maths_functions.f90 26.3 KB
Newer Older
1 2 3

MODULE maths_functions
  use globals
ulrich_y's avatar
ulrich_y committed
4
  use ieps
5
  use utils, only: factorial, binom
6
  implicit none
ulrich_y's avatar
ulrich_y committed
7 8 9
  interface polylog
    module procedure polylog1, polylog2
  end interface polylog
10

ulrich_y's avatar
ulrich_y committed
11 12 13 14 15
  real(kind=prec), parameter :: zeta(2:10) = (/ 1.6449340668482264364724151666460251892189499012068_prec,  &
      1.2020569031595942853997381615114499907649862923405_prec, 1.0823232337111381915160036965411679027747509519187_prec,  &
      1.0369277551433699263313654864570341680570809195019_prec, 1.0173430619844491397145179297909205279018174900329_prec,  &
      1.0083492773819228268397975498497967595998635605652_prec, 1.0040773561979443393786852385086524652589607906499_prec,  &
      1.0020083928260822144178527692324120604856058513949_prec, 1.0009945751278180853371459589003190170060195315645_prec /)
16 17 18 19 20 21

  real(kind=prec), parameter :: DirichletBeta(2:10) = (/ 0.91596559417721901505460351493238411077414937428167_prec, &
    0.96894614625936938048363484584691860006954026768391_prec, 0.98894455174110533610842263322837782131586088706273_prec, &
    0.99615782807708806400631936863097528151139552938826_prec, 0.99868522221843813544160078786020654967836454612651_prec, &
    0.99955450789053990949634654989905898300218848194998_prec, 0.99984999024682965633806705924046378147600743300743_prec, &
    0.99994968418722008982135887329384752737274799691796_prec, 0.99998316402619687740554072995833414145685781649717_prec /)
ulrich_y's avatar
ulrich_y committed
22
  type el
23
    complex(kind=prec) :: c
ulrich_y's avatar
ulrich_y committed
24 25 26 27 28
    complex(kind=prec) ans
  end type el

  type(el) :: cache(PolyLogCacheSize(1),PolyLogCacheSize(2))
  integer :: plcachesize(PolyLogCacheSize(1)) = 0
ulrich_y's avatar
ulrich_y committed
29
CONTAINS
30

ulrich_y's avatar
ulrich_y committed
31
  FUNCTION naive_polylog(m,x) result(res)
32 33
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
34
    complex(kind=prec) :: x, res, del
35
    integer(kind=ikin) :: i
ulrich_y's avatar
ulrich_y committed
36
    res=0._prec
37 38 39 40

    i = 1
    del = 1._prec
    do while (abs(del) > zero)
41
      if(i**m.lt.0) return ! roll over
ulrich_y's avatar
ulrich_y committed
42
      if(abs(x**i).lt.1.e-250_prec) return
43 44 45 46
      del = x**i/i**m
      res = res+del
      i = i+1
    end do
47
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
48

49 50 51 52 53 54 55 56 57 58
  FUNCTION bernoullinumber(n)
    ! This returns the n-th Bernoulli number by computing all Bernoulli numbers
    ! up to the n-th recursively using the relation
    !   Sum[ Binomial[m+1, k] BernoulliB[k], {k,0,m} ] = 0
    ! for m > 0 (https://mathworld.wolfram.com/BernoulliNumber.html).
    ! Solving this for BernoulliB[m] results in
    !   BernoulliB[m] = - Sum[Binomial[m, k] BernoulliB[k] / (m-k+1), {k,0,m-1}]
    ! for m > 0 and BernoulliB[0] = 1.
    ! Care is taken to avoid multiple computation.
    integer, intent(in) :: n
59 60 61
    ! the cache is dynamic, the first entry is the initial size, the
    ! second the increment
    integer, parameter :: cachecontr(2) = (/ 20, 10 /)
62 63
    real(kind=prec) :: bernoullinumber
    ! keep track of the bernoulli numbers we have already calculated
64 65
    real(kind=prec), save, allocatable :: bernoulli(:)
    real(kind=prec), allocatable :: buffer(:)
ulrich_y's avatar
ulrich_y committed
66 67
    integer, save :: m = 2
    integer k
68

69
    if (.not. allocated(bernoulli)) then
70 71 72
#ifdef DEBUG
      if(verb >= 150) print*, 'initialising Bernoulli number system for m=0,', cachecontr(1)
#endif
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
      allocate(bernoulli(0:cachecontr(1)))
      bernoulli(0) = 1.
      bernoulli(1) = -0.5
    endif

    if (n > size(bernoulli)) then
      ! We need more buffer
      k = size(bernoulli) - 1
      allocate(buffer(0:k))
      buffer = bernoulli
      deallocate(bernoulli)

      allocate(bernoulli(0:n + cachecontr(2)))
      bernoulli(0:k) = buffer(0:k)

88 89 90 91 92 93
#ifdef DEBUG
      if(verb >= 150) then
        print*, 'increasing Bernoulli number system from m=0,', k, &
                ' to m=0,',size(bernoulli)-1
      endif
#endif
94 95 96
      deallocate(buffer)
    endif

97 98


ulrich_y's avatar
ulrich_y committed
99
    do m=m,n,2
100 101 102 103
      bernoulli(m) = 0.
      do k=0,m-1
        bernoulli(m) = bernoulli(m) - binom(m, k) * bernoulli(k) / (m - k + 1)
      enddo
104 105 106 107 108
#ifdef DEBUG
      if(verb >= 120) then
        write(*,'(A,I3,A,E25.10)') "calculating B(",m,") = ",bernoulli(m)
      endif
#endif
109 110 111 112 113
    enddo

    bernoullinumber = bernoulli(n)
  END FUNCTION bernoullinumber

114 115 116 117 118 119 120
  FUNCTION harmonicnumber(n)
    integer, intent(in) :: n
    real(kind=prec) :: harmonicnumber
    integer, parameter :: nmax = 40
    real(kind=prec), save :: Harmonic(0:nmax) = 0
    integer, save :: m = 0

121 122 123 124
    if (n > nmax) then
      print*,"Harmonic numbers bigger ",nmax," are not supported."
      stop 1
    endif
125 126
    do m=m, n+1
      harmonic(m+1) = harmonic(m) + 1._prec / real(m+1)
127 128 129 130 131
#ifdef DEBUG
      if(verb >= 120) then
        write(*,'(A,I3,A,E25.10)') "calculating H(",m,") = ",harmonic(m)
      endif
#endif
132 133 134 135 136
    enddo
    harmonicnumber = harmonic(n)

  END FUNCTION

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  FUNCTION logz_polylog(n, z) result(res)
    ! Computes the classical polylogarithm Li_m(z) using series
    ! representation in log(z). valid for log z < 2pi.
    !
    ! The algorithm works by using (1.4) or [Crandall 2006]
    !
    !  PolyLog[n, z] = Ssum[Zeta[n-m] Log[z]^m / m!, {m,0,Infinity}]
    !                + Log[z]^(n-1) (HarmonicNumber[n-1] -  Log[-Log[z]]) / (n-1)!
    !
    ! where Ssum[..] excludes the singular Zeta[1] term at m = n-1. In
    ! Fortran, we split the Ssum in a sum from 0..n-2 with positive
    ! arguments in the Zeta function. The next term m=n we do manually
    ! to not have to implement Zeta[0] = -1/2 and then we use
    ! Zeta[n-m] = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
    ! for the remaining terms.
    !
    ! References
    ! R. E. Crandall, Note on fast polylogarithm computation,
    ! www.reed.edu/~crandall/papers/Polylog.pdf, January 2006.
    ! or http://functions.wolfram.com/10.08.06.0024.01
    real(kind=prec) :: fac, zetamn
    complex(kind=prec), intent(in) :: z
ulrich_y's avatar
ulrich_y committed
159
    complex(kind=prec) :: res, logz, del
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    integer, intent(in) :: n
    integer m

    logz = log(z)

    ! The factorial will become a problem later. We do the first few
    ! terms and iterate later.
    fac = real(factorial(n-1),kind=prec)

    ! Non-sum term
    res = logz**(n-1) / fac * (harmonicnumber(n-1) - log(-logz))

    ! positive arguments in the Zeta function, 0..,n-2
    do m=0,n-2
      res = res + zeta(n-m) / factorial(m) * logz**m
    enddo

    ! Zeta[0], i.e. m=n case
    res = res - 0.5_prec * logz**n / fac / n

    ! All remaining terms
ulrich_y's avatar
ulrich_y committed
181 182 183
    m = n + 1
    del = 1._prec
    do while (abs(del) > zero)
184 185
      zetamn = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
      fac = fac * m * (m-1)
ulrich_y's avatar
ulrich_y committed
186 187 188
      del = zetamn / fac * logz**m
      res = res + del
      m = m + 2
189 190 191
    enddo
  END FUNCTION logz_polylog

192

193 194 195 196
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

ulrich_y's avatar
ulrich_y committed
197
   real (kind=prec):: X,Y,T,S,A,ZERO,ONE,HALF,MALF,MONE,MTWO
ulrich_y's avatar
ulrich_y committed
198
   real (kind=prec):: C(0:42),H,ALFA,B0,B1,B2,LI2_OLD
199
   real (kind=prec):: Li2
ulrich_y's avatar
ulrich_y committed
200
   integer :: i, maxi
201 202 203 204 205

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/

ulrich_y's avatar
ulrich_y committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
   DATA C( 0) / 0.42996693560813697203703367869938799_prec/
   DATA C( 1) / 0.40975987533077105846826371092525528_prec/
   DATA C( 2) /-0.01858843665014591964764164914021227_prec/
   DATA C( 3) / 0.00145751084062267855367392841645949_prec/
   DATA C( 4) /-0.00014304184442340048774883012009088_prec/
   DATA C( 5) / 0.00001588415541879553236190550471677_prec/
   DATA C( 6) /-0.00000190784959386582722719632114209_prec/
   DATA C( 7) / 0.00000024195180854164749499461464343_prec/
   DATA C( 8) /-0.00000003193341274251783460496014143_prec/
   DATA C( 9) / 0.00000000434545062676912298795717848_prec/
   DATA C(10) /-0.00000000060578480118407444429705331_prec/
   DATA C(11) / 0.00000000008612097799359498244283685_prec/
   DATA C(12) /-0.00000000001244331659938867989642421_prec/
   DATA C(13) / 0.00000000000182255696235736330065548_prec/
   DATA C(14) /-0.00000000000027006766049114651808572_prec/
   DATA C(15) / 0.00000000000004042209263152664648833_prec/
   DATA C(16) /-0.00000000000000610325145269187950378_prec/
   DATA C(17) / 0.00000000000000092862975330195758613_prec/
   DATA C(18) /-0.00000000000000014226020855112446840_prec/
   DATA C(19) / 0.00000000000000002192631718153957354_prec/
   DATA C(20) /-0.00000000000000000339797324215897863_prec/
   DATA C(21) / 0.00000000000000000052919542448331471_prec/
   DATA C(22) /-0.00000000000000000008278580814278998_prec/
   DATA C(23) / 0.00000000000000000001300371734545560_prec/
   DATA C(24) /-0.00000000000000000000205022224255282_prec/
   DATA C(25) / 0.00000000000000000000032435785491489_prec/
   DATA C(26) /-0.00000000000000000000005147799903343_prec/
   DATA C(27) / 0.00000000000000000000000819387747717_prec/
   DATA C(28) /-0.00000000000000000000000130778354057_prec/
   DATA C(29) / 0.00000000000000000000000020925629306_prec/
   DATA C(30) /-0.00000000000000000000000003356166151_prec/
   DATA C(31) / 0.00000000000000000000000000539465777_prec/
   DATA C(32) /-0.00000000000000000000000000086891932_prec/
   DATA C(33) / 0.00000000000000000000000000014022817_prec/
   DATA C(34) /-0.00000000000000000000000000002267156_prec/
   DATA C(35) / 0.00000000000000000000000000000367174_prec/
   DATA C(36) /-0.00000000000000000000000000000059562_prec/
   DATA C(37) / 0.00000000000000000000000000000009677_prec/
   DATA C(38) /-0.00000000000000000000000000000001574_prec/
   DATA C(39) / 0.00000000000000000000000000000000257_prec/
   DATA C(40) /-0.00000000000000000000000000000000042_prec/
   DATA C(41) / 0.00000000000000000000000000000000007_prec/
   DATA C(42) /-0.00000000000000000000000000000000001_prec/
249 250 251 252 253 254 255 256

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
257
    LI2_OLD=zeta(2)
258 259
    Li2 = Real(LI2_OLD,prec)
    RETURN
260
   ELSE IF(abs(x-MONE) < zero) THEN
ulrich_y's avatar
ulrich_y committed
261
    LI2_OLD=MALF*zeta(2)
262 263 264 265 266 267
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
ulrich_y's avatar
ulrich_y committed
268
    A=-2*zeta(2)+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
269 270 271 272
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
273
    A=-zeta(2)+A*(A+LOG(ONE+ONE/T))
274 275 276 277
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
278
    A=-zeta(2)+A*(MALF*A+LOG(ONE+T))
279 280 281 282 283 284 285 286 287 288 289
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
ulrich_y's avatar
ulrich_y committed
290
    A=zeta(2)+HALF*LOG(T)**2
291 292 293 294 295 296
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
ulrich_y's avatar
ulrich_y committed
297 298 299 300 301 302
   if (precision(1._prec) < 20) then
     maxi = 18
   else
     maxi = 42
   endif
   DO  I = maxi,0,-1
303 304 305 306 307 308 309 310
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
311

312
  RECURSIVE FUNCTION dilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
313
    ! evaluates dilog for any argument |x|<1
314 315
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
316

ulrich_y's avatar
ulrich_y committed
317
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
318
      res = Li2(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
319 320
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(2,x)
321
    else
ulrich_y's avatar
ulrich_y committed
322 323
      res = naive_polylog(2,x)
    endif
324 325
  END FUNCTION dilog

Luca's avatar
Luca committed
326 327 328 329 330 331
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
ulrich_y's avatar
ulrich_y committed
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    real (kind=prec):: CA(0:52),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:52),HB,ALFAB,BB0,BB1,BB2, YB

    DATA CA( 0) / 0.46172939286012092817954516381760016_prec/
    DATA CA( 1) / 0.45017399588550288560580364647352070_prec/
    DATA CA( 2) /-0.01091284195229295374494914320402658_prec/
    DATA CA( 3) / 0.00059324547127243642952756961712713_prec/
    DATA CA( 4) /-0.00004479593219280756178998757870776_prec/
    DATA CA( 5) / 0.00000405154578580684540984293800468_prec/
    DATA CA( 6) /-0.00000041095398606214457668547736075_prec/
    DATA CA( 7) / 0.00000004513178770934181970313262557_prec/
    DATA CA( 8) /-0.00000000525466158515342604029419927_prec/
    DATA CA( 9) / 0.00000000063982547910449452549291936_prec/
    DATA CA(10) /-0.00000000008071938839872532971820424_prec/
    DATA CA(11) / 0.00000000001048073680087126094928657_prec/
    DATA CA(12) /-0.00000000000139365085138335067524094_prec/
    DATA CA(13) / 0.00000000000018907205037339730044704_prec/
    DATA CA(14) /-0.00000000000002609371657183250621931_prec/
    DATA CA(15) / 0.00000000000000365481859219879483309_prec/
    DATA CA(16) /-0.00000000000000051855842492271228151_prec/
    DATA CA(17) / 0.00000000000000007441491722173878908_prec/
    DATA CA(18) /-0.00000000000000001078686838424874221_prec/
    DATA CA(19) / 0.00000000000000000157774237809543778_prec/
    DATA CA(20) /-0.00000000000000000023264073800573828_prec/
    DATA CA(21) / 0.00000000000000000003455457587964154_prec/
    DATA CA(22) /-0.00000000000000000000516658458392580_prec/
    DATA CA(23) / 0.00000000000000000000077718849383139_prec/
    DATA CA(24) /-0.00000000000000000000011755815708807_prec/
    DATA CA(25) / 0.00000000000000000000001787262690583_prec/
    DATA CA(26) /-0.00000000000000000000000272999302683_prec/
    DATA CA(27) / 0.00000000000000000000000041881267359_prec/
    DATA CA(28) /-0.00000000000000000000000006451004176_prec/
    DATA CA(29) / 0.00000000000000000000000000997383916_prec/
    DATA CA(30) /-0.00000000000000000000000000154744603_prec/
    DATA CA(31) / 0.00000000000000000000000000024087296_prec/
    DATA CA(32) /-0.00000000000000000000000000003760889_prec/
    DATA CA(33) / 0.00000000000000000000000000000588900_prec/
    DATA CA(34) /-0.00000000000000000000000000000092463_prec/
    DATA CA(35) / 0.00000000000000000000000000000014555_prec/
    DATA CA(36) /-0.00000000000000000000000000000002297_prec/
    DATA CA(37) / 0.00000000000000000000000000000000363_prec/
    DATA CA(38) /-0.00000000000000000000000000000000058_prec/
    DATA CA(39) / 0.00000000000000000000000000000000009_prec/
    DATA CA(40) /-0.00000000000000000000000000000000001_prec/
    DATA CB( 0) /-0.01601618044919582873670691984756338_prec/
    DATA CB( 1) /-0.50364244007530129181209541016960792_prec/
    DATA CB( 2) /-0.01615099243050025888745446951929454_prec/
    DATA CB( 3) /-0.00124402421042449361265610524413112_prec/
    DATA CB( 4) /-0.00013757218124461673921971996409271_prec/
    DATA CB( 5) /-0.00001856381852603773316486795183129_prec/
    DATA CB( 6) /-0.00000284173534515440415934505790039_prec/
    DATA CB( 7) /-0.00000047459967905789937221638951390_prec/
    DATA CB( 8) /-0.00000008448038543781200676091819474_prec/
    DATA CB( 9) /-0.00000001578767124043400543246870475_prec/
    DATA CB(10) /-0.00000000306576207139903798128889004_prec/
    DATA CB(11) /-0.00000000061407921728125845808062189_prec/
    DATA CB(12) /-0.00000000012618830243156719690872484_prec/
    DATA CB(13) /-0.00000000002649314179819609957126783_prec/
    DATA CB(14) /-0.00000000000566470854636425926158812_prec/
    DATA CB(15) /-0.00000000000123041115779581117517467_prec/
    DATA CB(16) /-0.00000000000027093457836786768143960_prec/
    DATA CB(17) /-0.00000000000006038026463383701279197_prec/
    DATA CB(18) /-0.00000000000001360008993995749682352_prec/
    DATA CB(19) /-0.00000000000000309244740631856875855_prec/
    DATA CB(20) /-0.00000000000000070917249609207158220_prec/
    DATA CB(21) /-0.00000000000000016388083639226002471_prec/
    DATA CB(22) /-0.00000000000000003813464350168994613_prec/
    DATA CB(23) /-0.00000000000000000893010739611811656_prec/
    DATA CB(24) /-0.00000000000000000210331341599359416_prec/
    DATA CB(25) /-0.00000000000000000049802988416537866_prec/
    DATA CB(26) /-0.00000000000000000011850292695597351_prec/
    DATA CB(27) /-0.00000000000000000002832460494402074_prec/
    DATA CB(28) /-0.00000000000000000000679854955943073_prec/
    DATA CB(29) /-0.00000000000000000000163816629435900_prec/
    DATA CB(30) /-0.00000000000000000000039616291258646_prec/
    DATA CB(31) /-0.00000000000000000000009613022139972_prec/
    DATA CB(32) /-0.00000000000000000000002340035706102_prec/
    DATA CB(33) /-0.00000000000000000000000571315840877_prec/
    DATA CB(34) /-0.00000000000000000000000139876183805_prec/
    DATA CB(35) /-0.00000000000000000000000034336361321_prec/
    DATA CB(36) /-0.00000000000000000000000008449733573_prec/
    DATA CB(37) /-0.00000000000000000000000002084253881_prec/
    DATA CB(38) /-0.00000000000000000000000000515255292_prec/
    DATA CB(39) /-0.00000000000000000000000000127646290_prec/
    DATA CB(40) /-0.00000000000000000000000000031685555_prec/
    DATA CB(41) /-0.00000000000000000000000000007880228_prec/
    DATA CB(42) /-0.00000000000000000000000000001963363_prec/
    DATA CB(43) /-0.00000000000000000000000000000490016_prec/
    DATA CB(44) /-0.00000000000000000000000000000122499_prec/
    DATA CB(45) /-0.00000000000000000000000000000030671_prec/
    DATA CB(46) /-0.00000000000000000000000000000007691_prec/
    DATA CB(47) /-0.00000000000000000000000000000001931_prec/
    DATA CB(48) /-0.00000000000000000000000000000000486_prec/
    DATA CB(49) /-0.00000000000000000000000000000000122_prec/
    DATA CB(50) /-0.00000000000000000000000000000000031_prec/
    DATA CB(51) /-0.00000000000000000000000000000000008_prec/
    DATA CB(52) /-0.00000000000000000000000000000000002_prec/
Luca's avatar
Luca committed
429
    real (kind=prec):: Li3
ulrich_y's avatar
ulrich_y committed
430
    integer :: i, maxi
Luca's avatar
Luca committed
431 432 433 434 435 436 437 438 439


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
440
      LI3=zeta(3)
Luca's avatar
Luca committed
441
    RETURN
442
    ELSE IF( abs(x+1) < zero) THEN
ulrich_y's avatar
ulrich_y committed
443
      LI3=-0.75_prec*zeta(3)
Luca's avatar
Luca committed
444 445 446 447 448
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
449
      A=-LOG(-X)*(zeta(2)+LOG(-x)**2/6._prec)
Luca's avatar
Luca committed
450 451 452 453 454 455 456 457 458 459 460
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
ulrich_y's avatar
ulrich_y committed
461
      A=zeta(3) + zeta(2)*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
462 463 464
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
ulrich_y's avatar
ulrich_y committed
465
      A=zeta(3) + zeta(2)*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
466 467 468
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
469
      A=2*zeta(2)*Log(x)-Log(x)**3/6._prec
Luca's avatar
Luca committed
470 471 472 473 474 475 476 477
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
ulrich_y's avatar
ulrich_y committed
478 479 480 481 482 483
    if (precision(1._prec) < 20) then
      maxi = 18
    else
      maxi = 42
    endif
    DO  I = maxi,0,-1
Luca's avatar
Luca committed
484 485 486 487 488
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
489 490

  FUNCTION trilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
491
    ! evaluates trilog for any argument |x|<1
Luca's avatar
Luca committed
492 493
    complex(kind=prec) :: res
    complex(kind=prec) :: x
ulrich_y's avatar
ulrich_y committed
494
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
495
      res = Li3(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
496 497
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(3,x)
Luca's avatar
Luca committed
498
    else
ulrich_y's avatar
ulrich_y committed
499 500
      res = naive_polylog(3,x)
    endif
Luca's avatar
Luca committed
501 502
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
503
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
ulrich_y's avatar
ulrich_y committed
504
    integer, parameter :: maxn = 15
ulrich_y's avatar
ulrich_y committed
505
    integer n
ulrich_y's avatar
ulrich_y committed
506 507
    complex(kind=prec) :: x, res
    complex(kind=prec) :: xpow(maxn+1)
ulrich_y's avatar
ulrich_y committed
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    integer, parameter :: coeffN(maxn+1, maxn) = reshape((/ &
        -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1, -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   1, -   2, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, -   1,     0, +   5, -   5, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1,     0, -   1,     0, +   5, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1,     0, -   7,     0, +   7, -   7, +   1,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   2,     0, -   7,     0, +  14, -   4, +   1,     0,     0,     0,     0,     0,     0,     0, &
            0, -   3,     0, +   2,     0, -  21,     0, +   6, -   9, +   1,     0,     0,     0,     0,     0,     0, &
        +   5,     0, -   3,     0, +   5,     0, -   7,     0, +  15, -   5, +   1,     0,     0,     0,     0,     0, &
            0, +   5,     0, -  11,     0, +  11,     0, -  11,     0, +  55, -  11, +   1,     0,     0,     0,     0, &
        - 691,     0, +   5,     0, -  33,     0, +  22,     0, -  33,     0, +  11, -   6, +   1,     0,     0,     0, &
            0, - 691,     0, +  65,     0, - 429,     0, + 286,     0, - 143,     0, +  13, -  13, +   1,     0,     0, &
        +   7,     0, - 691,     0, + 455,     0, -1001,     0, + 143,     0, -1001,     0, +  91, -   7, +   1,     0, &
            0, +  35,     0, - 691,     0, + 455,     0, - 429,     0, + 715,     0, -  91,     0, +  35, -  15, +   1 /), &
            (/maxn+1, maxn/))
    integer, parameter :: coeffD(maxn+1, maxn) = reshape((/ &
        +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   6, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   3, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  42, +   1, +   2, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   6, +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   3, +   1, +   3, +   1, +   3, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +  10, +   1, +   1, +   1, +   5, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  66, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   6, +   2, +   1, +   1, +   1, +   1, +   1, &
        +2730, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, + 210, +   1, +   3, +   1, +  10, +   1, +   7, +   1, +   6, +   1, +   1, +   2, +   1, +   1, +   1, &
        +   6, +   1, +  30, +   1, +   6, +   1, +  10, +   1, +   2, +   1, +  30, +   1, +   6, +   1, +   1, +   1, &
        +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   2, +   1 /), &
            (/maxn+1, maxn/))

ulrich_y's avatar
ulrich_y committed
543
    real(kind=prec), parameter :: coeff(maxn+1,maxn) = coeffN/real(coeffD,kind=prec)
ulrich_y's avatar
ulrich_y committed
544 545 546 547 548 549
    integer i

    if (n>maxn) then
      print*,"Bernoulli beyond 15 is not implemented"
      stop
    endif
ulrich_y's avatar
ulrich_y committed
550

ulrich_y's avatar
ulrich_y committed
551 552
    xpow(1:n+1) = (/ ( x**i, i = 0, n ) /)
    res = sum( xpow(1:n+1) * coeff(1:n+1,n) )
ulrich_y's avatar
ulrich_y committed
553 554 555

  END FUNCTION

ulrich_y's avatar
ulrich_y committed
556 557 558 559 560 561 562 563 564 565 566 567 568
  FUNCTION MYLOG(x)
    complex(kind=prec) :: x, mylog
    if (abs(aimag(x)) < zero) then
      if (real(x) > 0) then
        mylog = cmplx(log(real(+x,kind=prec)),     kind=prec)
      else
        mylog = cmplx(log(real(-x,kind=prec)), pi, kind=prec)
      endif
    else
      mylog = log(x)
    endif
  END FUNCTION

ulrich_y's avatar
ulrich_y committed
569
  RECURSIVE FUNCTION polylog1(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
570 571
    ! computes the polylog
    
572
    integer :: m
573
    complex(kind=prec) :: x, inv
574
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
575 576
    integer i

577
    
ulrich_y's avatar
ulrich_y committed
578
#ifdef DEBUG
579
    if(verb >= 70) print*, 'called polylog(',m,',',x,')'
ulrich_y's avatar
ulrich_y committed
580 581 582 583
#endif
#ifndef NOCACHE
    if (m.le.5) then
      do i=1,plcachesize(m)
584
        if( abs(cache(m,i)%c-x).lt.zero ) then
ulrich_y's avatar
ulrich_y committed
585 586 587 588 589
          res = cache(m,i)%ans
          return
        endif
      enddo
    endif
ulrich_y's avatar
ulrich_y committed
590
#endif
591
    if ((m.le.9).and.(abs(x-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
592
      res = zeta(m)
593
    else if ((m.le.9).and.(abs(x+1._prec).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
594
      res = -(1._prec - 2._prec**(1-m))*zeta(m)
595 596 597 598
    else if ((m.le.9).and.(abs(x-i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) + i_*dirichletbeta(m)
    else if ((m.le.9).and.(abs(x+i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) - i_*dirichletbeta(m)
599
    else if (abs(x) .gt. 1) then
600
      inv = 1._prec/x
ulrich_y's avatar
ulrich_y committed
601
      res = (-1)**(m-1)*polylog(m,inv) &
ulrich_y's avatar
ulrich_y committed
602
          - (2._prec*pi*i_)**m * bernoulli_polynomial(m, 0.5_prec-i_*mylog(-x)/2._prec/pi) / factorial(m)
ulrich_y's avatar
ulrich_y committed
603
    else if(m == 2) then
604
      res = dilog(x)
Luca's avatar
Luca committed
605
    else if(m == 3) then
606
      res = trilog(x)
ulrich_y's avatar
ulrich_y committed
607 608
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(m,x)
Luca's avatar
Luca committed
609
    else
610
      res = naive_polylog(m,x)
611
    end if
ulrich_y's avatar
ulrich_y committed
612 613 614 615 616 617 618 619 620

#ifndef NOCACHE
    if (m.le.PolyLogCacheSize(1)) then
      if (plcachesize(m).lt.PolyLogCacheSize(2)) then
        plcachesize(m) = plcachesize(m) + 1
        cache(m,plcachesize(m)) = el(x,res)
      endif
    endif
#endif
ulrich_y's avatar
ulrich_y committed
621 622 623 624 625 626 627 628 629
  END FUNCTION polylog1




  RECURSIVE FUNCTION polylog2(m,x,y) result(res)
    type(inum) :: x, y
    integer m
    complex(kind=prec) :: res
630 631 632 633 634 635 636 637 638 639 640
    res=polylog1(m,x%c/y%c)
    if ( (abs(aimag(x)).lt.zero).and.(abs(aimag(y)).lt.zero) ) then
      ! Both arguments are real, only here does the ieps matter
      ! FIXME this is rather ugly..
      if (real(x).gt.real(y) .and. real(y).gt. 0) then
        ! Force the sign to be -b%i0
        res = cmplx(real(res), sign(aimag(res), -y%i0*1._prec), kind=prec)
      elseif(real(x).lt.real(y) .and. real(y).lt. 0) then
        res = cmplx(real(res), sign(aimag(res), +y%i0*1._prec), kind=prec)
      endif
    endif
ulrich_y's avatar
ulrich_y committed
641 642 643 644 645 646 647 648
  END FUNCTION POLYLOG2


  FUNCTION PLOG1(a,b)
  ! calculates log(1-a/b)
  implicit none
  type(inum) :: a,b
  complex(kind=prec) plog1
649 650 651 652 653 654 655 656 657 658 659

  if ( (abs(aimag(a)).lt.zero).and.(abs(aimag(b)).lt.zero) ) then
    ! Both arguments are real, only here does the ieps matter
    plog1 = log(abs(1.-a%c/b%c))
    ! this does not depend on the sign of a
    if (real(a).gt.real(b) .and. real(b).gt. 0) then
      plog1 = plog1 + b%i0*i_*pi
    elseif(real(a).lt.real(b) .and. real(b).lt. 0) then
      plog1 = plog1 - b%i0*i_*pi
    endif
  else
ulrich_y's avatar
ulrich_y committed
660
    plog1 = mylog(1.-a%c/b%c)
661
  endif
ulrich_y's avatar
ulrich_y committed
662
  END FUNCTION
Luca's avatar
Luca committed
663

ulrich_y's avatar
ulrich_y committed
664 665 666 667 668 669
#ifndef NOCACHE
  SUBROUTINE CLEARCACHE
  plcachesize=0
  END SUBROUTINE
#endif

670 671
END MODULE maths_functions

Luca's avatar
Luca committed
672 673 674 675 676 677 678
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
679