maths_functions.f90 25.6 KB
Newer Older
1 2 3

MODULE maths_functions
  use globals
ulrich_y's avatar
ulrich_y committed
4
  use ieps
5
  use utils, only: factorial, binom
6
  implicit none
ulrich_y's avatar
ulrich_y committed
7 8 9
  interface polylog
    module procedure polylog1, polylog2
  end interface polylog
10

ulrich_y's avatar
ulrich_y committed
11 12 13 14 15
  real(kind=prec), parameter :: zeta(2:10) = (/ 1.6449340668482264364724151666460251892189499012068_prec,  &
      1.2020569031595942853997381615114499907649862923405_prec, 1.0823232337111381915160036965411679027747509519187_prec,  &
      1.0369277551433699263313654864570341680570809195019_prec, 1.0173430619844491397145179297909205279018174900329_prec,  &
      1.0083492773819228268397975498497967595998635605652_prec, 1.0040773561979443393786852385086524652589607906499_prec,  &
      1.0020083928260822144178527692324120604856058513949_prec, 1.0009945751278180853371459589003190170060195315645_prec /)
16 17 18 19 20 21

  real(kind=prec), parameter :: DirichletBeta(2:10) = (/ 0.91596559417721901505460351493238411077414937428167_prec, &
    0.96894614625936938048363484584691860006954026768391_prec, 0.98894455174110533610842263322837782131586088706273_prec, &
    0.99615782807708806400631936863097528151139552938826_prec, 0.99868522221843813544160078786020654967836454612651_prec, &
    0.99955450789053990949634654989905898300218848194998_prec, 0.99984999024682965633806705924046378147600743300743_prec, &
    0.99994968418722008982135887329384752737274799691796_prec, 0.99998316402619687740554072995833414145685781649717_prec /)
ulrich_y's avatar
ulrich_y committed
22
  type el
23
    complex(kind=prec) :: c
ulrich_y's avatar
ulrich_y committed
24 25 26 27 28
    complex(kind=prec) ans
  end type el

  type(el) :: cache(PolyLogCacheSize(1),PolyLogCacheSize(2))
  integer :: plcachesize(PolyLogCacheSize(1)) = 0
ulrich_y's avatar
ulrich_y committed
29
CONTAINS
30

ulrich_y's avatar
ulrich_y committed
31
  FUNCTION naive_polylog(m,x) result(res)
32 33
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
34
    complex(kind=prec) :: x, res, del
35
    integer(kind=ikin) :: i
ulrich_y's avatar
ulrich_y committed
36
    res=0._prec
37 38 39 40

    i = 1
    del = 1._prec
    do while (abs(del) > zero)
41
      if(i**m.lt.0) return ! roll over
ulrich_y's avatar
ulrich_y committed
42
      if(abs(x**i).lt.1.e-250_prec) return
43 44 45 46
      del = x**i/i**m
      res = res+del
      i = i+1
    end do
47
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
48

49 50 51 52 53 54 55 56 57 58
  FUNCTION bernoullinumber(n)
    ! This returns the n-th Bernoulli number by computing all Bernoulli numbers
    ! up to the n-th recursively using the relation
    !   Sum[ Binomial[m+1, k] BernoulliB[k], {k,0,m} ] = 0
    ! for m > 0 (https://mathworld.wolfram.com/BernoulliNumber.html).
    ! Solving this for BernoulliB[m] results in
    !   BernoulliB[m] = - Sum[Binomial[m, k] BernoulliB[k] / (m-k+1), {k,0,m-1}]
    ! for m > 0 and BernoulliB[0] = 1.
    ! Care is taken to avoid multiple computation.
    integer, intent(in) :: n
59 60 61
    ! the cache is dynamic, the first entry is the initial size, the
    ! second the increment
    integer, parameter :: cachecontr(2) = (/ 20, 10 /)
62 63
    real(kind=prec) :: bernoullinumber
    ! keep track of the bernoulli numbers we have already calculated
64 65
    real(kind=prec), save, allocatable :: bernoulli(:)
    real(kind=prec), allocatable :: buffer(:)
ulrich_y's avatar
ulrich_y committed
66 67
    integer, save :: m = 2
    integer k
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    if (.not. allocated(bernoulli)) then
      allocate(bernoulli(0:cachecontr(1)))
      bernoulli(0) = 1.
      bernoulli(1) = -0.5
    endif

    if (n > size(bernoulli)) then
      ! We need more buffer
      k = size(bernoulli) - 1
      allocate(buffer(0:k))
      buffer = bernoulli
      deallocate(bernoulli)

      allocate(bernoulli(0:n + cachecontr(2)))
      bernoulli(0:k) = buffer(0:k)

      deallocate(buffer)
    endif

88 89


ulrich_y's avatar
ulrich_y committed
90
    do m=m,n,2
91 92 93 94 95 96 97 98 99
      bernoulli(m) = 0.
      do k=0,m-1
        bernoulli(m) = bernoulli(m) - binom(m, k) * bernoulli(k) / (m - k + 1)
      enddo
    enddo

    bernoullinumber = bernoulli(n)
  END FUNCTION bernoullinumber

100 101 102 103 104 105 106 107 108 109 110 111 112 113
  FUNCTION harmonicnumber(n)
    integer, intent(in) :: n
    real(kind=prec) :: harmonicnumber
    integer, parameter :: nmax = 40
    real(kind=prec), save :: Harmonic(0:nmax) = 0
    integer, save :: m = 0

    do m=m, n+1
      harmonic(m+1) = harmonic(m) + 1._prec / real(m+1)
    enddo
    harmonicnumber = harmonic(n)

  END FUNCTION

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  FUNCTION logz_polylog(n, z) result(res)
    ! Computes the classical polylogarithm Li_m(z) using series
    ! representation in log(z). valid for log z < 2pi.
    !
    ! The algorithm works by using (1.4) or [Crandall 2006]
    !
    !  PolyLog[n, z] = Ssum[Zeta[n-m] Log[z]^m / m!, {m,0,Infinity}]
    !                + Log[z]^(n-1) (HarmonicNumber[n-1] -  Log[-Log[z]]) / (n-1)!
    !
    ! where Ssum[..] excludes the singular Zeta[1] term at m = n-1. In
    ! Fortran, we split the Ssum in a sum from 0..n-2 with positive
    ! arguments in the Zeta function. The next term m=n we do manually
    ! to not have to implement Zeta[0] = -1/2 and then we use
    ! Zeta[n-m] = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
    ! for the remaining terms.
    !
    ! References
    ! R. E. Crandall, Note on fast polylogarithm computation,
    ! www.reed.edu/~crandall/papers/Polylog.pdf, January 2006.
    ! or http://functions.wolfram.com/10.08.06.0024.01
    integer, parameter :: nmax = 40
    real(kind=prec) :: fac, zetamn
    complex(kind=prec), intent(in) :: z
    complex(kind=prec) :: res, logz
    integer, intent(in) :: n
    integer m

    logz = log(z)

    ! The factorial will become a problem later. We do the first few
    ! terms and iterate later.
    fac = real(factorial(n-1),kind=prec)

    ! Non-sum term
    res = logz**(n-1) / fac * (harmonicnumber(n-1) - log(-logz))

    ! positive arguments in the Zeta function, 0..,n-2
    do m=0,n-2
      res = res + zeta(n-m) / factorial(m) * logz**m
    enddo

    ! Zeta[0], i.e. m=n case
    res = res - 0.5_prec * logz**n / fac / n

    ! All remaining terms
    do m=n+1,n+nmax-1,2
      zetamn = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
      fac = fac * m * (m-1)
      res = res + zetamn / fac * logz**m
    enddo
  END FUNCTION logz_polylog

166

167 168 169 170
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

ulrich_y's avatar
ulrich_y committed
171
   real (kind=prec):: X,Y,T,S,A,ZERO,ONE,HALF,MALF,MONE,MTWO
ulrich_y's avatar
ulrich_y committed
172
   real (kind=prec):: C(0:42),H,ALFA,B0,B1,B2,LI2_OLD
173
   real (kind=prec):: Li2
ulrich_y's avatar
ulrich_y committed
174
   integer :: i, maxi
175 176 177 178 179

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/

ulrich_y's avatar
ulrich_y committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
   DATA C( 0) / 0.42996693560813697203703367869938799_prec/
   DATA C( 1) / 0.40975987533077105846826371092525528_prec/
   DATA C( 2) /-0.01858843665014591964764164914021227_prec/
   DATA C( 3) / 0.00145751084062267855367392841645949_prec/
   DATA C( 4) /-0.00014304184442340048774883012009088_prec/
   DATA C( 5) / 0.00001588415541879553236190550471677_prec/
   DATA C( 6) /-0.00000190784959386582722719632114209_prec/
   DATA C( 7) / 0.00000024195180854164749499461464343_prec/
   DATA C( 8) /-0.00000003193341274251783460496014143_prec/
   DATA C( 9) / 0.00000000434545062676912298795717848_prec/
   DATA C(10) /-0.00000000060578480118407444429705331_prec/
   DATA C(11) / 0.00000000008612097799359498244283685_prec/
   DATA C(12) /-0.00000000001244331659938867989642421_prec/
   DATA C(13) / 0.00000000000182255696235736330065548_prec/
   DATA C(14) /-0.00000000000027006766049114651808572_prec/
   DATA C(15) / 0.00000000000004042209263152664648833_prec/
   DATA C(16) /-0.00000000000000610325145269187950378_prec/
   DATA C(17) / 0.00000000000000092862975330195758613_prec/
   DATA C(18) /-0.00000000000000014226020855112446840_prec/
   DATA C(19) / 0.00000000000000002192631718153957354_prec/
   DATA C(20) /-0.00000000000000000339797324215897863_prec/
   DATA C(21) / 0.00000000000000000052919542448331471_prec/
   DATA C(22) /-0.00000000000000000008278580814278998_prec/
   DATA C(23) / 0.00000000000000000001300371734545560_prec/
   DATA C(24) /-0.00000000000000000000205022224255282_prec/
   DATA C(25) / 0.00000000000000000000032435785491489_prec/
   DATA C(26) /-0.00000000000000000000005147799903343_prec/
   DATA C(27) / 0.00000000000000000000000819387747717_prec/
   DATA C(28) /-0.00000000000000000000000130778354057_prec/
   DATA C(29) / 0.00000000000000000000000020925629306_prec/
   DATA C(30) /-0.00000000000000000000000003356166151_prec/
   DATA C(31) / 0.00000000000000000000000000539465777_prec/
   DATA C(32) /-0.00000000000000000000000000086891932_prec/
   DATA C(33) / 0.00000000000000000000000000014022817_prec/
   DATA C(34) /-0.00000000000000000000000000002267156_prec/
   DATA C(35) / 0.00000000000000000000000000000367174_prec/
   DATA C(36) /-0.00000000000000000000000000000059562_prec/
   DATA C(37) / 0.00000000000000000000000000000009677_prec/
   DATA C(38) /-0.00000000000000000000000000000001574_prec/
   DATA C(39) / 0.00000000000000000000000000000000257_prec/
   DATA C(40) /-0.00000000000000000000000000000000042_prec/
   DATA C(41) / 0.00000000000000000000000000000000007_prec/
   DATA C(42) /-0.00000000000000000000000000000000001_prec/
223 224 225 226 227 228 229 230

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
231
    LI2_OLD=zeta(2)
232 233
    Li2 = Real(LI2_OLD,prec)
    RETURN
234
   ELSE IF(abs(x-MONE) < zero) THEN
ulrich_y's avatar
ulrich_y committed
235
    LI2_OLD=MALF*zeta(2)
236 237 238 239 240 241
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
ulrich_y's avatar
ulrich_y committed
242
    A=-2*zeta(2)+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
243 244 245 246
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
247
    A=-zeta(2)+A*(A+LOG(ONE+ONE/T))
248 249 250 251
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
252
    A=-zeta(2)+A*(MALF*A+LOG(ONE+T))
253 254 255 256 257 258 259 260 261 262 263
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
ulrich_y's avatar
ulrich_y committed
264
    A=zeta(2)+HALF*LOG(T)**2
265 266 267 268 269 270
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
ulrich_y's avatar
ulrich_y committed
271 272 273 274 275 276
   if (precision(1._prec) < 20) then
     maxi = 18
   else
     maxi = 42
   endif
   DO  I = maxi,0,-1
277 278 279 280 281 282 283 284
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
285

286
  RECURSIVE FUNCTION dilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
287
    ! evaluates dilog for any argument |x|<1
288 289
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
290

ulrich_y's avatar
ulrich_y committed
291
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
292
      res = Li2(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
293 294
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(2,x)
295
    else
ulrich_y's avatar
ulrich_y committed
296 297
      res = naive_polylog(2,x)
    endif
298 299
  END FUNCTION dilog

Luca's avatar
Luca committed
300 301 302 303 304 305
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
ulrich_y's avatar
ulrich_y committed
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    real (kind=prec):: CA(0:52),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:52),HB,ALFAB,BB0,BB1,BB2, YB

    DATA CA( 0) / 0.46172939286012092817954516381760016_prec/
    DATA CA( 1) / 0.45017399588550288560580364647352070_prec/
    DATA CA( 2) /-0.01091284195229295374494914320402658_prec/
    DATA CA( 3) / 0.00059324547127243642952756961712713_prec/
    DATA CA( 4) /-0.00004479593219280756178998757870776_prec/
    DATA CA( 5) / 0.00000405154578580684540984293800468_prec/
    DATA CA( 6) /-0.00000041095398606214457668547736075_prec/
    DATA CA( 7) / 0.00000004513178770934181970313262557_prec/
    DATA CA( 8) /-0.00000000525466158515342604029419927_prec/
    DATA CA( 9) / 0.00000000063982547910449452549291936_prec/
    DATA CA(10) /-0.00000000008071938839872532971820424_prec/
    DATA CA(11) / 0.00000000001048073680087126094928657_prec/
    DATA CA(12) /-0.00000000000139365085138335067524094_prec/
    DATA CA(13) / 0.00000000000018907205037339730044704_prec/
    DATA CA(14) /-0.00000000000002609371657183250621931_prec/
    DATA CA(15) / 0.00000000000000365481859219879483309_prec/
    DATA CA(16) /-0.00000000000000051855842492271228151_prec/
    DATA CA(17) / 0.00000000000000007441491722173878908_prec/
    DATA CA(18) /-0.00000000000000001078686838424874221_prec/
    DATA CA(19) / 0.00000000000000000157774237809543778_prec/
    DATA CA(20) /-0.00000000000000000023264073800573828_prec/
    DATA CA(21) / 0.00000000000000000003455457587964154_prec/
    DATA CA(22) /-0.00000000000000000000516658458392580_prec/
    DATA CA(23) / 0.00000000000000000000077718849383139_prec/
    DATA CA(24) /-0.00000000000000000000011755815708807_prec/
    DATA CA(25) / 0.00000000000000000000001787262690583_prec/
    DATA CA(26) /-0.00000000000000000000000272999302683_prec/
    DATA CA(27) / 0.00000000000000000000000041881267359_prec/
    DATA CA(28) /-0.00000000000000000000000006451004176_prec/
    DATA CA(29) / 0.00000000000000000000000000997383916_prec/
    DATA CA(30) /-0.00000000000000000000000000154744603_prec/
    DATA CA(31) / 0.00000000000000000000000000024087296_prec/
    DATA CA(32) /-0.00000000000000000000000000003760889_prec/
    DATA CA(33) / 0.00000000000000000000000000000588900_prec/
    DATA CA(34) /-0.00000000000000000000000000000092463_prec/
    DATA CA(35) / 0.00000000000000000000000000000014555_prec/
    DATA CA(36) /-0.00000000000000000000000000000002297_prec/
    DATA CA(37) / 0.00000000000000000000000000000000363_prec/
    DATA CA(38) /-0.00000000000000000000000000000000058_prec/
    DATA CA(39) / 0.00000000000000000000000000000000009_prec/
    DATA CA(40) /-0.00000000000000000000000000000000001_prec/
    DATA CB( 0) /-0.01601618044919582873670691984756338_prec/
    DATA CB( 1) /-0.50364244007530129181209541016960792_prec/
    DATA CB( 2) /-0.01615099243050025888745446951929454_prec/
    DATA CB( 3) /-0.00124402421042449361265610524413112_prec/
    DATA CB( 4) /-0.00013757218124461673921971996409271_prec/
    DATA CB( 5) /-0.00001856381852603773316486795183129_prec/
    DATA CB( 6) /-0.00000284173534515440415934505790039_prec/
    DATA CB( 7) /-0.00000047459967905789937221638951390_prec/
    DATA CB( 8) /-0.00000008448038543781200676091819474_prec/
    DATA CB( 9) /-0.00000001578767124043400543246870475_prec/
    DATA CB(10) /-0.00000000306576207139903798128889004_prec/
    DATA CB(11) /-0.00000000061407921728125845808062189_prec/
    DATA CB(12) /-0.00000000012618830243156719690872484_prec/
    DATA CB(13) /-0.00000000002649314179819609957126783_prec/
    DATA CB(14) /-0.00000000000566470854636425926158812_prec/
    DATA CB(15) /-0.00000000000123041115779581117517467_prec/
    DATA CB(16) /-0.00000000000027093457836786768143960_prec/
    DATA CB(17) /-0.00000000000006038026463383701279197_prec/
    DATA CB(18) /-0.00000000000001360008993995749682352_prec/
    DATA CB(19) /-0.00000000000000309244740631856875855_prec/
    DATA CB(20) /-0.00000000000000070917249609207158220_prec/
    DATA CB(21) /-0.00000000000000016388083639226002471_prec/
    DATA CB(22) /-0.00000000000000003813464350168994613_prec/
    DATA CB(23) /-0.00000000000000000893010739611811656_prec/
    DATA CB(24) /-0.00000000000000000210331341599359416_prec/
    DATA CB(25) /-0.00000000000000000049802988416537866_prec/
    DATA CB(26) /-0.00000000000000000011850292695597351_prec/
    DATA CB(27) /-0.00000000000000000002832460494402074_prec/
    DATA CB(28) /-0.00000000000000000000679854955943073_prec/
    DATA CB(29) /-0.00000000000000000000163816629435900_prec/
    DATA CB(30) /-0.00000000000000000000039616291258646_prec/
    DATA CB(31) /-0.00000000000000000000009613022139972_prec/
    DATA CB(32) /-0.00000000000000000000002340035706102_prec/
    DATA CB(33) /-0.00000000000000000000000571315840877_prec/
    DATA CB(34) /-0.00000000000000000000000139876183805_prec/
    DATA CB(35) /-0.00000000000000000000000034336361321_prec/
    DATA CB(36) /-0.00000000000000000000000008449733573_prec/
    DATA CB(37) /-0.00000000000000000000000002084253881_prec/
    DATA CB(38) /-0.00000000000000000000000000515255292_prec/
    DATA CB(39) /-0.00000000000000000000000000127646290_prec/
    DATA CB(40) /-0.00000000000000000000000000031685555_prec/
    DATA CB(41) /-0.00000000000000000000000000007880228_prec/
    DATA CB(42) /-0.00000000000000000000000000001963363_prec/
    DATA CB(43) /-0.00000000000000000000000000000490016_prec/
    DATA CB(44) /-0.00000000000000000000000000000122499_prec/
    DATA CB(45) /-0.00000000000000000000000000000030671_prec/
    DATA CB(46) /-0.00000000000000000000000000000007691_prec/
    DATA CB(47) /-0.00000000000000000000000000000001931_prec/
    DATA CB(48) /-0.00000000000000000000000000000000486_prec/
    DATA CB(49) /-0.00000000000000000000000000000000122_prec/
    DATA CB(50) /-0.00000000000000000000000000000000031_prec/
    DATA CB(51) /-0.00000000000000000000000000000000008_prec/
    DATA CB(52) /-0.00000000000000000000000000000000002_prec/
Luca's avatar
Luca committed
403
    real (kind=prec):: Li3
ulrich_y's avatar
ulrich_y committed
404
    integer :: i, maxi
Luca's avatar
Luca committed
405 406 407 408 409 410 411 412 413


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
414
      LI3=zeta(3)
Luca's avatar
Luca committed
415
    RETURN
416
    ELSE IF( abs(x+1) < zero) THEN
ulrich_y's avatar
ulrich_y committed
417
      LI3=-0.75_prec*zeta(3)
Luca's avatar
Luca committed
418 419 420 421 422
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
423
      A=-LOG(-X)*(zeta(2)+LOG(-x)**2/6._prec)
Luca's avatar
Luca committed
424 425 426 427 428 429 430 431 432 433 434
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
ulrich_y's avatar
ulrich_y committed
435
      A=zeta(3) + zeta(2)*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
436 437 438
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
ulrich_y's avatar
ulrich_y committed
439
      A=zeta(3) + zeta(2)*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
440 441 442
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
443
      A=2*zeta(2)*Log(x)-Log(x)**3/6._prec
Luca's avatar
Luca committed
444 445 446 447 448 449 450 451
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
ulrich_y's avatar
ulrich_y committed
452 453 454 455 456 457
    if (precision(1._prec) < 20) then
      maxi = 18
    else
      maxi = 42
    endif
    DO  I = maxi,0,-1
Luca's avatar
Luca committed
458 459 460 461 462
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
463 464

  FUNCTION trilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
465
    ! evaluates trilog for any argument |x|<1
Luca's avatar
Luca committed
466 467
    complex(kind=prec) :: res
    complex(kind=prec) :: x
ulrich_y's avatar
ulrich_y committed
468
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
469
      res = Li3(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
470 471
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(3,x)
Luca's avatar
Luca committed
472
    else
ulrich_y's avatar
ulrich_y committed
473 474
      res = naive_polylog(3,x)
    endif
Luca's avatar
Luca committed
475 476
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
477
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
ulrich_y's avatar
ulrich_y committed
478
    integer, parameter :: maxn = 15
ulrich_y's avatar
ulrich_y committed
479
    integer n
ulrich_y's avatar
ulrich_y committed
480 481
    complex(kind=prec) :: x, res
    complex(kind=prec) :: xpow(maxn+1)
ulrich_y's avatar
ulrich_y committed
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    integer, parameter :: coeffN(maxn+1, maxn) = reshape((/ &
        -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1, -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   1, -   2, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, -   1,     0, +   5, -   5, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1,     0, -   1,     0, +   5, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1,     0, -   7,     0, +   7, -   7, +   1,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   2,     0, -   7,     0, +  14, -   4, +   1,     0,     0,     0,     0,     0,     0,     0, &
            0, -   3,     0, +   2,     0, -  21,     0, +   6, -   9, +   1,     0,     0,     0,     0,     0,     0, &
        +   5,     0, -   3,     0, +   5,     0, -   7,     0, +  15, -   5, +   1,     0,     0,     0,     0,     0, &
            0, +   5,     0, -  11,     0, +  11,     0, -  11,     0, +  55, -  11, +   1,     0,     0,     0,     0, &
        - 691,     0, +   5,     0, -  33,     0, +  22,     0, -  33,     0, +  11, -   6, +   1,     0,     0,     0, &
            0, - 691,     0, +  65,     0, - 429,     0, + 286,     0, - 143,     0, +  13, -  13, +   1,     0,     0, &
        +   7,     0, - 691,     0, + 455,     0, -1001,     0, + 143,     0, -1001,     0, +  91, -   7, +   1,     0, &
            0, +  35,     0, - 691,     0, + 455,     0, - 429,     0, + 715,     0, -  91,     0, +  35, -  15, +   1 /), &
            (/maxn+1, maxn/))
    integer, parameter :: coeffD(maxn+1, maxn) = reshape((/ &
        +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   6, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   3, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  42, +   1, +   2, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   6, +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   3, +   1, +   3, +   1, +   3, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +  10, +   1, +   1, +   1, +   5, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  66, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   6, +   2, +   1, +   1, +   1, +   1, +   1, &
        +2730, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, + 210, +   1, +   3, +   1, +  10, +   1, +   7, +   1, +   6, +   1, +   1, +   2, +   1, +   1, +   1, &
        +   6, +   1, +  30, +   1, +   6, +   1, +  10, +   1, +   2, +   1, +  30, +   1, +   6, +   1, +   1, +   1, &
        +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   2, +   1 /), &
            (/maxn+1, maxn/))

ulrich_y's avatar
ulrich_y committed
517
    real(kind=prec), parameter :: coeff(maxn+1,maxn) = coeffN/real(coeffD,kind=prec)
ulrich_y's avatar
ulrich_y committed
518 519 520 521 522 523
    integer i

    if (n>maxn) then
      print*,"Bernoulli beyond 15 is not implemented"
      stop
    endif
ulrich_y's avatar
ulrich_y committed
524

ulrich_y's avatar
ulrich_y committed
525 526
    xpow(1:n+1) = (/ ( x**i, i = 0, n ) /)
    res = sum( xpow(1:n+1) * coeff(1:n+1,n) )
ulrich_y's avatar
ulrich_y committed
527 528 529

  END FUNCTION

ulrich_y's avatar
ulrich_y committed
530 531 532 533 534 535 536 537 538 539 540 541 542
  FUNCTION MYLOG(x)
    complex(kind=prec) :: x, mylog
    if (abs(aimag(x)) < zero) then
      if (real(x) > 0) then
        mylog = cmplx(log(real(+x,kind=prec)),     kind=prec)
      else
        mylog = cmplx(log(real(-x,kind=prec)), pi, kind=prec)
      endif
    else
      mylog = log(x)
    endif
  END FUNCTION

ulrich_y's avatar
ulrich_y committed
543
  RECURSIVE FUNCTION polylog1(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
544 545
    ! computes the polylog
    
546
    integer :: m
547
    complex(kind=prec) :: x, inv
548
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
549 550
    integer i

551
    
ulrich_y's avatar
ulrich_y committed
552
#ifdef DEBUG
553
    if(verb >= 70) print*, 'called polylog(',m,',',x,')'
ulrich_y's avatar
ulrich_y committed
554 555 556 557
#endif
#ifndef NOCACHE
    if (m.le.5) then
      do i=1,plcachesize(m)
558
        if( abs(cache(m,i)%c-x).lt.zero ) then
ulrich_y's avatar
ulrich_y committed
559 560 561 562 563
          res = cache(m,i)%ans
          return
        endif
      enddo
    endif
ulrich_y's avatar
ulrich_y committed
564
#endif
565
    if ((m.le.9).and.(abs(x-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
566
      res = zeta(m)
567
    else if ((m.le.9).and.(abs(x+1._prec).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
568
      res = -(1._prec - 2._prec**(1-m))*zeta(m)
569 570 571 572
    else if ((m.le.9).and.(abs(x-i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) + i_*dirichletbeta(m)
    else if ((m.le.9).and.(abs(x+i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) - i_*dirichletbeta(m)
573
    else if (abs(x) .gt. 1) then
574
      inv = 1._prec/x
ulrich_y's avatar
ulrich_y committed
575
      res = (-1)**(m-1)*polylog(m,inv) &
ulrich_y's avatar
ulrich_y committed
576
          - (2._prec*pi*i_)**m * bernoulli_polynomial(m, 0.5_prec-i_*mylog(-x)/2._prec/pi) / factorial(m)
ulrich_y's avatar
ulrich_y committed
577
    else if(m == 2) then
578
      res = dilog(x)
Luca's avatar
Luca committed
579
    else if(m == 3) then
580
      res = trilog(x)
ulrich_y's avatar
ulrich_y committed
581 582
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(m,x)
Luca's avatar
Luca committed
583
    else
584
      res = naive_polylog(m,x)
585
    end if
ulrich_y's avatar
ulrich_y committed
586 587 588 589 590 591 592 593 594

#ifndef NOCACHE
    if (m.le.PolyLogCacheSize(1)) then
      if (plcachesize(m).lt.PolyLogCacheSize(2)) then
        plcachesize(m) = plcachesize(m) + 1
        cache(m,plcachesize(m)) = el(x,res)
      endif
    endif
#endif
ulrich_y's avatar
ulrich_y committed
595 596 597 598 599 600 601 602 603
  END FUNCTION polylog1




  RECURSIVE FUNCTION polylog2(m,x,y) result(res)
    type(inum) :: x, y
    integer m
    complex(kind=prec) :: res
604 605 606 607 608 609 610 611 612 613 614
    res=polylog1(m,x%c/y%c)
    if ( (abs(aimag(x)).lt.zero).and.(abs(aimag(y)).lt.zero) ) then
      ! Both arguments are real, only here does the ieps matter
      ! FIXME this is rather ugly..
      if (real(x).gt.real(y) .and. real(y).gt. 0) then
        ! Force the sign to be -b%i0
        res = cmplx(real(res), sign(aimag(res), -y%i0*1._prec), kind=prec)
      elseif(real(x).lt.real(y) .and. real(y).lt. 0) then
        res = cmplx(real(res), sign(aimag(res), +y%i0*1._prec), kind=prec)
      endif
    endif
ulrich_y's avatar
ulrich_y committed
615 616 617 618 619 620 621 622
  END FUNCTION POLYLOG2


  FUNCTION PLOG1(a,b)
  ! calculates log(1-a/b)
  implicit none
  type(inum) :: a,b
  complex(kind=prec) plog1
623 624 625 626 627 628 629 630 631 632 633

  if ( (abs(aimag(a)).lt.zero).and.(abs(aimag(b)).lt.zero) ) then
    ! Both arguments are real, only here does the ieps matter
    plog1 = log(abs(1.-a%c/b%c))
    ! this does not depend on the sign of a
    if (real(a).gt.real(b) .and. real(b).gt. 0) then
      plog1 = plog1 + b%i0*i_*pi
    elseif(real(a).lt.real(b) .and. real(b).lt. 0) then
      plog1 = plog1 - b%i0*i_*pi
    endif
  else
ulrich_y's avatar
ulrich_y committed
634
    plog1 = mylog(1.-a%c/b%c)
635
  endif
ulrich_y's avatar
ulrich_y committed
636
  END FUNCTION
Luca's avatar
Luca committed
637

ulrich_y's avatar
ulrich_y committed
638 639 640 641 642 643
#ifndef NOCACHE
  SUBROUTINE CLEARCACHE
  plcachesize=0
  END SUBROUTINE
#endif

644 645
END MODULE maths_functions

Luca's avatar
Luca committed
646 647 648 649 650 651 652
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
653