maths_functions.f90 22.7 KB
Newer Older
1 2 3

MODULE maths_functions
  use globals
ulrich_y's avatar
ulrich_y committed
4
  use ieps
5
  use utils, only: factorial, binom
6
  implicit none
ulrich_y's avatar
ulrich_y committed
7 8 9
  interface polylog
    module procedure polylog1, polylog2
  end interface polylog
10

ulrich_y's avatar
ulrich_y committed
11 12 13 14 15
  real(kind=prec), parameter :: zeta(2:10) = (/ 1.6449340668482264364724151666460251892189499012068_prec,  &
      1.2020569031595942853997381615114499907649862923405_prec, 1.0823232337111381915160036965411679027747509519187_prec,  &
      1.0369277551433699263313654864570341680570809195019_prec, 1.0173430619844491397145179297909205279018174900329_prec,  &
      1.0083492773819228268397975498497967595998635605652_prec, 1.0040773561979443393786852385086524652589607906499_prec,  &
      1.0020083928260822144178527692324120604856058513949_prec, 1.0009945751278180853371459589003190170060195315645_prec /)
16 17 18 19 20 21

  real(kind=prec), parameter :: DirichletBeta(2:10) = (/ 0.91596559417721901505460351493238411077414937428167_prec, &
    0.96894614625936938048363484584691860006954026768391_prec, 0.98894455174110533610842263322837782131586088706273_prec, &
    0.99615782807708806400631936863097528151139552938826_prec, 0.99868522221843813544160078786020654967836454612651_prec, &
    0.99955450789053990949634654989905898300218848194998_prec, 0.99984999024682965633806705924046378147600743300743_prec, &
    0.99994968418722008982135887329384752737274799691796_prec, 0.99998316402619687740554072995833414145685781649717_prec /)
ulrich_y's avatar
ulrich_y committed
22
  type el
23
    complex(kind=prec) :: c
ulrich_y's avatar
ulrich_y committed
24 25 26 27 28
    complex(kind=prec) ans
  end type el

  type(el) :: cache(PolyLogCacheSize(1),PolyLogCacheSize(2))
  integer :: plcachesize(PolyLogCacheSize(1)) = 0
ulrich_y's avatar
ulrich_y committed
29
CONTAINS
30

ulrich_y's avatar
ulrich_y committed
31
  FUNCTION naive_polylog(m,x) result(res)
32 33
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
34
    complex(kind=prec) :: x, res, del
35
    integer(kind=ikin) :: i
ulrich_y's avatar
ulrich_y committed
36
    res=0._prec
37 38 39 40

    i = 1
    del = 1._prec
    do while (abs(del) > zero)
41
      if(i**m.lt.0) return ! roll over
ulrich_y's avatar
ulrich_y committed
42
      if(abs(x**i).lt.1.e-250_prec) return
43 44 45 46
      del = x**i/i**m
      res = res+del
      i = i+1
    end do
47
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  FUNCTION bernoullinumber(n)
    ! This returns the n-th Bernoulli number by computing all Bernoulli numbers
    ! up to the n-th recursively using the relation
    !   Sum[ Binomial[m+1, k] BernoulliB[k], {k,0,m} ] = 0
    ! for m > 0 (https://mathworld.wolfram.com/BernoulliNumber.html).
    ! Solving this for BernoulliB[m] results in
    !   BernoulliB[m] = - Sum[Binomial[m, k] BernoulliB[k] / (m-k+1), {k,0,m-1}]
    ! for m > 0 and BernoulliB[0] = 1.
    ! Care is taken to avoid multiple computation.
    integer, intent(in) :: n
    real(kind=prec) :: bernoullinumber
    integer, parameter :: nmax = 40
    ! keep track of the bernoulli numbers we have already calculated
    real(kind=prec), save :: bernoulli(0:nmax) = 0.
    integer, save :: cmax = 2
    integer m, k

    !TODO error handling or dynamic allocation for bernoulli(:)

    bernoulli(0) = 1.
    bernoulli(1) = -0.5

    do m=cmax,n,2
      bernoulli(m) = 0.
      do k=0,m-1
        bernoulli(m) = bernoulli(m) - binom(m, k) * bernoulli(k) / (m - k + 1)
      enddo
    enddo
    cmax=m

    bernoullinumber = bernoulli(n)
  END FUNCTION bernoullinumber


83 84 85 86
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

ulrich_y's avatar
ulrich_y committed
87
   real (kind=prec):: X,Y,T,S,A,ZERO,ONE,HALF,MALF,MONE,MTWO
ulrich_y's avatar
ulrich_y committed
88
   real (kind=prec):: C(0:42),H,ALFA,B0,B1,B2,LI2_OLD
89
   real (kind=prec):: Li2
ulrich_y's avatar
ulrich_y committed
90
   integer :: i, maxi
91 92 93 94 95

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/

ulrich_y's avatar
ulrich_y committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
   DATA C( 0) / 0.42996693560813697203703367869938799_prec/
   DATA C( 1) / 0.40975987533077105846826371092525528_prec/
   DATA C( 2) /-0.01858843665014591964764164914021227_prec/
   DATA C( 3) / 0.00145751084062267855367392841645949_prec/
   DATA C( 4) /-0.00014304184442340048774883012009088_prec/
   DATA C( 5) / 0.00001588415541879553236190550471677_prec/
   DATA C( 6) /-0.00000190784959386582722719632114209_prec/
   DATA C( 7) / 0.00000024195180854164749499461464343_prec/
   DATA C( 8) /-0.00000003193341274251783460496014143_prec/
   DATA C( 9) / 0.00000000434545062676912298795717848_prec/
   DATA C(10) /-0.00000000060578480118407444429705331_prec/
   DATA C(11) / 0.00000000008612097799359498244283685_prec/
   DATA C(12) /-0.00000000001244331659938867989642421_prec/
   DATA C(13) / 0.00000000000182255696235736330065548_prec/
   DATA C(14) /-0.00000000000027006766049114651808572_prec/
   DATA C(15) / 0.00000000000004042209263152664648833_prec/
   DATA C(16) /-0.00000000000000610325145269187950378_prec/
   DATA C(17) / 0.00000000000000092862975330195758613_prec/
   DATA C(18) /-0.00000000000000014226020855112446840_prec/
   DATA C(19) / 0.00000000000000002192631718153957354_prec/
   DATA C(20) /-0.00000000000000000339797324215897863_prec/
   DATA C(21) / 0.00000000000000000052919542448331471_prec/
   DATA C(22) /-0.00000000000000000008278580814278998_prec/
   DATA C(23) / 0.00000000000000000001300371734545560_prec/
   DATA C(24) /-0.00000000000000000000205022224255282_prec/
   DATA C(25) / 0.00000000000000000000032435785491489_prec/
   DATA C(26) /-0.00000000000000000000005147799903343_prec/
   DATA C(27) / 0.00000000000000000000000819387747717_prec/
   DATA C(28) /-0.00000000000000000000000130778354057_prec/
   DATA C(29) / 0.00000000000000000000000020925629306_prec/
   DATA C(30) /-0.00000000000000000000000003356166151_prec/
   DATA C(31) / 0.00000000000000000000000000539465777_prec/
   DATA C(32) /-0.00000000000000000000000000086891932_prec/
   DATA C(33) / 0.00000000000000000000000000014022817_prec/
   DATA C(34) /-0.00000000000000000000000000002267156_prec/
   DATA C(35) / 0.00000000000000000000000000000367174_prec/
   DATA C(36) /-0.00000000000000000000000000000059562_prec/
   DATA C(37) / 0.00000000000000000000000000000009677_prec/
   DATA C(38) /-0.00000000000000000000000000000001574_prec/
   DATA C(39) / 0.00000000000000000000000000000000257_prec/
   DATA C(40) /-0.00000000000000000000000000000000042_prec/
   DATA C(41) / 0.00000000000000000000000000000000007_prec/
   DATA C(42) /-0.00000000000000000000000000000000001_prec/
139 140 141 142 143 144 145 146

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
147
    LI2_OLD=zeta(2)
148 149
    Li2 = Real(LI2_OLD,prec)
    RETURN
150
   ELSE IF(abs(x-MONE) < zero) THEN
ulrich_y's avatar
ulrich_y committed
151
    LI2_OLD=MALF*zeta(2)
152 153 154 155 156 157
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
ulrich_y's avatar
ulrich_y committed
158
    A=-2*zeta(2)+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
159 160 161 162
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
163
    A=-zeta(2)+A*(A+LOG(ONE+ONE/T))
164 165 166 167
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
168
    A=-zeta(2)+A*(MALF*A+LOG(ONE+T))
169 170 171 172 173 174 175 176 177 178 179
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
ulrich_y's avatar
ulrich_y committed
180
    A=zeta(2)+HALF*LOG(T)**2
181 182 183 184 185 186
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
ulrich_y's avatar
ulrich_y committed
187 188 189 190 191 192
   if (precision(1._prec) < 20) then
     maxi = 18
   else
     maxi = 42
   endif
   DO  I = maxi,0,-1
193 194 195 196 197 198 199 200
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
201

202
  RECURSIVE FUNCTION dilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
203
    ! evaluates dilog for any argument |x|<1
204 205
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
206

ulrich_y's avatar
ulrich_y committed
207
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
208
      res = Li2(real(x,kind=prec))
209
    else
ulrich_y's avatar
ulrich_y committed
210 211
      res = naive_polylog(2,x)
    endif
212 213
  END FUNCTION dilog

Luca's avatar
Luca committed
214 215 216 217 218 219
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
ulrich_y's avatar
ulrich_y committed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    real (kind=prec):: CA(0:52),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:52),HB,ALFAB,BB0,BB1,BB2, YB

    DATA CA( 0) / 0.46172939286012092817954516381760016_prec/
    DATA CA( 1) / 0.45017399588550288560580364647352070_prec/
    DATA CA( 2) /-0.01091284195229295374494914320402658_prec/
    DATA CA( 3) / 0.00059324547127243642952756961712713_prec/
    DATA CA( 4) /-0.00004479593219280756178998757870776_prec/
    DATA CA( 5) / 0.00000405154578580684540984293800468_prec/
    DATA CA( 6) /-0.00000041095398606214457668547736075_prec/
    DATA CA( 7) / 0.00000004513178770934181970313262557_prec/
    DATA CA( 8) /-0.00000000525466158515342604029419927_prec/
    DATA CA( 9) / 0.00000000063982547910449452549291936_prec/
    DATA CA(10) /-0.00000000008071938839872532971820424_prec/
    DATA CA(11) / 0.00000000001048073680087126094928657_prec/
    DATA CA(12) /-0.00000000000139365085138335067524094_prec/
    DATA CA(13) / 0.00000000000018907205037339730044704_prec/
    DATA CA(14) /-0.00000000000002609371657183250621931_prec/
    DATA CA(15) / 0.00000000000000365481859219879483309_prec/
    DATA CA(16) /-0.00000000000000051855842492271228151_prec/
    DATA CA(17) / 0.00000000000000007441491722173878908_prec/
    DATA CA(18) /-0.00000000000000001078686838424874221_prec/
    DATA CA(19) / 0.00000000000000000157774237809543778_prec/
    DATA CA(20) /-0.00000000000000000023264073800573828_prec/
    DATA CA(21) / 0.00000000000000000003455457587964154_prec/
    DATA CA(22) /-0.00000000000000000000516658458392580_prec/
    DATA CA(23) / 0.00000000000000000000077718849383139_prec/
    DATA CA(24) /-0.00000000000000000000011755815708807_prec/
    DATA CA(25) / 0.00000000000000000000001787262690583_prec/
    DATA CA(26) /-0.00000000000000000000000272999302683_prec/
    DATA CA(27) / 0.00000000000000000000000041881267359_prec/
    DATA CA(28) /-0.00000000000000000000000006451004176_prec/
    DATA CA(29) / 0.00000000000000000000000000997383916_prec/
    DATA CA(30) /-0.00000000000000000000000000154744603_prec/
    DATA CA(31) / 0.00000000000000000000000000024087296_prec/
    DATA CA(32) /-0.00000000000000000000000000003760889_prec/
    DATA CA(33) / 0.00000000000000000000000000000588900_prec/
    DATA CA(34) /-0.00000000000000000000000000000092463_prec/
    DATA CA(35) / 0.00000000000000000000000000000014555_prec/
    DATA CA(36) /-0.00000000000000000000000000000002297_prec/
    DATA CA(37) / 0.00000000000000000000000000000000363_prec/
    DATA CA(38) /-0.00000000000000000000000000000000058_prec/
    DATA CA(39) / 0.00000000000000000000000000000000009_prec/
    DATA CA(40) /-0.00000000000000000000000000000000001_prec/
    DATA CB( 0) /-0.01601618044919582873670691984756338_prec/
    DATA CB( 1) /-0.50364244007530129181209541016960792_prec/
    DATA CB( 2) /-0.01615099243050025888745446951929454_prec/
    DATA CB( 3) /-0.00124402421042449361265610524413112_prec/
    DATA CB( 4) /-0.00013757218124461673921971996409271_prec/
    DATA CB( 5) /-0.00001856381852603773316486795183129_prec/
    DATA CB( 6) /-0.00000284173534515440415934505790039_prec/
    DATA CB( 7) /-0.00000047459967905789937221638951390_prec/
    DATA CB( 8) /-0.00000008448038543781200676091819474_prec/
    DATA CB( 9) /-0.00000001578767124043400543246870475_prec/
    DATA CB(10) /-0.00000000306576207139903798128889004_prec/
    DATA CB(11) /-0.00000000061407921728125845808062189_prec/
    DATA CB(12) /-0.00000000012618830243156719690872484_prec/
    DATA CB(13) /-0.00000000002649314179819609957126783_prec/
    DATA CB(14) /-0.00000000000566470854636425926158812_prec/
    DATA CB(15) /-0.00000000000123041115779581117517467_prec/
    DATA CB(16) /-0.00000000000027093457836786768143960_prec/
    DATA CB(17) /-0.00000000000006038026463383701279197_prec/
    DATA CB(18) /-0.00000000000001360008993995749682352_prec/
    DATA CB(19) /-0.00000000000000309244740631856875855_prec/
    DATA CB(20) /-0.00000000000000070917249609207158220_prec/
    DATA CB(21) /-0.00000000000000016388083639226002471_prec/
    DATA CB(22) /-0.00000000000000003813464350168994613_prec/
    DATA CB(23) /-0.00000000000000000893010739611811656_prec/
    DATA CB(24) /-0.00000000000000000210331341599359416_prec/
    DATA CB(25) /-0.00000000000000000049802988416537866_prec/
    DATA CB(26) /-0.00000000000000000011850292695597351_prec/
    DATA CB(27) /-0.00000000000000000002832460494402074_prec/
    DATA CB(28) /-0.00000000000000000000679854955943073_prec/
    DATA CB(29) /-0.00000000000000000000163816629435900_prec/
    DATA CB(30) /-0.00000000000000000000039616291258646_prec/
    DATA CB(31) /-0.00000000000000000000009613022139972_prec/
    DATA CB(32) /-0.00000000000000000000002340035706102_prec/
    DATA CB(33) /-0.00000000000000000000000571315840877_prec/
    DATA CB(34) /-0.00000000000000000000000139876183805_prec/
    DATA CB(35) /-0.00000000000000000000000034336361321_prec/
    DATA CB(36) /-0.00000000000000000000000008449733573_prec/
    DATA CB(37) /-0.00000000000000000000000002084253881_prec/
    DATA CB(38) /-0.00000000000000000000000000515255292_prec/
    DATA CB(39) /-0.00000000000000000000000000127646290_prec/
    DATA CB(40) /-0.00000000000000000000000000031685555_prec/
    DATA CB(41) /-0.00000000000000000000000000007880228_prec/
    DATA CB(42) /-0.00000000000000000000000000001963363_prec/
    DATA CB(43) /-0.00000000000000000000000000000490016_prec/
    DATA CB(44) /-0.00000000000000000000000000000122499_prec/
    DATA CB(45) /-0.00000000000000000000000000000030671_prec/
    DATA CB(46) /-0.00000000000000000000000000000007691_prec/
    DATA CB(47) /-0.00000000000000000000000000000001931_prec/
    DATA CB(48) /-0.00000000000000000000000000000000486_prec/
    DATA CB(49) /-0.00000000000000000000000000000000122_prec/
    DATA CB(50) /-0.00000000000000000000000000000000031_prec/
    DATA CB(51) /-0.00000000000000000000000000000000008_prec/
    DATA CB(52) /-0.00000000000000000000000000000000002_prec/
Luca's avatar
Luca committed
317
    real (kind=prec):: Li3
ulrich_y's avatar
ulrich_y committed
318
    integer :: i, maxi
Luca's avatar
Luca committed
319 320 321 322 323 324 325 326 327


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
328
      LI3=zeta(3)
Luca's avatar
Luca committed
329
    RETURN
330
    ELSE IF( abs(x+1) < zero) THEN
ulrich_y's avatar
ulrich_y committed
331
      LI3=-0.75_prec*zeta(3)
Luca's avatar
Luca committed
332 333 334 335 336
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
337
      A=-LOG(-X)*(zeta(2)+LOG(-x)**2/6._prec)
Luca's avatar
Luca committed
338 339 340 341 342 343 344 345 346 347 348
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
ulrich_y's avatar
ulrich_y committed
349
      A=zeta(3) + zeta(2)*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
350 351 352
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
ulrich_y's avatar
ulrich_y committed
353
      A=zeta(3) + zeta(2)*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
354 355 356
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
357
      A=2*zeta(2)*Log(x)-Log(x)**3/6._prec
Luca's avatar
Luca committed
358 359 360 361 362 363 364 365
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
ulrich_y's avatar
ulrich_y committed
366 367 368 369 370 371
    if (precision(1._prec) < 20) then
      maxi = 18
    else
      maxi = 42
    endif
    DO  I = maxi,0,-1
Luca's avatar
Luca committed
372 373 374 375 376
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
377 378

  FUNCTION trilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
379
    ! evaluates trilog for any argument |x|<1
Luca's avatar
Luca committed
380 381
    complex(kind=prec) :: res
    complex(kind=prec) :: x
ulrich_y's avatar
ulrich_y committed
382
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
383
      res = Li3(real(x,kind=prec))
Luca's avatar
Luca committed
384
    else
ulrich_y's avatar
ulrich_y committed
385 386
      res = naive_polylog(3,x)
    endif
Luca's avatar
Luca committed
387 388
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
389
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
ulrich_y's avatar
ulrich_y committed
390
    integer, parameter :: maxn = 15
ulrich_y's avatar
ulrich_y committed
391
    integer n
ulrich_y's avatar
ulrich_y committed
392 393
    complex(kind=prec) :: x, res
    complex(kind=prec) :: xpow(maxn+1)
ulrich_y's avatar
ulrich_y committed
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
    integer, parameter :: coeffN(maxn+1, maxn) = reshape((/ &
        -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1, -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   1, -   2, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, -   1,     0, +   5, -   5, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1,     0, -   1,     0, +   5, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1,     0, -   7,     0, +   7, -   7, +   1,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   2,     0, -   7,     0, +  14, -   4, +   1,     0,     0,     0,     0,     0,     0,     0, &
            0, -   3,     0, +   2,     0, -  21,     0, +   6, -   9, +   1,     0,     0,     0,     0,     0,     0, &
        +   5,     0, -   3,     0, +   5,     0, -   7,     0, +  15, -   5, +   1,     0,     0,     0,     0,     0, &
            0, +   5,     0, -  11,     0, +  11,     0, -  11,     0, +  55, -  11, +   1,     0,     0,     0,     0, &
        - 691,     0, +   5,     0, -  33,     0, +  22,     0, -  33,     0, +  11, -   6, +   1,     0,     0,     0, &
            0, - 691,     0, +  65,     0, - 429,     0, + 286,     0, - 143,     0, +  13, -  13, +   1,     0,     0, &
        +   7,     0, - 691,     0, + 455,     0, -1001,     0, + 143,     0, -1001,     0, +  91, -   7, +   1,     0, &
            0, +  35,     0, - 691,     0, + 455,     0, - 429,     0, + 715,     0, -  91,     0, +  35, -  15, +   1 /), &
            (/maxn+1, maxn/))
    integer, parameter :: coeffD(maxn+1, maxn) = reshape((/ &
        +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   6, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   3, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  42, +   1, +   2, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   6, +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   3, +   1, +   3, +   1, +   3, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +  10, +   1, +   1, +   1, +   5, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  66, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   6, +   2, +   1, +   1, +   1, +   1, +   1, &
        +2730, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, + 210, +   1, +   3, +   1, +  10, +   1, +   7, +   1, +   6, +   1, +   1, +   2, +   1, +   1, +   1, &
        +   6, +   1, +  30, +   1, +   6, +   1, +  10, +   1, +   2, +   1, +  30, +   1, +   6, +   1, +   1, +   1, &
        +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   2, +   1 /), &
            (/maxn+1, maxn/))

ulrich_y's avatar
ulrich_y committed
429
    real(kind=prec), parameter :: coeff(maxn+1,maxn) = coeffN/real(coeffD,kind=prec)
ulrich_y's avatar
ulrich_y committed
430 431 432 433 434 435
    integer i

    if (n>maxn) then
      print*,"Bernoulli beyond 15 is not implemented"
      stop
    endif
ulrich_y's avatar
ulrich_y committed
436

ulrich_y's avatar
ulrich_y committed
437 438
    xpow(1:n+1) = (/ ( x**i, i = 0, n ) /)
    res = sum( xpow(1:n+1) * coeff(1:n+1,n) )
ulrich_y's avatar
ulrich_y committed
439 440 441

  END FUNCTION

ulrich_y's avatar
ulrich_y committed
442 443 444 445 446 447 448 449 450 451 452 453 454
  FUNCTION MYLOG(x)
    complex(kind=prec) :: x, mylog
    if (abs(aimag(x)) < zero) then
      if (real(x) > 0) then
        mylog = cmplx(log(real(+x,kind=prec)),     kind=prec)
      else
        mylog = cmplx(log(real(-x,kind=prec)), pi, kind=prec)
      endif
    else
      mylog = log(x)
    endif
  END FUNCTION

ulrich_y's avatar
ulrich_y committed
455
  RECURSIVE FUNCTION polylog1(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
456 457
    ! computes the polylog
    
458
    integer :: m
459
    complex(kind=prec) :: x, inv
460
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
461 462
    integer i

463
    
ulrich_y's avatar
ulrich_y committed
464
#ifdef DEBUG
465
    if(verb >= 70) print*, 'called polylog(',m,',',x,')'
ulrich_y's avatar
ulrich_y committed
466 467 468 469
#endif
#ifndef NOCACHE
    if (m.le.5) then
      do i=1,plcachesize(m)
470
        if( abs(cache(m,i)%c-x).lt.zero ) then
ulrich_y's avatar
ulrich_y committed
471 472 473 474 475
          res = cache(m,i)%ans
          return
        endif
      enddo
    endif
ulrich_y's avatar
ulrich_y committed
476
#endif
477
    if ((m.le.9).and.(abs(x-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
478
      res = zeta(m)
479
    else if ((m.le.9).and.(abs(x+1._prec).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
480
      res = -(1._prec - 2._prec**(1-m))*zeta(m)
481 482 483 484
    else if ((m.le.9).and.(abs(x-i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) + i_*dirichletbeta(m)
    else if ((m.le.9).and.(abs(x+i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) - i_*dirichletbeta(m)
485
    else if (abs(x) .gt. 1) then
486
      inv = 1._prec/x
ulrich_y's avatar
ulrich_y committed
487
      res = (-1)**(m-1)*polylog(m,inv) &
ulrich_y's avatar
ulrich_y committed
488
          - (2._prec*pi*i_)**m * bernoulli_polynomial(m, 0.5_prec-i_*mylog(-x)/2._prec/pi) / factorial(m)
ulrich_y's avatar
ulrich_y committed
489
    else if(m == 2) then
490
      res = dilog(x)
Luca's avatar
Luca committed
491
    else if(m == 3) then
492
      res = trilog(x)
Luca's avatar
Luca committed
493
    else
494
      res = naive_polylog(m,x)
495
    end if
ulrich_y's avatar
ulrich_y committed
496 497 498 499 500 501 502 503 504

#ifndef NOCACHE
    if (m.le.PolyLogCacheSize(1)) then
      if (plcachesize(m).lt.PolyLogCacheSize(2)) then
        plcachesize(m) = plcachesize(m) + 1
        cache(m,plcachesize(m)) = el(x,res)
      endif
    endif
#endif
ulrich_y's avatar
ulrich_y committed
505 506 507 508 509 510 511 512 513
  END FUNCTION polylog1




  RECURSIVE FUNCTION polylog2(m,x,y) result(res)
    type(inum) :: x, y
    integer m
    complex(kind=prec) :: res
514 515 516 517 518 519 520 521 522 523 524
    res=polylog1(m,x%c/y%c)
    if ( (abs(aimag(x)).lt.zero).and.(abs(aimag(y)).lt.zero) ) then
      ! Both arguments are real, only here does the ieps matter
      ! FIXME this is rather ugly..
      if (real(x).gt.real(y) .and. real(y).gt. 0) then
        ! Force the sign to be -b%i0
        res = cmplx(real(res), sign(aimag(res), -y%i0*1._prec), kind=prec)
      elseif(real(x).lt.real(y) .and. real(y).lt. 0) then
        res = cmplx(real(res), sign(aimag(res), +y%i0*1._prec), kind=prec)
      endif
    endif
ulrich_y's avatar
ulrich_y committed
525 526 527 528 529 530 531 532
  END FUNCTION POLYLOG2


  FUNCTION PLOG1(a,b)
  ! calculates log(1-a/b)
  implicit none
  type(inum) :: a,b
  complex(kind=prec) plog1
533 534 535 536 537 538 539 540 541 542 543

  if ( (abs(aimag(a)).lt.zero).and.(abs(aimag(b)).lt.zero) ) then
    ! Both arguments are real, only here does the ieps matter
    plog1 = log(abs(1.-a%c/b%c))
    ! this does not depend on the sign of a
    if (real(a).gt.real(b) .and. real(b).gt. 0) then
      plog1 = plog1 + b%i0*i_*pi
    elseif(real(a).lt.real(b) .and. real(b).lt. 0) then
      plog1 = plog1 - b%i0*i_*pi
    endif
  else
ulrich_y's avatar
ulrich_y committed
544
    plog1 = mylog(1.-a%c/b%c)
545
  endif
ulrich_y's avatar
ulrich_y committed
546
  END FUNCTION
Luca's avatar
Luca committed
547

ulrich_y's avatar
ulrich_y committed
548 549 550 551 552 553
#ifndef NOCACHE
  SUBROUTINE CLEARCACHE
  plcachesize=0
  END SUBROUTINE
#endif

554 555
END MODULE maths_functions

Luca's avatar
Luca committed
556 557 558 559 560 561 562
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
563