/** * @file SigmaGenerator.h * The SigmaGenerator class uses the class ClosedOrbitFinder to get the parameters (inverse bending radius, path length * field index and tunes) to initialize the sigma matrix. It further has a private class member of type * RDM for decoupling. \n * The main function of this class is match(value_type, size_type), where it iteratively tries to find a matched distribution for given * emittances, energy and current. The computation stops when the L2-norm is smaller than a user-defined tolerance. \n * In default mode it prints all space charge maps, cyclotron maps and second moment matrices. The orbit properties, i.e. * tunes, average radius, orbit radius, inverse bending radius, path length, field index and frequency error, are printed * as well. * * @author Matthias Frey * @version 1.0 */ #ifndef SIGMAGENERATOR_H #define SIGMAGENERATOR_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Physics/Physics.h" #include "Utilities/Options.h" #include "Utilities/Options.h" #include "Utilities/OpalException.h" #include #include #include #include #if BOOST_VERSION >= 106000 #include #endif #include "rdm.h" #include "matrix_vector_operation.h" #include "ClosedOrbitFinder.h" #include "MapGenerator.h" #include "Harmonics.h" #include extern Inform *gmsg; /// @brief This class computes the matched distribution template class SigmaGenerator { public: /// Type of variables typedef Value_type value_type; /// Type of constant variables typedef const value_type const_value_type; /// Type for specifying sizes typedef Size_type size_type; /// Type for storing maps typedef boost::numeric::ublas::matrix matrix_type; /// Type for storing the sparse maps typedef boost::numeric::ublas::compressed_matrix sparse_matrix_type; /// Type for storing vectors typedef boost::numeric::ublas::vector vector_type; /// Container for storing the properties for each angle typedef std::vector container_type; /// Type of the truncated powere series typedef FTps Series; /// Type of a map typedef FVps Map; /// Type of the Hamiltonian for the cyclotron typedef std::function Hamiltonian; /// Type of the Hamiltonian for the space charge typedef std::function SpaceCharge; /// Constructs an object of type SigmaGenerator /*! * @param I specifies the current for which a matched distribution should be found, \f$ [I] = A \f$ * @param ex is the emittance in x-direction (horizontal), \f$ \left[\varepsilon_{x}\right] = \pi\ mm\ mrad \f$ * @param ey is the emittance in y-direction (longitudinal), \f$ \left[\varepsilon_{y}\right] = \pi\ mm\ mrad \f$ * @param ez is the emittance in z-direction (vertical), \f$ \left[\varepsilon_{z}\right] = \pi\ mm\ mrad \f$ * @param wo is the orbital frequency, \f$ \left[\omega_{o}\right] = \frac{1}{s} \f$ * @param E is the energy, \f$ \left[E\right] = MeV \f$ * @param nh is the harmonic number * @param m is the mass of the particles \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$ * @param Emin is the minimum energy [MeV] needed in cyclotron, \f$ \left[E_{min}\right] = MeV \f$ * @param Emax is the maximum energy [MeV] reached in cyclotron, \f$ \left[E_{max}\right] = MeV \f$ * @param nSector is the number of sectors (symmetry assumption) * @param N is the number of integration steps (closed orbit computation). That's why its also the number * of maps (for each integration step a map) * @param fieldmap is the location of the file that specifies the magnetic field * @param truncOrder is the truncation order for power series of the Hamiltonian * @param scaleFactor for the magnetic field (default: 1.0) * @param write is a boolean (default: true). If true all maps of all iterations are stored, otherwise not. */ SigmaGenerator(value_type I, value_type ex, value_type ey, value_type ez, value_type wo, value_type E, value_type nh, value_type m, value_type Emin, value_type Emax, size_type nSector, size_type N, const std::string& fieldmap, size_type truncOrder, value_type scaleFactor = 1.0, bool write = true); /// Searches for a matched distribution. /*! * Returns "true" if a matched distribution within the accuracy could be found, returns "false" otherwise. * @param accuracy is used for computing the equilibrium orbit (to a certain accuracy) * @param maxit is the maximum number of iterations (the program stops if within this value no stationary * distribution was found) * @param maxitOrbit is the maximum number of iterations for finding closed orbit * @param angle defines the start of the sector (one can choose any angle between 0° and 360°) * @param guess value of radius for closed orbit finder * @param type specifies the magnetic field format (e.g. CARBONCYCL) * @param harmonic is a boolean. If "true" the harmonics are used instead of the closed orbit finder. */ bool match(value_type accuracy, size_type maxit, size_type maxitOrbit, value_type angle, value_type guess, const std::string& type, bool harmonic); /// Block diagonalizes the symplex part of the one turn transfer matrix /** It computes the transformation matrix R and its inverse invR. * It returns a vector containing the four eigenvalues * (alpha,beta,gamma,delta) (see formula (38), paper: Geometrical method of decoupling) */ /*! * @param Mturn is a 6x6 dimensional one turn transfer matrix * @param R is the 4x4 dimensional transformation matrix (gets computed) * @param invR is the 4x4 dimensional inverse transformation (gets computed) */ vector_type decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR); /// Checks if the sigma-matrix is an eigenellipse and returns the L2 error. /*! * The idea of this function is taken from Dr. Christian Baumgarten's program. * @param Mturn is the one turn transfer matrix * @param sigma is the sigma matrix to be tested */ value_type isEigenEllipse(const matrix_type& Mturn, const matrix_type& sigma); /// Returns the converged stationary distribution matrix_type& getSigma(); /// Returns the number of iterations needed for convergence (if not converged, it returns zero) size_type getIterations() const; /// Returns the error (if the program didn't converged, one can call this function to check the error) value_type getError() const; /// Returns the emittances (ex,ey,ez) in \f$ \pi\ mm\ mrad \f$ for which the code converged (since the whole simulation is done on normalized emittances) std::array getEmittances() const; private: /// Stores the value of the current, \f$ \left[I\right] = A \f$ value_type I_m; /// Stores the desired emittances, \f$ \left[\varepsilon_{x}\right] = \left[\varepsilon_{y}\right] = \left[\varepsilon_{z}\right] = mm \ mrad \f$ std::array emittance_m; /// Is the orbital frequency, \f$ \left[\omega_{o}\right] = \frac{1}{s} \f$ value_type wo_m; /// Stores the user-define energy, \f$ \left[E\right] = MeV \f$ value_type E_m; /// Relativistic factor (which can be computed out ot the kinetic energy and rest mass (potential energy)), \f$ \left[\gamma\right] = 1 \f$ value_type gamma_m; /// Relativistic factor squared value_type gamma2_m; /// Harmonic number, \f$ \left[N_{h}\right] = 1 \f$ value_type nh_m; /// Velocity (c/v), \f$ \left[\beta\right] = 1 \f$ value_type beta_m; /// Is the mass of the particles, \f$ \left[m\right] = \frac{MeV}{c^{2}} \f$ value_type m_m; /// Is the number of iterations needed for convergence size_type niterations_m; /// Is true if converged, false otherwise bool converged_m; /// Minimum energy needed in cyclotron, \f$ \left[E_{min}\right] = MeV \f$ value_type Emin_m; /// Maximum energy reached in cyclotron, \f$ \left[E_{max}\right] = MeV \f$ value_type Emax_m; /// Number of (symmetric) sectors size_type nSector_m; /// Number of integration steps for closed orbit computation size_type N_m; /// Number of integration steps per sector (--> also: number of maps per sector) size_type nStepsPerSector_m; /// Error of computation value_type error_m; /// Location of magnetic fieldmap std::string fieldmap_m; /// Truncation order of the power series for the Hamiltonian (cyclotron and space charge) size_type truncOrder_m; /// Decides for writing output (default: true) bool write_m; /// Scale the magnetic field values (default: 1.0) value_type scaleFactor_m; /// Stores the stationary distribution (sigma matrix) matrix_type sigma_m; /// Vector storing the second moment matrix for each angle std::vector sigmas_m; /// RDM-class member used for decoupling RDM rdm_m; /// Stores the Hamiltonian of the cyclotron Hamiltonian H_m; /// Stores the Hamiltonian for the space charge SpaceCharge Hsc_m; /// All variables x, px, y, py, z, delta Series x_m, px_m, y_m, py_m, z_m, delta_m; /// Initializes a first guess of the sigma matrix with the assumption of a spherical symmetric beam (ex = ey = ez). For each angle split the same initial guess is taken. /*! * @param nuz is the vertical tune * @param ravg is the average radius of the closed orbit */ void initialize(value_type, value_type); /// Reduces the 6x6 matrix to a 4x4 matrix (for more explanations consider the source code comments) template void reduce(matrix&); /// Expands the 4x4 matrix back to dimension 6x6 (for more explanations consider the source code comments) template void expand(matrix&); /// Computes the new initial sigma matrix /*! * @param M is the 6x6 one turn transfer matrix * @param eigen stores the 4 eigenvalues: alpha, beta, gamma, delta (in this order) * @param R is the transformation matrix * @param invR is the inverse transformation matrix */ matrix_type updateInitialSigma(const matrix_type&, const vector_type&, sparse_matrix_type&, sparse_matrix_type&); /// Computes new sigma matrices (one for each angle) /*! * Mscs is a vector of all space charge maps * Mcycs is a vector of all cyclotron maps */ void updateSigma(const std::vector&, const std::vector&); /// Returns the L2-error norm between the old and new sigma-matrix /*! * @param oldS is the old sigma matrix * @param newS is the new sigma matrix */ value_type L2ErrorNorm(const matrix_type&, const matrix_type&); /// Returns the Lp-error norm between the old and new sigma-matrix /*! * @param oldS is the old sigma matrix * @param newS is the new sigma matrix */ value_type L1ErrorNorm(const matrix_type&, const matrix_type&); /// Transforms a floating point value to a string /*! * @param val is the floating point value which is transformed to a string */ std::string float2string(value_type val); /// Called within SigmaGenerator::match(). /*! * @param tunes * @param ravg is the average radius [m] * @param r_turn is the radius [m] * @param peo is the momentum * @param h_turn is the inverse bending radius * @param fidx_turn is the field index * @param ds_turn is the path length element */ void writeOrbitOutput_m(const std::pair& tunes, const value_type& ravg, const value_type& freqError, const container_type& r_turn, const container_type& peo, const container_type& h_turn, const container_type& fidx_turn, const container_type& ds_turn); }; // ----------------------------------------------------------------------------------------------------------------------- // PUBLIC MEMBER FUNCTIONS // ----------------------------------------------------------------------------------------------------------------------- template SigmaGenerator::SigmaGenerator(value_type I, value_type ex, value_type ey, value_type ez, value_type wo, value_type E, value_type nh, value_type m, value_type Emin, value_type Emax, size_type nSector, size_type N, const std::string& fieldmap, size_type truncOrder, value_type scaleFactor, bool write) : I_m(I), wo_m(wo), E_m(E), gamma_m(E/m+1.0), gamma2_m(gamma_m*gamma_m), nh_m(nh), beta_m(std::sqrt(1.0-1.0/gamma2_m)), m_m(m), niterations_m(0), converged_m(false), Emin_m(Emin), Emax_m(Emax), nSector_m(nSector), N_m(N), nStepsPerSector_m(N/nSector), error_m(std::numeric_limits::max()), fieldmap_m(fieldmap), truncOrder_m(truncOrder), write_m(write), scaleFactor_m(scaleFactor), sigmas_m(nStepsPerSector_m) { // set emittances (initialization like that due to old compiler version) // [ex] = [ey] = [ez] = pi*mm*mrad --> [emittance] = mm mrad emittance_m[0] = ex * Physics::pi; emittance_m[1] = ey * Physics::pi; emittance_m[2] = ez * Physics::pi; // minimum beta*gamma value_type minGamma = Emin_m / m_m + 1.0; value_type bgam = std::sqrt(minGamma * minGamma - 1.0); // normalized emittance (--> multiply with beta*gamma) // [emittance] = mm mrad emittance_m[0] *= bgam; emittance_m[1] *= bgam; emittance_m[2] *= bgam; // Define the Hamiltonian Series::setGlobalTruncOrder(truncOrder_m); // infinitesimal elements x_m = Series::makeVariable(0); px_m = Series::makeVariable(1); y_m = Series::makeVariable(2); py_m = Series::makeVariable(3); z_m = Series::makeVariable(4); delta_m = Series::makeVariable(5); H_m = [&](value_type h, value_type kx, value_type ky) { return 0.5*px_m*px_m + 0.5*kx*x_m*x_m - h*x_m*delta_m + 0.5*py_m*py_m + 0.5*ky*y_m*y_m + 0.5*delta_m*delta_m/gamma2_m; }; Hsc_m = [&](value_type sigx, value_type sigy, value_type sigz) { // convert m from MeV/c^2 to eV*s^{2}/m^{2} value_type m = m_m * 1.0e6 / (Physics::c * Physics::c); // formula (57) value_type lam = 2.0 * Physics::pi*Physics::c / (wo_m * nh_m); // wavelength, [lam] = m value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m * Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma_m * gamma2_m); // [K3] = m value_type milli = 1.0e-3; // formula (30), (31) // [sigma(0,0)] = mm^{2} rad --> [sx] = [sy] = [sz] = mm // multiply with 0.001 to get meter --> [sx] = [sy] = [sz] = m value_type sx = std::sqrt(std::fabs(sigx)) * milli; value_type sy = std::sqrt(std::fabs(sigy)) * milli; value_type sz = std::sqrt(std::fabs(sigz)) * milli; value_type tmp = sx * sy; // [tmp] = m^{2} value_type f = std::sqrt(tmp) / (3.0 * gamma_m * sz); // [f] = 1 value_type kxy = K3 * std::fabs(1.0 - f) / ((sx + sy) * sz); // [kxy] = 1/m value_type Kx = kxy / sx; value_type Ky = kxy / sy; value_type Kz = K3 * f / (tmp * sz); return -0.5 * Kx * x_m * x_m -0.5 * Ky * y_m * y_m -0.5 * Kz * z_m * z_m * gamma2_m; }; } template bool SigmaGenerator::match(value_type accuracy, size_type maxit, size_type maxitOrbit, value_type angle, value_type rguess, const std::string& type, bool harmonic) { /* compute the equilibrium orbit for energy E_ * and get the the following properties: * - inverse bending radius h * - step sizes of path ds * - tune nuz */ try { // object for space charge map and cyclotron map MapGenerator mapgen(nStepsPerSector_m); // compute cyclotron map and space charge map for each angle and store them into a vector std::vector Mcycs(nStepsPerSector_m), Mscs(nStepsPerSector_m); container_type h(nStepsPerSector_m), r(nStepsPerSector_m), ds(nStepsPerSector_m), fidx(nStepsPerSector_m); value_type ravg = 0.0, const_ds = 0.0; std::pair tunes; if (!harmonic) { ClosedOrbitFinder > cof(E_m, m_m, wo_m, N_m, accuracy, maxitOrbit, Emin_m, Emax_m, nSector_m, fieldmap_m, rguess, type, scaleFactor_m, false); // properties of one turn container_type h_turn = cof.getInverseBendingRadius(); container_type r_turn = cof.getOrbit(angle); container_type ds_turn = cof.getPathLength(); container_type fidx_turn = cof.getFieldIndex(); tunes = cof.getTunes(); ravg = cof.getAverageRadius(); // average radius container_type peo = cof.getMomentum(angle); // write properties to file if (write_m) writeOrbitOutput_m(tunes, ravg, cof.getFrequencyError(), r_turn, peo, h_turn, fidx_turn, ds_turn); // write to terminal *gmsg << "* ----------------------------" << endl << "* Closed orbit info (Gordon units):" << endl << "*" << endl << "* average radius: " << ravg << " [m]" << endl << "* initial radius: " << r_turn[0] << " [m]" << endl << "* initial momentum: " << peo[0] << " [Beta Gamma]" << endl << "* frequency error: " << cof.getFrequencyError() << endl << "* horizontal tune: " << tunes.first << endl << "* vertical tune: " << tunes.second << endl << "* ----------------------------" << endl << endl; // compute the number of steps per degree value_type deg_step = N_m / 360.0; // compute starting point of computation size_type start = deg_step * angle; // copy properties of the length of one sector (--> nStepsPerSector_m) std::copy_n(r_turn.begin()+start,nStepsPerSector_m, r.begin()); std::copy_n(h_turn.begin()+start,nStepsPerSector_m, h.begin()); std::copy_n(fidx_turn.begin()+start,nStepsPerSector_m, fidx.begin()); std::copy_n(ds_turn.begin()+start,nStepsPerSector_m, ds.begin()); } else { *gmsg << "Not yet supported." << endl; return false; } if(Options::cloTuneOnly) throw OpalException("Do only CLO and tune calculation","... "); // initialize sigma matrices (for each angle one) (first guess) initialize(tunes.second,ravg); // for writing std::ofstream writeMturn, writeMcyc, writeMsc; if (write_m) { std::string energy = float2string(E_m); writeMturn.open("data/OneTurnMapForEnergy"+energy+"MeV.dat",std::ios::app); writeMsc.open("data/SpaceChargeMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeMcyc.open("data/CyclotronMapPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeMturn << "--------------------------------" << std::endl; writeMturn << "Iteration: 0 " << std::endl; writeMturn << "--------------------------------" << std::endl; writeMsc << "--------------------------------" << std::endl; writeMsc << "Iteration: 0 " << std::endl; writeMsc << "--------------------------------" << std::endl; } // calculate only for a single sector (a nSector_-th) of the whole cyclotron for (size_type i = 0; i < nStepsPerSector_m; ++i) { if (!harmonic) { Mcycs[i] = mapgen.generateMap(H_m(h[i],h[i]*h[i]+fidx[i],-fidx[i]),ds[i],truncOrder_m); Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),sigmas_m[i](2,2),sigmas_m[i](4,4)),ds[i],truncOrder_m); } else { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),sigmas_m[i](2,2),sigmas_m[i](4,4)),const_ds,truncOrder_m); } if (write_m) { writeMcyc << Mcycs[i] << std::endl; writeMsc << Mscs[i] << std::endl; } } // one turn matrix mapgen.combine(Mscs,Mcycs); matrix_type Mturn = mapgen.getMap(); if (write_m) writeMturn << Mturn << std::endl; // (inverse) transformation matrix sparse_matrix_type R, invR; // eigenvalues vector_type eigen(4); // new initial sigma matrix matrix_type newSigma(6,6); // for exiting loop bool stop = false; value_type weight = 0.05; while (error_m > accuracy && !stop) { // decouple transfer matrix and compute (inverse) tranformation matrix eigen = decouple(Mturn,R,invR); // construct new initial sigma-matrix newSigma = updateInitialSigma(Mturn,eigen,R,invR); // compute new sigma matrices for all angles (except for initial sigma) updateSigma(Mscs,Mcycs); // compute error error_m = L2ErrorNorm(sigmas_m[0],newSigma); // write new initial sigma-matrix into vector sigmas_m[0] = weight*newSigma + (1.0-weight)*sigmas_m[0]; if (write_m) { writeMsc << "--------------------------------" << std::endl; writeMsc << "Iteration: " << niterations_m + 1 << std::endl; writeMsc << "--------------------------------" << std::endl; } // compute new space charge maps for (size_type i = 0; i < nStepsPerSector_m; ++i) { if (!harmonic) { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),sigmas_m[i](2,2),sigmas_m[i](4,4)),ds[i],truncOrder_m); } else { Mscs[i] = mapgen.generateMap(Hsc_m(sigmas_m[i](0,0),sigmas_m[i](2,2),sigmas_m[i](4,4)),const_ds,truncOrder_m); } if (write_m) writeMsc << Mscs[i] << std::endl; } // construct new one turn transfer matrix M mapgen.combine(Mscs,Mcycs); Mturn = mapgen.getMap(); if (write_m) { writeMturn << "--------------------------------" << std::endl; writeMturn << "Iteration: " << niterations_m + 1 << std::endl; writeMturn << "--------------------------------" << std::endl; writeMturn << Mturn << std::endl; } // check if number of iterations has maxit exceeded. stop = (niterations_m++ > maxit); } // store converged sigma-matrix sigma_m.resize(6,6,false); sigma_m.swap(newSigma); // returns if the sigma matrix has converged converged_m = error_m < accuracy; // Close files if (write_m) { writeMturn.close(); writeMsc.close(); writeMcyc.close(); } } catch(const std::exception& e) { std::cerr << e.what() << std::endl; } if ( converged_m && write_m ) { // write tunes std::ofstream writeSigmaMatched("data/MatchedDistributions.dat", std::ios::app); std::array emit = this->getEmittances(); writeSigmaMatched << "* Converged (Ex, Ey, Ez) = (" << emit[0] << ", " << emit[1] << ", " << emit[2] << ") pi mm mrad for E= " << E_m << " (MeV)" << std::endl << "* Sigma-Matrix " << std::endl; for(unsigned int i = 0; i < sigma_m.size1(); ++ i) { writeSigmaMatched << std::setprecision(4) << std::setw(11) << sigma_m(i,0); for(unsigned int j = 1; j < sigma_m.size2(); ++ j) { writeSigmaMatched << " & " << std::setprecision(4) << std::setw(11) << sigma_m(i,j); } writeSigmaMatched << " \\\\" << std::endl; } writeSigmaMatched << std::endl; writeSigmaMatched.close(); } return converged_m; } template typename SigmaGenerator::vector_type SigmaGenerator::decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR) { // copy one turn matrix matrix_type M(Mturn); // reduce 6x6 matrix to 4x4 matrix reduce(M); // compute symplex part matrix_type Ms = rdm_m.symplex(M); // diagonalize and compute transformation matrices rdm_m.diagonalize(Ms,R,invR); /* * formula (38) in paper of Dr. Christian Baumgarten: * Geometrical method of decoupling * * [0, alpha, 0, 0; * F_{d} = -beta, 0, 0, 0; * 0, 0, 0, gamma; * 0, 0, -delta, 0] * * */ vector_type eigen(4); eigen(0) = Ms(0,1); // alpha eigen(1) = - Ms(1,0); // beta eigen(2) = Ms(2,3); // gamma eigen(3) = - Ms(3,2); // delta return eigen; } template typename SigmaGenerator::value_type SigmaGenerator::isEigenEllipse(const matrix_type& Mturn, const matrix_type& sigma) { // compute sigma matrix after one turn matrix_type newSigma = matt_boost::gemmm(Mturn,sigma,boost::numeric::ublas::trans(Mturn)); // return L2 error return L2ErrorNorm(sigma,newSigma); } template inline typename SigmaGenerator::matrix_type& SigmaGenerator::getSigma() { return sigma_m; } template inline typename SigmaGenerator::size_type SigmaGenerator::getIterations() const { return (converged_m) ? niterations_m : size_type(0); } template inline typename SigmaGenerator::value_type SigmaGenerator::getError() const { return error_m; } template inline std::array SigmaGenerator::getEmittances() const { value_type bgam = gamma_m*beta_m; return std::array({emittance_m[0]/Physics::pi/bgam, emittance_m[1]/Physics::pi/bgam, emittance_m[2]/Physics::pi/bgam}); } // ----------------------------------------------------------------------------------------------------------------------- // PRIVATE MEMBER FUNCTIONS // ----------------------------------------------------------------------------------------------------------------------- template void SigmaGenerator::initialize(value_type nuz, value_type ravg) { /* * The initialization is based on the analytical solution of using a spherical symmetric beam in the paper: * Transverse-longitudinal coupling by space charge in cyclotrons * by Dr. Christian Baumgarten * (formulas: (46), (56), (57)) */ /* Units: * ---------------------------------------------- * [wo] = 1/s * [nh] = 1 * [q0] = e * [I] = A * [eps0] = (A*s)^{2}/(N*m^{2}) * [E0] = MeV/(c^{2}) (with speed of light c) * [beta] = 1 * [gamma] = 1 * [m] = kg * * [lam] = m * [K3] = m * [alpha] = 10^{3}/(pi*mrad) * ---------------------------------------------- */ // helper constants value_type invbg = 1.0 / (beta_m * gamma_m); value_type micro = 1.0e-6; value_type mega = 1.0e6; value_type kilo = 1.0e3; // convert mass m_m from MeV/c^2 to eV*s^{2}/m^{2} value_type m = m_m * mega/(Physics::c * Physics::c); // [m] = eV*s^{2}/m^{2}, [m_m] = MeV/c^2 /* Emittance [ex] = [ey] = [ez] = mm mrad (emittance_m are normalized emittances * (i.e. emittance multiplied with beta*gamma) */ value_type ex = emittance_m[0] * invbg; // [ex] = mm mrad value_type ey = emittance_m[1] * invbg; // [ey] = mm mrad value_type ez = emittance_m[2] * invbg; // [ez] = mm mrad // convert normalized emittances: mm mrad --> m rad (mm mrad: millimeter milliradian) ex *= micro; ey *= micro; ez *= micro; // initial guess of emittance, [e] = m rad value_type e = std::cbrt(ex * ey * ez); // cbrt computes cubic root (C++11) // cyclotron radius [rcyc] = m value_type rcyc = ravg / beta_m; // "average" inverse bending radius value_type h = 1.0 / ravg; // [h] = 1/m // formula (57) value_type lam = 2.0 * Physics::pi * Physics::c / (wo_m * nh_m); // wavelength, [lam] = m value_type K3 = 3.0 * /* physics::q0 */ 1.0 * I_m * lam / (20.0 * std::sqrt(5.0) * Physics::pi * Physics::epsilon_0 * m * Physics::c * Physics::c * Physics::c * beta_m * beta_m * gamma2_m * gamma_m); // [K3] = m value_type alpha = /* physics::q0 */ 1.0 * Physics::mu_0 * I_m / (5.0 * std::sqrt(10.0) * m * Physics::c * gamma_m * nh_m) * std::sqrt(rcyc * rcyc * rcyc / (e * e * e)); // [alpha] = 1/rad --> [alpha] = 1 value_type sig0 = std::sqrt(2.0 * rcyc * e) / gamma_m; // [sig0] = m*sqrt(rad) --> [sig0] = m // formula (56) value_type sig; // [sig] = m if (alpha >= 2.5) { sig = sig0 * std::cbrt(1.0 + alpha); // cbrt computes cubic root (C++11) } else if (alpha >= 0) { sig = sig0 * (1 + alpha * (0.25 - 0.03125 * alpha)); } else { throw OpalException("SigmaGenerator::initialize()", "Negative alpha value: " + std::to_string(alpha) + " < 0"); } // K = Kx = Ky = Kz value_type K = K3 * gamma_m / (3.0 * sig * sig * sig); // formula (46), [K] = 1/m^{2} value_type kx = h * h * gamma2_m; // formula (46) (assumption of an isochronous cyclotron), [kx] = 1/m^{2} value_type a = 0.5 * kx - K; // formula (22) (with K = Kx = Kz), [a] = 1/m^{2} value_type b = K * K; // formula (22) (with K = Kx = Kz and kx = h^2*gamma^2), [b] = 1/m^{4} // b must be positive, otherwise no real-valued frequency if (b < 0) throw OpalException("SigmaGenerator::initialize()", "Negative value --> No real-valued frequency."); value_type tmp = a * a - b; // [tmp] = 1/m^{4} if (tmp < 0) throw OpalException("SigmaGenerator::initialize()", "Square root of negative number."); tmp = std::sqrt(tmp); // [tmp] = 1/m^{2} if (a < tmp) throw OpalException("Error in SigmaGenerator::initialize()", "Square root of negative number."); if (h * h * nuz * nuz <= K) throw OpalException("SigmaGenerator::initialize()", "h^{2} * nu_{z}^{2} <= K (i.e. square root of negative number)"); value_type Omega = std::sqrt(a + tmp); // formula (22), [Omega] = 1/m value_type omega = std::sqrt(a - tmp); // formula (22), [omega] = 1/m value_type A = h / (Omega * Omega + K); // formula (26), [A] = m value_type B = h / (omega * omega + K); // formula (26), [B] = m value_type invAB = 1.0 / (B - A); // [invAB] = 1/m // construct initial sigma-matrix (formula (29, 30, 31) // Remark: We multiply with 10^{6} (= mega) to convert emittances back. // 1 m^{2} = 10^{6} mm^{2} matrix_type sigma = boost::numeric::ublas::zero_matrix(6); sigma(0,0) = invAB * (B * ex / Omega + A * ez / omega) * mega; // formula (30), [sigma(0,0)] = m^2 rad * 10^{6} = mm^{2} rad = mm mrad sigma(0,5) = sigma(5,0) = invAB * (ex / Omega + ez / omega) * mega; // [sigma(0,5)] = [sigma(5,0)] = m rad * 10^{6} = mm mrad // 1000: m --> mm and 1000 to promille sigma(1,1) = invAB * (B * ex * Omega + A * ez * omega) * mega; // [sigma(1,1)] = rad * 10^{6} = mrad (and promille) sigma(1,4) = sigma(4,1) = invAB * (ex * Omega+ez * omega) / (K * gamma2_m) * mega; // [sigma(1,4)] = [sigma(4,1)] = m rad * 10^{6} = mm mrad sigma(2,2) = ey / (std::sqrt(h * h * nuz * nuz - K)) * mega; // formula (31), [sigma(2,2)] = m rad * 10^{6} = mm mrad sigma(3,3) = (ey * mega) * (ey * mega) / sigma(2,2); sigma(4,4) = invAB * (A * ex * Omega + B * ez * omega) / (K * gamma2_m) * mega; // [sigma(4,4)] = m^{2} rad * 10^{6} = mm^{2} rad = mm mrad sigma(5,5) = invAB * (ex / (B * Omega) + ez / (A * omega)) * mega; // formula (30), [sigma(5,5)] = rad * 10^{6} = mrad (and promille) // fill in initial guess of the sigma matrix (for each angle the same guess) sigmas_m.resize(nStepsPerSector_m); for (typename std::vector::iterator it = sigmas_m.begin(); it != sigmas_m.end(); ++it) { *it = sigma; } if (write_m) { std::string energy = float2string(E_m); std::ofstream writeInit("data/maps/InitialSigmaPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeInit << sigma << std::endl; writeInit.close(); } } template template void SigmaGenerator::reduce(matrix& M) { /* The 6x6 matrix gets reduced to a 4x4 matrix in the following way: * * a11 a12 a13 a14 a15 a16 * a21 a22 a23 a24 a25 a26 a11 a12 a15 a16 * a31 a32 a33 a34 a35 a36 --> a21 a22 a25 a26 * a41 a42 a43 a44 a45 a46 a51 a52 a55 a56 * a51 a52 a53 a54 a55 a56 a61 a62 a65 a66 * a61 a62 a63 a64 a65 a66 */ // copy x- and z-direction to a 4x4 matrix_type matrix_type M4x4(4,4); for (size_type i = 0; i < 2; ++i) { // upper left 2x2 [a11,a12;a21,a22] M4x4(i,0) = M(i,0); M4x4(i,1) = M(i,1); // lower left 2x2 [a51,a52;a61,a62] M4x4(i + 2,0) = M(i + 4,0); M4x4(i + 2,1) = M(i + 4,1); // upper right 2x2 [a15,a16;a25,a26] M4x4(i,2) = M(i,4); M4x4(i,3) = M(i,5); // lower right 2x2 [a55,a56;a65,a66] M4x4(i + 2,2) = M(i + 4,4); M4x4(i + 2,3) = M(i + 4,5); } M.resize(4,4,false); M.swap(M4x4); } template template void SigmaGenerator::expand(matrix& M) { /* The 4x4 matrix gets expanded to a 6x6 matrix in the following way: * * a11 a12 0 0 a13 a14 * a11 a12 a13 a14 a21 a22 0 0 a23 a24 * a21 a22 a23 a24 --> 0 0 1 0 0 0 * a31 a32 a33 a34 0 0 0 1 0 0 * a41 a42 a43 a44 a31 a32 0 0 a33 a34 * a41 a42 0 0 a43 a44 */ matrix M6x6 = boost::numeric::ublas::identity_matrix(6,6); for (size_type i = 0; i < 2; ++i) { // upper left 2x2 [a11,a12;a21,a22] M6x6(i,0) = M(i,0); M6x6(i,1) = M(i,1); // lower left 2x2 [a31,a32;a41,a42] M6x6(i + 4,0) = M(i + 2,0); M6x6(i + 4,1) = M(i + 2,1); // upper right 2x2 [a13,a14;a23,a24] M6x6(i,4) = M(i,2); M6x6(i,5) = M(i,3); // lower right 2x2 [a22,a34;a43,a44] M6x6(i + 4,4) = M(i + 2,2); M6x6(i + 4,5) = M(i + 2,3); } // exchange M.swap(M6x6); } template typename SigmaGenerator::matrix_type SigmaGenerator::updateInitialSigma(const matrix_type& M, const vector_type& eigen, sparse_matrix_type& R, sparse_matrix_type& invR) { /* * This function is based on the paper of Dr. Christian Baumgarten: * Transverse-Longitudinal Coupling by Space Charge in Cyclotrons (2012) */ /* * Function input: * - M: one turn transfer matrix * - eigen = {alpha, beta, gamma, delta} * - R: transformation matrix (in paper: E) * - invR: inverse transformation matrix (in paper: E^{-1} */ /* formula (18): * sigma = -E*D*E^{-1}*S * with diagonal matrix D (stores eigenvalues of sigma*S (emittances apart from +- i), * skew-symmetric matrix (formula (13)), and tranformation matrices E, E^{-1} */ // normalize emittances value_type invbg = 1.0 / (beta_m * gamma_m); value_type ex = emittance_m[0] * invbg; value_type ey = emittance_m[1] * invbg; value_type ez = emittance_m[2] * invbg; // alpha^2-beta*gamma = 1 /* 0 eigen(0) 0 0 * eigen(1) 0 0 0 * 0 0 0 eigen(2) * 0 0 eigen(3) 0 * * M = cos(mux)*[1, 0; 0, 1] + sin(mux)*[alpha, beta; -gamma, -alpha], Book, p. 242 * * ----------------------------------------------------------------------------------- * X-DIRECTION and Z-DIRECTION * ----------------------------------------------------------------------------------- * --> eigen(0) = sin(mux)*betax * --> eigen(1) = -gammax*sin(mux) * * What is sin(mux)? --> alphax = 0 --> -alphax^2+betax*gammax = betax*gammax = 1 * * Convention: betax > 0 * * 1) betax = 1/gammax * 2) eig0 = sin(mux)*betax * 3) eig1 = -gammax*sin(mux) * * eig0 = sin(mux)/gammax * eig1 = -gammax*sin(mux) <--> 1/gammax = -sin(mux)/eig1 * * eig0 = -sin(mux)^2/eig1 --> -sin(mux)^2 = eig0*eig1 --> sin(mux) = sqrt(-eig0*eig1) * --> gammax = -eig1/sin(mux) * --> betax = eig0/sin(mux) */ // x-direction value_type alphax = 0.0; value_type betax = std::sqrt(std::fabs(eigen(0) / eigen(1))); value_type gammax = 1.0 / betax; // z-direction value_type alphaz = 0.0; value_type betaz = std::sqrt(std::fabs(eigen(2) / eigen(3))); value_type gammaz = 1.0 / betaz; /* * ----------------------------------------------------------------------------------- * Y-DIRECTION * ----------------------------------------------------------------------------------- * * m22 m23 * m32 m33 * * m22 = cos(muy) + alpha*sin(muy) * m33 = cos(muy) - alpha*sin(muy) * * --> cos(muy) = 0.5*(m22 + m33) * sin(muy) = sign(m32)*sqrt(1-cos(muy)^2) * * m22-m33 = 2*alpha*sin(muy) --> alpha = 0.5*(m22-m33)/sin(muy) * * m23 = betay*sin(muy) --> betay = m23/sin(muy) * m32 = -gammay*sin(muy) --> gammay = -m32/sin(muy) */ value_type cosy = 0.5 * (M(2,2) + M(3,3)); value_type sign = (std::signbit(M(2,3))) ? value_type(-1) : value_type(1); value_type invsiny = sign / std::sqrt(std::fabs( 1.0 - cosy * cosy)); value_type alphay = 0.5 * (M(2,2) - M(3,3)) * invsiny; value_type betay = M(2,3) * invsiny; value_type gammay = - M(3,2) * invsiny; // Convention beta>0 if (std::signbit(betay)) // singbit = true if beta<0, else false betay *= -1.0; // diagonal matrix with eigenvalues matrix_type D = boost::numeric::ublas::zero_matrix(6,6); // x-direction D(0,1) = betax * ex; D(1,0) = - gammax * ex; // y-direction D(2,2) = alphay * ey; D(3,3) = - alphay * ey; D(2,3) = betay * ey; D(3,2) = - gammay * ey; // z-direction D(4,5) = betaz * ez; D(5,4) = - gammaz * ez; // expand 4x4 transformation matrices to 6x6 expand(R); expand(invR); // symplectic matrix sparse_matrix_type S(6,6,6); S(0,1) = S(2,3) = S(4,5) = 1; S(1,0) = S(3,2) = S(5,4) = -1; // --> get D (formula (18), paper: Transverse-Longitudinal Coupling by Space Charge in Cyclotrons // sigma = -R*D*R^{-1}*S matrix_type sigma = matt_boost::gemmm(-invR,D,R); sigma = boost::numeric::ublas::prod(sigma,S); if (write_m) { std::string energy = float2string(E_m); std::ofstream writeSigma("data/maps/SigmaPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); writeSigma << "--------------------------------" << std::endl; writeSigma << "Iteration: " << niterations_m + 1 << std::endl; writeSigma << "--------------------------------" << std::endl; writeSigma << sigma << std::endl; writeSigma.close(); } return sigma; } template void SigmaGenerator::updateSigma(const std::vector& Mscs, const std::vector& Mcycs) { matrix_type M = boost::numeric::ublas::matrix(6,6); std::ofstream writeSigma; if (write_m) { std::string energy = float2string(E_m); writeSigma.open("data/maps/SigmaPerAngleForEnergy"+energy+"MeV.dat",std::ios::app); } // initial sigma is already computed for (size_type i = 1; i < nStepsPerSector_m; ++i) { // transfer matrix for one angle M = boost::numeric::ublas::prod(Mscs[i - 1],Mcycs[i - 1]); // transfer the matrix sigma sigmas_m[i] = matt_boost::gemmm(M,sigmas_m[i - 1],boost::numeric::ublas::trans(M)); if (write_m) writeSigma << sigmas_m[i] << std::endl; } if (write_m) { writeSigma << std::endl; writeSigma.close(); } } template typename SigmaGenerator::value_type SigmaGenerator::L2ErrorNorm(const matrix_type& oldS, const matrix_type& newS) { // compute difference matrix_type diff = newS - oldS; // sum squared error up and take square root return std::sqrt(std::inner_product(diff.data().begin(),diff.data().end(),diff.data().begin(),0.0)); } template typename SigmaGenerator::value_type SigmaGenerator::L1ErrorNorm(const matrix_type& oldS, const matrix_type& newS) { // compute difference matrix_type diff = newS - oldS; std::for_each(diff.data().begin(), diff.data().end(), [](value_type& val) { return std::abs(val); }); // sum squared error up and take square root return std::accumulate(diff.data().begin(), diff.data().end(), 0.0); } template std::string SigmaGenerator::float2string(value_type val) { std::ostringstream out; out << std::setprecision(6) << val; return out.str(); } template void SigmaGenerator::writeOrbitOutput_m( const std::pair& tunes, const value_type& ravg, const value_type& freqError, const container_type& r_turn, const container_type& peo, const container_type& h_turn, const container_type& fidx_turn, const container_type& ds_turn) { // write tunes std::ofstream writeTunes("data/Tunes.dat", std::ios::app); if(writeTunes.tellp() == 0) // if nothing yet written --> write description writeTunes << "energy [MeV]" << std::setw(15) << "nur" << std::setw(25) << "nuz" << std::endl; writeTunes << E_m << std::setw(30) << std::setprecision(10) << tunes.first << std::setw(25) << tunes.second << std::endl; // write average radius std::ofstream writeAvgRadius("data/AverageValues.dat", std::ios::app); if (writeAvgRadius.tellp() == 0) // if nothing yet written --> write description writeAvgRadius << "energy [MeV]" << std::setw(15) << "avg. radius [m]" << std::setw(15) << "r [m]" << std::setw(15) << "pr [m]" << std::endl; writeAvgRadius << E_m << std::setw(25) << std::setprecision(10) << ravg << std::setw(25) << std::setprecision(10) << r_turn[0] << std::setw(25) << std::setprecision(10) << peo[0] << std::endl; // write frequency error std::ofstream writePhase("data/FrequencyError.dat",std::ios::app); if(writePhase.tellp() == 0) // if nothing yet written --> write description writePhase << "energy [MeV]" << std::setw(15) << "freq. error" << std::endl; writePhase << E_m << std::setw(30) << std::setprecision(10) << freqError << std::endl; // write other properties std::string energy = float2string(E_m); std::ofstream writeProperties("data/PropertiesForEnergy"+energy+"MeV.dat", std::ios::out); writeProperties << std::left << std::setw(25) << "orbit radius" << std::setw(25) << "orbit momentum" << std::setw(25) << "inverse bending radius" << std::setw(25) << "field index" << std::setw(25) << "path length" << std::endl; for (size_type i = 0; i < r_turn.size(); ++i) { writeProperties << std::setprecision(10) << std::left << std::setw(25) << r_turn[i] << std::setw(25) << peo[i] << std::setw(25) << h_turn[i] << std::setw(25) << fidx_turn[i] << std::setw(25) << ds_turn[i] << std::endl; } // close all files within this if-statement writeTunes.close(); writeAvgRadius.close(); writePhase.close(); writeProperties.close(); } #endif