maths_functions.f90 9.57 KB
Newer Older
1 2 3 4 5 6 7

MODULE maths_functions
  use globals
  use utils
  implicit none

CONTAINS 
ulrich_y's avatar
ulrich_y committed
8 9 10 11 12 13 14 15 16
  FUNCTION zeta(n)
    real(kind=prec) :: values(9), zeta
    integer :: n
    values = (/1.6449340668482262, 1.2020569031595942, 1.0823232337111381, &
               1.03692775514337, 1.0173430619844488, 1.008349277381923, &
               1.0040773561979441, 1.0020083928260821, 1.000994575127818/)
    zeta = values(n-1)
  END FUNCTION zeta

17

ulrich_y's avatar
ulrich_y committed
18
  FUNCTION naive_polylog(m,x) result(res)
19 20 21 22
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
    complex(kind=prec) :: x, res
    integer :: i,n
23
    n = 1000
24 25 26 27 28 29
    res=0.
    do i=1,n
      if(i**m.lt.0) return ! roll over
      if(abs(x**i).lt.1.e-250) return
      res = res+x**i/i**m
    enddo
30
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

   real (kind=prec):: X,Y,T,S,A,PI3,PI6,ZERO,ONE,HALF,MALF,MONE,MTWO
   real (kind=prec):: C(0:18),H,ALFA,B0,B1,B2,LI2_OLD
   real (kind=prec):: Li2
   integer :: i

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/
   DATA PI3 /3.289868133696453_prec/, PI6 /1.644934066848226_prec/

   DATA C( 0) / 0.4299669356081370_prec/
   DATA C( 1) / 0.4097598753307711_prec/
   DATA C( 2) /-0.0185884366501460_prec/
   DATA C( 3) / 0.0014575108406227_prec/
   DATA C( 4) /-0.0001430418444234_prec/
   DATA C( 5) / 0.0000158841554188_prec/
   DATA C( 6) /-0.0000019078495939_prec/
   DATA C( 7) / 0.0000002419518085_prec/
   DATA C( 8) /-0.0000000319334127_prec/
   DATA C( 9) / 0.0000000043454506_prec/
   DATA C(10) /-0.0000000006057848_prec/
   DATA C(11) / 0.0000000000861210_prec/
   DATA C(12) /-0.0000000000124433_prec/
   DATA C(13) / 0.0000000000018226_prec/
   DATA C(14) /-0.0000000000002701_prec/
   DATA C(15) / 0.0000000000000404_prec/
   DATA C(16) /-0.0000000000000061_prec/
   DATA C(17) / 0.0000000000000009_prec/
   DATA C(18) /-0.0000000000000001_prec/

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
    LI2_OLD=PI6
    Li2 = Real(LI2_OLD,prec)
    RETURN
76
   ELSE IF(abs(x-MONE) < zero) THEN
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    LI2_OLD=MALF*PI6
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
    A=-PI3+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
    A=-PI6+A*(A+LOG(ONE+ONE/T))
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
    A=-PI6+A*(MALF*A+LOG(ONE+T))
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
    A=PI6+HALF*LOG(T)**2
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
   DO  I = 18,0,-1
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
122

123
  RECURSIVE FUNCTION dilog(x) result(res)
124 125 126
    ! evaluates dilog for any argument
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
127

128
    if(abs(x) <= 1.0) then
129 130 131 132 133
      if(abs(aimag(x)) < zero ) then
        res = Li2(real(x))
      else
        res = naive_polylog(2,x)
      endif
134
    else
135
     res = -dilog(1/x) - (pi**2) /6 - log(add_ieps(-x))**2 / 2
136 137 138
   end if
  END FUNCTION dilog

Luca's avatar
Luca committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
    real (kind=prec):: CA(0:18),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:18),HB,ALFAB,BB0,BB1,BB2, YB
    DATA CA(0) / 0.4617293928601208/
    DATA CA(1) / 0.4501739958855029/
    DATA CA(2) / -0.010912841952292843/
    DATA CA(3) / 0.0005932454712725702/
    DATA CA(4) / -0.00004479593219266303/
    DATA CA(5) / 4.051545785869334e-6/
    DATA CA(6) / -4.1095398602619446e-7/
    DATA CA(7) / 4.513178777974119e-8/
    DATA CA(8) / -5.254661564861129e-9/
    DATA CA(9) / 6.398255691618666e-10/
    DATA CA(10) / -8.071938105510391e-11/
    DATA CA(11) / 1.0480864927082917e-11/
    DATA CA(12) / -1.3936328400075057e-12/
    DATA CA(13) / 1.8919788723690422e-13/
    DATA CA(14) / -2.6097139622039465e-14/
    DATA CA(15) / 3.774985548158685e-15/
    DATA CA(16) / -5.671361978114946e-16/
    DATA CA(17) / 1.1023848202712794e-16/
    DATA CA(18) / -5.0940525990875006e-17/
    DATA CB(0) / -0.016016180449195803/
    DATA CB(1) / -0.5036424400753012/
    DATA CB(2) / -0.016150992430500253/
    DATA CB(3) / -0.0012440242104245127/
    DATA CB(4) / -0.00013757218124463538/
    DATA CB(5) / -0.000018563818526041144/
    DATA CB(6) / -2.841735345177361e-6/
    DATA CB(7) / -4.7459967908588557e-7/
    DATA CB(8) / -8.448038544563037e-8/
    DATA CB(9) / -1.5787671270014e-8/
    DATA CB(10) / -3.0657620579122164e-9/
    DATA CB(11) / -6.140791949281482e-10/
    DATA CB(12) / -1.2618831590198e-10/
    DATA CB(13) / -2.64931268635803e-11/
    DATA CB(14) / -5.664711482422879e-12/
    DATA CB(15) / -1.2303909436235178e-12/
    DATA CB(16) / -2.7089360852246495e-13/
    DATA CB(17) / -6.024075373994343e-14/
    DATA CB(18) / -1.2894320641440237e-14/
    real (kind=prec):: Li3
    real (kind=prec), parameter :: zeta2 = 1.6449340668482264365
    real (kind=prec), parameter :: zeta3 = 1.2020569031595942854
    integer :: i


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
      LI3=zeta3
    RETURN
200
    ELSE IF( abs(x+1) < zero) THEN
Luca's avatar
Luca committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
      LI3=-0.75_prec*zeta3
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
      A=-LOG(-X)*(zeta2+LOG(-x)**2/6._prec)
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
      A=2*zeta2*Log(x)-Log(x)**3/6._prec
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
    DO  I = 18,0,-1
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
242 243 244 245 246 247

  FUNCTION trilog(x) result(res)
    ! evaluates trilog for any argument
    complex(kind=prec) :: res
    complex(kind=prec) :: x
    if(abs(x) <= 1.0) then
248 249 250 251 252
      if(abs(aimag(x)) < zero ) then
        res = Li3(real(x))
      else
        res = naive_polylog(3,x)
      endif
Luca's avatar
Luca committed
253 254 255 256 257
    else
     res = naive_polylog(3,sub_ieps(x)**(-1)) - (log(-sub_ieps(x)))**3/6 - pi**2/6 * log(-sub_ieps(x))
   end if
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
    integer n
    complex(kind=prec) :: x, res
    select case(n)
      case(1)
        res = -1/2. + x
      case(2)
        res = 1/6. - x + x**2
      case(3)
        res = x/2. - 3*x**2/2. + x**3
      case(4)
        res = -1/30. + x**2 - 2*x**3 + x**4
      case(5)
        res = -x/6. + 5*x**3/3 - 5*x**4/2 + x**5
      case(6)
        res = 1/42. - x**2/2 + 5*x**4/2 - 3*x**5 + x**6
      case(7)
        res = x/6. - 7*x**3/6 + 7*x**5/2 - 7*x**6/2 + x**7
      case(8)
        res = -1/30. + 2*x**2/3 - 7*x**4/3 + 14*x**6/3 - 4*x**7 + x**8
      case(9)
        res = -3*x/10 + 2*x**3 - 21*x**5/5 + 6*x**7 - 9*x**8/2 + x**9
      case(10)
        res = 5/66. - 3*x**2/2 + 5*x**4 - 7*x**6 + 15*x**8/2 - 5*x**9 + x**10
      case(11)
        res = 5*x/6 - 11*x**3/2 + 11*x**5 - 11*x**7 + 55*x**9/6 - 11*x**10/2 + x**11
      case(12)
        res = -691/2730. + 5*x**2 - 33*x**4/2 + 22*x**6 - 33*x**8/2 + 11*x**10 - 6*x**11 + x**12
      case(13)
        res = -691*x/210 + 65*x**3/3 - 429*x**5/10 + 286*x**7/7 - 143*x**9/6 + 13*x**11 - 13*x**12/2 + x**13
      case(14)
        res = 7/6. - 691*x**2/30 + 455*x**4/6 - 1001*x**6/10 + 143*x**8/2 - 1001*x**10/30 + 91*x**12/6 - 7*x**13 + x**14
      case(15)
        res = 35*x/2 - 691*x**3/6 + 455*x**5/2 - 429*x**7/2 + 715*x**9/6 - 91*x**11/2 + 35*x**13/2 - 15*x**14/2 + x**15
      case default
        print*,"Bernoulli beyond 15 is not implemented"
        stop
    end select


  END FUNCTION

300
  RECURSIVE FUNCTION polylog(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
301 302
    ! computes the polylog
    
303
    integer :: m
304 305
    type(inum) :: x
    complex(kind=prec) :: res
306
    
307 308
    if(verb >= 70) print*, 'called polylog(',m,',',x%c,x%i0,')'
    if ((m.le.9).and.(abs(x%c-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
309
      res = zeta(m)
310 311
      return
    else if ((m.le.9).and.(abs(x%c+1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
312
      res = -(1. - 2.**(1-m))*zeta(m)
313 314 315
      return
    else if (abs(x) .gt. 1) then
      res = (-1)**(m-1)*polylog(m,ione/x) &
ulrich_y's avatar
ulrich_y committed
316
          - cmplx(0,2*pi)**m * bernoulli_polynomial(m, 0.5-cmplx(0.,1.)*log(neg(x))/2/pi) / factorial(m)
317 318 319 320 321
      return
    endif

    if(m == 2) then
      res = dilog(x%c)
Luca's avatar
Luca committed
322
    else if(m == 3) then
323
      res = trilog(x%c)
Luca's avatar
Luca committed
324
    else
325
      res = naive_polylog(m,x%c)
326
    end if
327
  END FUNCTION polylog
Luca's avatar
Luca committed
328

329 330
END MODULE maths_functions

Luca's avatar
Luca committed
331 332 333 334 335 336 337
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
338