributionFlattop(numberOfParticles, massIneV);
gsell's avatar
gsell committed
475
        break;
476 477 478 479
    default:
        INFOMSG("Distribution unknown." << endl;);
        break;
    }
480
    // AAA Scale and shift coordinates according to distribution input.
Andreas Adelmann's avatar
Andreas Adelmann committed
481
    ScaleDistCoordinates();
482
}
gsell's avatar
gsell committed
483

484
void  Distribution::CreatePriPart(PartBunch *beam, BoundaryGeometry &bg) {
gsell's avatar
gsell committed
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    if(Options::ppdebug) {  // This is Parallel Plate Benchmark.
        int pc = 0;
        size_t lowMark = beam->getLocalNum();
        double vw = this->GetVw();
        double vt = this->GetvVThermal();
        double f_max = vw / vt * exp(-0.5);
        double test_a = vt / vw;
        double test_asq = test_a * test_a;
        size_t count = 0;
        size_t N_mean = static_cast<size_t>(floor(bg.getN() / Ippl::getNodes()));
        size_t N_extra = static_cast<size_t>(bg.getN() - N_mean * Ippl::getNodes());
        if(Ippl::myNode() == 0)
            N_mean += N_extra;
        if(bg.getN() != 0) {
            for(size_t i = 0; i < bg.getN(); i++) {
                if(pc == Ippl::myNode()) {
                    if(count < N_mean) {
                        /*==============Parallel Plate Benchmark=====================================*/
                        double test_s = 1;
                        double f_x = 0;
                        double test_x = 0;
                        while(test_s > f_x) {
                            test_s = IpplRandom();
                            test_s *= f_max;
                            test_x = IpplRandom();
                            test_x *= 10 * test_a; //range for normalized emission speed(0,10*test_a);
                            f_x = test_x / test_asq * exp(-test_x * test_x / 2 / test_asq);
                        }
                        double v_emi = test_x * vw;
gsell's avatar
gsell committed
515

516 517 518 519 520 521 522
                        double betaemit = v_emi / Physics::c;
                        double betagamma = betaemit / sqrt(1 - betaemit * betaemit);
                        /*============================================================================ */
                        beam->create(1);
                        if(pc != 0) {
                            beam->R[lowMark + count] = bg.getCooridinate(Ippl::myNode() * N_mean + count + N_extra);
                            beam->P[lowMark + count] = betagamma * bg.getMomenta(Ippl::myNode() * N_mean + count);
gsell's avatar
gsell committed
523
                        } else {
524 525
                            beam->R[lowMark + count] = bg.getCooridinate(count);
                            beam->P[lowMark + count] = betagamma * bg.getMomenta(count);
gsell's avatar
gsell committed
526
                        }
527
                        beam->Bin[lowMark + count] = 0;
kraus's avatar
kraus committed
528
                        beam->PType[lowMark + count] = ParticleType::REGULAR;
529 530 531 532 533 534 535
                        beam->TriID[lowMark + count] = 0;
                        beam->Q[lowMark + count] = beam->getChargePerParticle();
                        beam->LastSection[lowMark + count] = 0;
                        beam->Ef[lowMark + count] = Vector_t(0.0);
                        beam->Bf[lowMark + count] = Vector_t(0.0);
                        beam->dt[lowMark + count] = beam->getdT();
                        count ++;
gsell's avatar
gsell committed
536 537
                    }
                }
538 539 540
                pc++;
                if(pc == Ippl::getNodes())
                    pc = 0;
gsell's avatar
gsell committed
541
            }
542 543 544
            bg.clearCooridinateArray();
            bg.clearMomentaArray();
            beam->boundp();
gsell's avatar
gsell committed
545
        }
546
        *gmsg << *beam << endl;
gsell's avatar
gsell committed
547

548
    } else {// Normal procedure to create primary particles
gsell's avatar
gsell committed
549

550 551 552 553 554
        int pc = 0;
        size_t lowMark = beam->getLocalNum();
        size_t count = 0;
        size_t N_mean = static_cast<size_t>(floor(bg.getN() / Ippl::getNodes()));
        size_t N_extra = static_cast<size_t>(bg.getN() - N_mean * Ippl::getNodes());
gsell's avatar
gsell committed
555

556 557 558 559
        if(Ippl::myNode() == 0)
            N_mean += N_extra;
        if(bg.getN() != 0) {
            for(size_t i = 0; i < bg.getN(); i++) {
gsell's avatar
gsell committed
560

561 562 563 564 565 566 567 568 569
                if(pc == Ippl::myNode()) {
                    if(count < N_mean) {
                        beam->create(1);
                        if(pc != 0)
                            beam->R[lowMark + count] = bg.getCooridinate(Ippl::myNode() * N_mean + count + N_extra); // node 0 will emit the particle with coordinate ID from 0 to N_mean+N_extra, so other nodes should shift to node_number*N_mean+N_extra
                        else
                            beam->R[lowMark + count] = bg.getCooridinate(count); // for node0 the particle number N_mean =  N_mean + N_extra
                        beam->P[lowMark + count] = Vector_t(0.0);
                        beam->Bin[lowMark + count] = 0;
kraus's avatar
kraus committed
570
                        beam->PType[lowMark + count] = ParticleType::REGULAR;
571 572 573 574 575 576 577
                        beam->TriID[lowMark + count] = 0;
                        beam->Q[lowMark + count] = beam->getChargePerParticle();
                        beam->LastSection[lowMark + count] = 0;
                        beam->Ef[lowMark + count] = Vector_t(0.0);
                        beam->Bf[lowMark + count] = Vector_t(0.0);
                        beam->dt[lowMark + count] = beam->getdT();
                        count++;
gsell's avatar
gsell committed
578 579

                    }
580

gsell's avatar
gsell committed
581
                }
582 583 584
                pc++;
                if(pc == Ippl::getNodes())
                    pc = 0;
585

586
            }
587

588 589 590 591 592 593
        }
        bg.clearCooridinateArray();
        beam->boundp();//fixme if bg.getN()==0?
    }
    *gmsg << *beam << endl;
}
594

595
void Distribution::DoRestartOpalT(PartBunch &beam, size_t Np, int restartStep, H5PartWrapper *dataSource) {
596

597
    IpplTimings::startTimer(beam.distrReload_m);
598

599 600
    long numParticles = dataSource->getNumParticles();
    size_t numParticlesPerNode = numParticles / Ippl::getNodes();
gsell's avatar
gsell committed
601

602 603 604 605
    size_t firstParticle = numParticlesPerNode * Ippl::myNode();
    size_t lastParticle = firstParticle + numParticlesPerNode - 1;
    if (Ippl::myNode() == Ippl::getNodes() - 1)
        lastParticle = numParticles - 1;
606

607 608
    numParticles = lastParticle - firstParticle + 1;
    PAssert(numParticles >= 0);
609

610
    beam.create(numParticles);
611

612 613
    dataSource->readHeader();
    dataSource->readStep(beam, firstParticle, lastParticle);
614 615 616

    beam.boundp();

617 618 619 620
    double actualT = beam.getT();
    long long ltstep = beam.getLocalTrackStep();
    long long gtstep = beam.getGlobalTrackStep();

gsell's avatar
gsell committed
621 622
    IpplTimings::stopTimer(beam.distrReload_m);

623 624 625 626
    *gmsg << "Total number of particles in the h5 file= " << beam.getTotalNum() << "\n"
          << "Global step= " << gtstep << "; Local step= " << ltstep << "; "
          << "restart step= " << restartStep << "\n"
          << "time of restart= " << actualT << "; phishift= " << OpalData::getInstance()->getGlobalPhaseShift() << endl;
gsell's avatar
gsell committed
627 628
}

629 630 631 632 633
void Distribution::DoRestartOpalCycl(PartBunch &beam,
                                     size_t Np,
                                     int restartStep,
                                     const int specifiedNumBunch,
                                     H5PartWrapper *dataSource) {
adelmann's avatar
adelmann committed
634

635
    // h5_int64_t rc;
636
    IpplTimings::startTimer(beam.distrReload_m);
637
    INFOMSG("---------------- Start reading hdf5 file----------------" << endl);
638

639 640
    long numParticles = dataSource->getNumParticles();
    size_t numParticlesPerNode = numParticles / Ippl::getNodes();
641

642 643 644 645
    size_t firstParticle = numParticlesPerNode * Ippl::myNode();
    size_t lastParticle = firstParticle + numParticlesPerNode - 1;
    if (Ippl::myNode() == Ippl::getNodes() - 1)
        lastParticle = numParticles - 1;
646

647 648
    numParticles = lastParticle - firstParticle + 1;
    PAssert(numParticles >= 0);
649

650
    beam.create(numParticles);
651

652 653
    dataSource->readHeader();
    dataSource->readStep(beam, firstParticle, lastParticle);
654

655
    beam.Q = beam.getChargePerParticle();
656

657
    beam.boundp();
658

659
    double meanE = static_cast<H5PartWrapperForPC*>(dataSource)->getMeanKineticEnergy();
660

661 662 663 664 665 666
    const int globalN = beam.getTotalNum();
    INFOMSG("Restart from hdf5 format file " << OpalData::getInstance()->getInputBasename() << ".h5" << endl);
    INFOMSG("total number of particles = " << globalN << endl);
    INFOMSG("* Restart Energy = " << meanE << " (MeV), Path lenght = " << beam.getLPath() << " (m)" <<  endl);
    INFOMSG("Tracking Step since last bunch injection is " << beam.getSteptoLastInj() << endl);
    INFOMSG(beam.getNumBunch() << " Bunches(bins) exist in this file" << endl);
667

668 669
    double gamma = 1 + meanE / beam.getM() * 1.0e6;
    double beta = sqrt(1.0 - (1.0 / std::pow(gamma, 2.0)));
670

671
    INFOMSG("* Gamma = " << gamma << ", Beta = " << beta << endl);
672

673 674
    if(dataSource->predecessorIsSameFlavour()) {
        INFOMSG("Restart from hdf5 file generated by OPAL-cycl" << endl);
675 676
        if(specifiedNumBunch > 1) {
            // the allowed maximal bin number is set to 1000
677
            beam.setPBins(new PartBinsCyc(1000, beam.getNumBunch()));
678 679
        }

680 681
    } else {
        INFOMSG("Restart from hdf5 file generated by OPAL-t" << endl);
682 683 684 685 686 687 688 689 690 691 692 693 694 695

        Vector_t meanR(0.0, 0.0, 0.0);
        Vector_t meanP(0.0, 0.0, 0.0);
        unsigned long int newLocalN = beam.getLocalNum();
        for(unsigned int i = 0; i < newLocalN; ++i) {
            for(int d = 0; d < 3; ++d) {
                meanR(d) += beam.R[i](d);
                meanP(d) += beam.P[i](d);
            }
        }
        reduce(meanR, meanR, OpAddAssign());
        meanR /= Vector_t(globalN);
        reduce(meanP, meanP, OpAddAssign());
        meanP /= Vector_t(globalN);
696
        INFOMSG("Rmean = " << meanR << "[m], Pmean=" << meanP << endl);
697 698 699 700 701 702 703

        for(unsigned int i = 0; i < newLocalN; ++i) {
            beam.R[i] -= meanR;
            beam.P[i] -= meanP;
        }
    }

704
    INFOMSG("---------------Finished reading hdf5 file---------------" << endl);
705 706 707
    IpplTimings::stopTimer(beam.distrReload_m);
}

708 709
void Distribution::DoRestartOpalE(EnvelopeBunch &beam, size_t Np, int restartStep,
                                  H5PartWrapper *dataSource) {
710
    IpplTimings::startTimer(beam.distrReload_m);
711 712
    int N = dataSource->getNumParticles();
    *gmsg << "total number of slices = " << N << endl;
713 714 715 716 717 718

    beam.distributeSlices(N);
    beam.createBunch();
    long long starti = beam.mySliceStartOffset();
    long long endi = beam.mySliceEndOffset();

719 720
    dataSource->readHeader();
    dataSource->readStep(beam, starti, endi);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    beam.setCharge(beam.getChargePerParticle());
    IpplTimings::stopTimer(beam.distrReload_m);
}

Distribution *Distribution::find(const std::string &name) {
    Distribution *dist = dynamic_cast<Distribution *>(OpalData::getInstance()->find(name));

    if(dist == 0) {
        throw OpalException("Distribution::find()", "Distribution \"" + name + "\" not found.");
    }

    return dist;
}

double Distribution::GetTEmission() {
    if(tEmission_m > 0.0) {
        return tEmission_m;
    }

    distT_m = Attributes::getString(itsAttr[AttributesT::DISTRIBUTION]);
    if(distT_m == "GAUSS")
        distrTypeT_m = DistrTypeT::GAUSS;
    else if(distT_m == "GUNGAUSSFLATTOPTH")
        distrTypeT_m = DistrTypeT::GUNGAUSSFLATTOPTH;
    else if(distT_m == "FROMFILE")
        distrTypeT_m = DistrTypeT::FROMFILE;
    else if(distT_m == "BINOMIAL")
        distrTypeT_m = DistrTypeT::BINOMIAL;

    tPulseLengthFWHM_m = Attributes::getReal(itsAttr[AttributesT::TPULSEFWHM]);
752
    cutoff_m = Attributes::getReal(itsAttr[ LegacyAttributesT::CUTOFF]);
753 754 755 756 757 758 759
    tRise_m = Attributes::getReal(itsAttr[AttributesT::TRISE]);
    tFall_m = Attributes::getReal(itsAttr[AttributesT::TFALL]);
    double tratio = sqrt(2.0 * log(10.0)) - sqrt(2.0 * log(10.0 / 9.0));
    sigmaRise_m = tRise_m / tratio;
    sigmaFall_m = tFall_m / tratio;

    switch(distrTypeT_m) {
760 761 762 763 764 765 766 767 768 769 770 771 772 773
    case DistrTypeT::ASTRAFLATTOPTH: {
        double a = tPulseLengthFWHM_m / 2;
        double sig = tRise_m / 2;
        double inv_erf08 = 0.906193802436823; // erfinv(0.8)
        double sqr2 = sqrt(2.);
        double t = a - sqr2 * sig * inv_erf08;
        double tmps = sig;
        double tmpt = t;
        for(int i = 0; i < 10; ++ i) {
            sig = (t + tRise_m - a) / (sqr2 * inv_erf08);
            t = a - 0.5 * sqr2 * (sig + tmps) * inv_erf08;
            sig = (0.5 * (t + tmpt) + tRise_m - a) / (sqr2 * inv_erf08);
            tmps = sig;
            tmpt = t;
774
        }
775 776 777 778 779 780 781 782 783
        tEmission_m = tPulseLengthFWHM_m + 10 * sig;
        break;
    }
    case DistrTypeT::GUNGAUSSFLATTOPTH: {
        tEmission_m = tPulseLengthFWHM_m + (cutoff_m - sqrt(2.0 * log(2.0))) * (sigmaRise_m + sigmaFall_m);
        break;
    }
    default:
        tEmission_m = 0.0;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    }
    return tEmission_m;
}

double Distribution::GetEkin() const {return Attributes::getReal(itsAttr[AttributesT::EKIN]);}
double Distribution::GetLaserEnergy() const {return Attributes::getReal(itsAttr[AttributesT::ELASER]);}
double Distribution::GetWorkFunctionRf() const {return Attributes::getReal(itsAttr[AttributesT::W]);}

size_t Distribution::GetNumberOfDarkCurrentParticles() { return (size_t) Attributes::getReal(itsAttr[AttributesT::NPDARKCUR]);}
double Distribution::GetDarkCurrentParticlesInwardMargin() { return Attributes::getReal(itsAttr[AttributesT::INWARDMARGIN]);}
double Distribution::GetEInitThreshold() { return Attributes::getReal(itsAttr[AttributesT::EINITHR]);}
double Distribution::GetWorkFunction() { return Attributes::getReal(itsAttr[AttributesT::FNPHIW]); }
double Distribution::GetFieldEnhancement() { return Attributes::getReal(itsAttr[AttributesT::FNBETA]); }
size_t Distribution::GetMaxFNemissionPartPerTri() { return (size_t) Attributes::getReal(itsAttr[AttributesT::FNMAXEMI]);}
double Distribution::GetFieldFNThreshold() { return Attributes::getReal(itsAttr[AttributesT::FNFIELDTHR]);}
double Distribution::GetFNParameterA() { return Attributes::getReal(itsAttr[AttributesT::FNA]);}
double Distribution::GetFNParameterB() { return Attributes::getReal(itsAttr[AttributesT::FNB]);}
double Distribution::GetFNParameterY() { return Attributes::getReal(itsAttr[AttributesT::FNY]);}
double Distribution::GetFNParameterVYZero() { return Attributes::getReal(itsAttr[AttributesT::FNVYZERO]);}
double Distribution::GetFNParameterVYSecond() { return Attributes::getReal(itsAttr[AttributesT::FNVYSECOND]);}
int    Distribution::GetSecondaryEmissionFlag() { return Attributes::getReal(itsAttr[AttributesT::SECONDARYFLAG]);}
bool   Distribution::GetEmissionMode() { return Attributes::getBool(itsAttr[AttributesT::NEMISSIONMODE]);}

std::string Distribution::GetTypeofDistribution() { return (std::string) Attributes::getString(itsAttr[AttributesT::DISTRIBUTION]);}

double Distribution::GetvSeyZero() {return Attributes::getReal(itsAttr[AttributesT::VSEYZERO]);}// return sey_0 in Vaughan's model
double Distribution::GetvEZero() {return Attributes::getReal(itsAttr[AttributesT::VEZERO]);}// return the energy related to sey_0 in Vaughan's model
double Distribution::GetvSeyMax() {return Attributes::getReal(itsAttr[AttributesT::VSEYMAX]);}// return sey max in Vaughan's model
double Distribution::GetvEmax() {return Attributes::getReal(itsAttr[AttributesT::VEMAX]);}// return Emax in Vaughan's model
double Distribution::GetvKenergy() {return Attributes::getReal(itsAttr[AttributesT::VKENERGY]);}// return fitting parameter denotes the roughness of surface for impact energy in Vaughan's model
double Distribution::GetvKtheta() {return Attributes::getReal(itsAttr[AttributesT::VKTHETA]);}// return fitting parameter denotes the roughness of surface for impact angle in Vaughan's model
double Distribution::GetvVThermal() {return Attributes::getReal(itsAttr[AttributesT::VVTHERMAL]);}// thermal velocity of Maxwellian distribution of secondaries in Vaughan's model
double Distribution::GetVw() {return Attributes::getReal(itsAttr[AttributesT::VW]);}// velocity scalar for parallel plate benchmark;

int Distribution::GetSurfMaterial() {return (int)Attributes::getReal(itsAttr[AttributesT::SURFMATERIAL]);}// Surface material number for Furman-Pivi's Model;

Inform &Distribution::printInfo(Inform &os) const {

822 823
    os << "* ************* D I S T R I B U T I O N ********************************************" << endl;
    os << "* " << endl;
824
    if (OpalData::getInstance()->inRestartRun()) {
adelmann's avatar
adelmann committed
825
        os << "* In restart. Distribution read in from .h5 file." << endl;
826 827
    } else {
        if (addedDistributions_m.size() > 0)
adelmann's avatar
adelmann committed
828
            os << "* Main Distribution" << endl
829
               << "-----------------" << endl;
830 831 832 833 834 835 836 837

        if (particlesPerDist_m.empty())
            PrintDist(os, 0);
        else
            PrintDist(os, particlesPerDist_m.at(0));

        size_t distCount = 1;
        for (unsigned distIndex = 0; distIndex < addedDistributions_m.size(); distIndex++) {
838
            os << "* " << endl;
adelmann's avatar
adelmann committed
839 840
            os << "* Added Distribution #" << distCount << endl;
            os << "* ----------------------" << endl;
841 842 843 844
            addedDistributions_m.at(distIndex)->PrintDist(os, particlesPerDist_m.at(distCount));
            distCount++;
        }

845
        os << "* " << endl;
846
        if (numberOfEnergyBins_m > 0) {
adelmann's avatar
adelmann committed
847
            os << "* Number of energy bins    = " << numberOfEnergyBins_m << endl;
848

849
            //            if (numberOfEnergyBins_m > 1)
adelmann's avatar
adelmann committed
850
            //    PrintEnergyBins(os);
851 852 853
        }

        if (emitting_m) {
adelmann's avatar
adelmann committed
854 855
            os << "* Distribution is emitted. " << endl;
            os << "* Emission time            = " << tEmission_m << " [sec]" << endl;
856 857
            os << "* Time per bin             = " << tEmission_m / numberOfEnergyBins_m << " [sec]" << endl;
            os << "* Delta t during emission  = " << tBin_m / numberOfSampleBins_m << " [sec]" << endl;
858
            os << "* " << endl;
859
            PrintEmissionModel(os);
860
            os << "* " << endl;
861
        } else
adelmann's avatar
adelmann committed
862
            os << "* Distribution is injected." << endl;
863
    }
864 865
    os << "* " << endl;
    os << "* **********************************************************************************" << endl;
866 867 868 869 870 871 872 873 874 875 876 877 878 879

    return os;
}

const PartData &Distribution::GetReference() const {
    // Cast away const, to allow logically constant Distribution to update.
    const_cast<Distribution *>(this)->update();
    return particleRefData_m;
}

void Distribution::AddDistributions() {
    /*
     * Move particle coordinates from added distributions to main distribution.
     */
adelmann's avatar
doc  
adelmann committed
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    std::vector<Distribution *>::iterator addedDistIt;
    for (addedDistIt = addedDistributions_m.begin();
         addedDistIt != addedDistributions_m.end(); addedDistIt++) {

        std::vector<double>::iterator distIt;
        for (distIt = (*addedDistIt)->GetXDist().begin();
             distIt != (*addedDistIt)->GetXDist().end();
             distIt++) {
            xDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseXDist();

        for (distIt = (*addedDistIt)->GetBGxDist().begin();
             distIt != (*addedDistIt)->GetBGxDist().end();
             distIt++) {
            pxDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseBGxDist();

        for (distIt = (*addedDistIt)->GetYDist().begin();
             distIt != (*addedDistIt)->GetYDist().end();
             distIt++) {
            yDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseYDist();

        for (distIt = (*addedDistIt)->GetBGyDist().begin();
             distIt != (*addedDistIt)->GetBGyDist().end();
             distIt++) {
            pyDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseBGyDist();

        for (distIt = (*addedDistIt)->GetTOrZDist().begin();
             distIt != (*addedDistIt)->GetTOrZDist().end();
             distIt++) {
            tOrZDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseTOrZDist();

        for (distIt = (*addedDistIt)->GetBGzDist().begin();
             distIt != (*addedDistIt)->GetBGzDist().end();
             distIt++) {
            pzDist_m.push_back(*distIt);
        }
        (*addedDistIt)->EraseBGzDist();
    }
}

void Distribution::ApplyEmissionModel(double eZ, double &px, double &py, double &pz) {

    switch (emissionModel_m) {

    case EmissionModelT::NONE:
        ApplyEmissModelNone(pz);
        break;
    case EmissionModelT::ASTRA:
        ApplyEmissModelAstra(px, py, pz);
        break;
    case EmissionModelT::NONEQUIL:
        ApplyEmissModelNonEquil(eZ, px, py, pz);
        break;
    default:
        break;
    }
}

void Distribution::ApplyEmissModelAstra(double &px, double &py, double &pz) {

950 951
    double phi = 2.0 * acos(sqrt(gsl_rng_uniform(randGenEmit_m)));
    double theta = 2.0 * Physics::pi * gsl_rng_uniform(randGenEmit_m);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

    px = pTotThermal_m * sin(phi) * cos(theta);
    py = pTotThermal_m * sin(phi) * sin(theta);
    pz = pTotThermal_m * std::abs(cos(phi));

}

void Distribution::ApplyEmissModelNone(double &pz) {
    pz += pTotThermal_m;
}

void Distribution::ApplyEmissModelNonEquil(double eZ,
                                           double &bgx,
                                           double &bgy,
                                           double &bgz) {

    double phiEffective = cathodeWorkFunc_m
969 970
        - sqrt(Physics::q_e * eZ /
               (4.0 * Physics::pi * Physics::epsilon_0));
971 972 973 974 975 976
    double lowEnergyLimit = cathodeFermiEnergy_m + phiEffective - laserEnergy_m;

    // Generate emission energy.
    double energy = 0.0;
    bool allow = false;
    while (!allow) {
977 978
        energy = lowEnergyLimit + (gsl_rng_uniform(randGenEmit_m)*emitEnergyUpperLimit_m);
        double randFuncValue = gsl_rng_uniform(randGenEmit_m);
979 980 981 982 983
        double funcValue = (1.0
                            - 1.0
                            / (1.0
                               + exp((energy + laserEnergy_m - cathodeFermiEnergy_m)
                                     / (Physics::kB * cathodeTemp_m))))
984 985 986
            / (1.0
               + exp((energy - cathodeFermiEnergy_m)
                     / (Physics::kB * cathodeTemp_m)));
987 988 989 990 991 992 993
        if (randFuncValue <= funcValue)
            allow = true;
    }

    // Compute emission angles.
    double energyInternal = energy + laserEnergy_m;
    double energyExternal = energy + laserEnergy_m
994
        - cathodeFermiEnergy_m - phiEffective;
995 996 997

    double thetaInMax = acos(sqrt((cathodeFermiEnergy_m + phiEffective)
                                  / (energy + laserEnergy_m)));
998
    double thetaIn = gsl_rng_uniform(randGenEmit_m)*thetaInMax;
999
    double sinThetaOut = sin(thetaIn) * sqrt(energyInternal / energyExternal);
1000
    double phi = Physics::two_pi * gsl_rng_uniform(randGenEmit_m);
1001 1002 1003

    // Compute emission momenta.
    double betaGammaExternal
1004
        = sqrt(pow(energyExternal / (Physics::m_e * 1.0e9) + 1.0, 2.0) - 1.0);
1005 1006 1007 1008 1009 1010 1011 1012 1013

    bgx = betaGammaExternal * sinThetaOut * cos(phi);
    bgy = betaGammaExternal * sinThetaOut * sin(phi);
    bgz = betaGammaExternal * sqrt(1.0 - pow(sinThetaOut, 2.0));

}

void Distribution::CalcPartPerDist(size_t numberOfParticles) {

1014
    typedef std::vector<Distribution *>::iterator iterator;
1015

1016
    if (numberOfDistributions_m == 1)
1017 1018
        particlesPerDist_m.push_back(numberOfParticles);
    else {
1019 1020 1021 1022
        double totalWeight = GetWeight();
        for (iterator it = addedDistributions_m.begin(); it != addedDistributions_m.end(); it++) {
            totalWeight += (*it)->GetWeight();
        }
1023 1024 1025

        particlesPerDist_m.push_back(0);
        size_t numberOfCommittedPart = 0;
1026 1027 1028 1029
        for (iterator it = addedDistributions_m.begin(); it != addedDistributions_m.end(); it++) {
            size_t particlesCurrentDist = numberOfParticles * (*it)->GetWeight() / totalWeight;
            particlesPerDist_m.push_back(particlesCurrentDist);
            numberOfCommittedPart += particlesCurrentDist;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        }

        // Remaining particles go into main distribution.
        particlesPerDist_m.at(0) = numberOfParticles - numberOfCommittedPart;

    }

}

void Distribution::CheckEmissionParameters() {

    // There must be at least on energy bin for an emitted beam.
    numberOfEnergyBins_m
        = std::abs(static_cast<int> (Attributes::getReal(itsAttr[AttributesT::NBIN])));
    if (numberOfEnergyBins_m == 0)
        numberOfEnergyBins_m = 1;

    int emissionSteps = std::abs(static_cast<int> (Attributes::getReal(itsAttr[AttributesT::EMISSIONSTEPS])));

    // There must be at least one emission step.
    if (emissionSteps == 0)
        emissionSteps = 1;

    // Set number of sample bins per energy bin from the number of emission steps.
    numberOfSampleBins_m = static_cast<int> (std::ceil(emissionSteps / numberOfEnergyBins_m));
    if (numberOfSampleBins_m <= 0)
        numberOfSampleBins_m = 1;

    // Initialize emission counters.
kraus's avatar
kraus committed
1059
    currentEnergyBin_m = 1;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    currentSampleBin_m = 0;

}

void Distribution::CheckIfEmitted() {

    emitting_m = Attributes::getBool(itsAttr[AttributesT::EMITTED]);

    switch (distrTypeT_m) {

    case DistrTypeT::ASTRAFLATTOPTH:
        emitting_m = true;
        break;
    case DistrTypeT::GUNGAUSSFLATTOPTH:
        emitting_m = true;
        break;
    default:
        break;
    }
}

void Distribution::CheckParticleNumber(size_t &numberOfParticles) {

1083 1084
    size_t numberOfDistParticles = tOrZDist_m.size();
    reduce(numberOfDistParticles, numberOfDistParticles, OpAddAssign());
1085

1086
    if (numberOfDistParticles != numberOfParticles) {
1087 1088
        *gmsg << "\n--------------------------------------------------" << endl
              << "Warning!! The number of particles in the initial" << endl
1089
              << "distribution is " << numberOfDistParticles << "." << endl << endl
1090
              << "This is different from the number of particles" << endl
1091
              << "defined by the BEAM command: " << numberOfParticles << endl << endl
1092 1093 1094 1095 1096
              << "This is often happens when using a FROMFILE type" << endl
              << "distribution and not matching the number of" << endl
              << "particles in the particles file(s) with the number" << endl
              << "given in the BEAM command." << endl << endl
              << "The number of particles in the initial distribution" << endl
1097
              << "(" << numberOfDistParticles << ") "
1098 1099 1100
              << "will take precedence." << endl
              << "---------------------------------------------------\n" << endl;
    }
1101
    numberOfParticles = numberOfDistParticles;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

void Distribution::ChooseInputMomentumUnits(InputMomentumUnitsT::InputMomentumUnitsT inputMoUnits) {

    /*
     * Toggle what units to use for inputing momentum.
     */
    std::string inputUnits = Attributes::getString(itsAttr[AttributesT::INPUTMOUNITS]);
    if (inputUnits == "NONE")
        inputMoUnits_m = InputMomentumUnitsT::NONE;
    else if (inputUnits == "EV")
        inputMoUnits_m = InputMomentumUnitsT::EV;
    else
        inputMoUnits_m = inputMoUnits;

}

double Distribution::ConvertBetaGammaToeV(double valueInBetaGamma, double massIneV) {
1120 1121 1122 1123
    if (valueInBetaGamma < 0)
        return -1.0 * (sqrt(pow(valueInBetaGamma, 2.0) + 1.0) - 1.0) * massIneV;
    else
        return (sqrt(pow(valueInBetaGamma, 2.0) + 1.0) - 1.0) * massIneV;
1124 1125 1126
}

double Distribution::ConverteVToBetaGamma(double valueIneV, double massIneV) {
1127 1128 1129 1130
    if (valueIneV < 0)
        return -1.0 * sqrt( pow( -1.0 * valueIneV / massIneV + 1.0, 2.0) - 1.0);
    else
        return sqrt( pow( valueIneV / massIneV + 1.0, 2.0) - 1.0);
1131 1132 1133 1134 1135 1136 1137 1138
}

double Distribution::ConvertMeVPerCToBetaGamma(double valueInMeVPerC, double massIneV) {
    return sqrt(pow(valueInMeVPerC * 1.0e6 * Physics::c / massIneV + 1.0, 2.0) - 1.0);
}

void Distribution::CreateDistributionBinomial(size_t numberOfParticles, double massIneV) {