utils.f90 4.09 KB
Newer Older
Luca's avatar
init  
Luca committed
1 2 3

! Contains some functions that might be useful later

4 5 6 7 8 9
! Write your own print function with ability to suppress print
! Muss immer alle prints und warnings ausschalten können
! Test Programm schreiben mit exit codes -> gfortran 'test.f90' und dann 'echo $?'
! Define GPL infinity
! Mach n optional
! Kommentar schreiben zu anderer Notation 
Luca's avatar
Luca committed
10
! Funktion überprüfen! Tests schreiben!
11

Luca's avatar
init  
Luca committed
12 13
MODULE utils
  implicit none
14
  integer, parameter :: prec = selected_real_kind(15,32)  
15 16 17

  ! logical :: print_enabled = .true.
  ! logical :: warnings_enabled = .true.
18

Luca's avatar
init  
Luca committed
19
CONTAINS
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  FUNCTION  get_condensed_m(z) result(m)
    ! returns condensed m where the ones not needed are filled with 0
    complex(kind=prec) :: z(:), m(size(z))
    integer :: pos = 1, i 
    m = 1
    do i = 1,size(z)
      if(z(i) == 0) then
        if(i == size(z)) then
          pos = pos + 1
        else 
          m(pos) = m(pos) + 1
        end if
      else 
        pos = pos + 1
      end if
    end do
    m(pos:) = 0
  END FUNCTION get_condensed_m

40
  FUNCTION get_condensed_z(m, z_in) result(z_out)
41 42 43 44 45 46 47 48
    ! returns condensed z vector
    integer :: m(:), i, pos
    complex(kind=prec) :: z_in(:), z_out(size(m)) 
    pos = 0
    do i=1,size(m)
      pos = pos + m(i)
      z_out(i) = z_in(pos)
    end do
49
  END FUNCTION get_condensed_z
50 51 52 53 54 55 56 57 58 59 60 61 62

  FUNCTION  get_flattened_z(m,z_in) result(z_out)
    ! returns flattened version of z based on m and z
    integer :: m(:), i, pos
    complex(kind=prec) :: z_in(:), z_out(sum(m))
    z_out = 0
    pos = 0
    do i=1,size(m)
      pos = pos + m(i)
      z_out(pos) = z_in(i)
    end do
  END FUNCTION get_flattened_z

63 64 65 66 67 68 69 70 71 72 73 74 75
  FUNCTION find_amount_trailing_zeros(z) result(res)
    complex(kind=prec) :: z(:)
    integer :: res, i
    res = 0
    do i = size(z), 1, -1
      if( z(i) == 0 ) then
        res = res + 1
      else
        exit
      end if
    end do
  END FUNCTION find_amount_trailing_zeros

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  FUNCTION find_first_zero(v) result(res)
    ! returns index of first zero, or -1 if there is no zero
    integer :: v(:), i, res
    res = -1
    do i = 1,size(v)
      if(v(i) == 0) then
        res = i
        return
      end if
    end do
  END FUNCTION find_first_zero

  SUBROUTINE print_as_matrix(m) 
    ! prints a 2d array as a matrix
    complex :: m(:,:)
    integer :: s(2), i
    s = shape(m)
    do i = 1,s(1)
      print*, m(i,:)
    end do
  END SUBROUTINE print_as_matrix

  FUNCTION shuffle_with_zero(a) result(res)
    ! rows of result are shuffles of a with 0
    complex :: a(:)
    complex :: res(size(a)+1,size(a)+1)
    integer :: i,j, N
    N = size(a)+1
    do i = 1,N
      ! i is the index of the row
      ! j is the index of the zero
      j  = N+1-i
      res(i,j) = 0
      res(i,1:j-1) = a(1:j-1)
      res(i,j+1:N) = a(j:)
    end do
  END FUNCTION shuffle_with_zero

  ! subroutine print(s1,s2,s3,s4,s5)
  !   character(len = *), intent(in), optional :: s1, s2, s3, s4, s5
  !   if(print_enabled) then
  !     print*, s1, s2, s3, s4, s5
  !   end if
  ! end subroutine print

  ! subroutine warn(s1,s2,s3,s4,s5)
  !   character(len = *), intent(in), optional :: s1, s2, s3, s4, s5
  !   if(warnings_enabled) then
  !     print*, 'Warning: ', s1, s2, s3, s4, s5
  !   end if
  ! end subroutine warn
Luca's avatar
init  
Luca committed
127 128 129

END MODULE utils

130 131 132 133
! PROGRAM test
!   use  utils
!   implicit none

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

!   ! complex(kind=prec), dimension(5) :: a = cmplx((/1,2,3/))
!   ! complex(kind=prec) :: z_flat(2)
!   ! complex(kind=prec), allocatable :: z(:)
!   ! integer :: m_prime(2), condensed_size
!   ! integer, allocatable :: m(:)
!   ! complex(kind=prec) :: b(size(a)+1,size(a)+1)

!   ! ! ! test shuffling
!   ! ! b = 1
!   ! ! b = shuffle_with_zero(a)
!   ! ! call print_as_matrix(b)

!   ! ! test condensing
!   ! z_flat = cmplx((/4,0/))
!   ! m_prime = get_condensed_m(z_flat)
!   ! if(find_first_zero(m_prime) == -1) then
!   !   condensed_size = size(m_prime)
!   ! else
!   !   condensed_size = find_first_zero(m_prime)-1 
!   ! end if
!   ! allocate(m(condensed_size))
!   ! allocate(z(condensed_size))
!   ! m = m_prime(1:condensed_size)
!   ! z = get_condensed_z(m,z_flat)
!   ! z_flat = get_flattened_z(m,z)
!   ! deallocate(m)
!   ! deallocate(z)
162 163 164

! END  PROGRAM test