maths_functions.f90 7.33 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MODULE maths_functions
  use globals
  use utils
  implicit none

CONTAINS 

  FUNCTION naive_polylog(m,x,n_passed) result(res)
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
    integer, optional :: n_passed
    complex(kind=prec) :: x, res
    integer :: i,n
    integer, allocatable :: j(:)
16
    n = 1000
17 18 19
    j = (/(i, i=1,n,1)/) 
    res = sum(x**j / j**m)
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

   real (kind=prec):: X,Y,T,S,A,PI3,PI6,ZERO,ONE,HALF,MALF,MONE,MTWO
   real (kind=prec):: C(0:18),H,ALFA,B0,B1,B2,LI2_OLD
   real (kind=prec):: Li2
   integer :: i

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/
   DATA PI3 /3.289868133696453_prec/, PI6 /1.644934066848226_prec/

   DATA C( 0) / 0.4299669356081370_prec/
   DATA C( 1) / 0.4097598753307711_prec/
   DATA C( 2) /-0.0185884366501460_prec/
   DATA C( 3) / 0.0014575108406227_prec/
   DATA C( 4) /-0.0001430418444234_prec/
   DATA C( 5) / 0.0000158841554188_prec/
   DATA C( 6) /-0.0000019078495939_prec/
   DATA C( 7) / 0.0000002419518085_prec/
   DATA C( 8) /-0.0000000319334127_prec/
   DATA C( 9) / 0.0000000043454506_prec/
   DATA C(10) /-0.0000000006057848_prec/
   DATA C(11) / 0.0000000000861210_prec/
   DATA C(12) /-0.0000000000124433_prec/
   DATA C(13) / 0.0000000000018226_prec/
   DATA C(14) /-0.0000000000002701_prec/
   DATA C(15) / 0.0000000000000404_prec/
   DATA C(16) /-0.0000000000000061_prec/
   DATA C(17) / 0.0000000000000009_prec/
   DATA C(18) /-0.0000000000000001_prec/

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
    LI2_OLD=PI6
    Li2 = Real(LI2_OLD,prec)
    RETURN
   ELSE IF(X .EQ. MONE) THEN
    LI2_OLD=MALF*PI6
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
    A=-PI3+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
    A=-PI6+A*(A+LOG(ONE+ONE/T))
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
    A=-PI6+A*(MALF*A+LOG(ONE+T))
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
    A=PI6+HALF*LOG(T)**2
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
   DO  I = 18,0,-1
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
111

112
  RECURSIVE FUNCTION dilog(x) result(res)
113 114 115
    ! evaluates dilog for any argument
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
116

117
    if(abs(x) <= 1.0) then
118 119 120 121 122
      if(abs(aimag(x)) < zero ) then
        res = Li2(real(x))
      else
        res = naive_polylog(2,x)
      endif
123
    else
124
     res = -dilog(1/x) - pi**2/6 - log(add_ieps(-x))**2 / 2
125 126 127
   end if
  END FUNCTION dilog

Luca's avatar
Luca committed
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
    real (kind=prec):: CA(0:18),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:18),HB,ALFAB,BB0,BB1,BB2, YB
    DATA CA(0) / 0.4617293928601208/
    DATA CA(1) / 0.4501739958855029/
    DATA CA(2) / -0.010912841952292843/
    DATA CA(3) / 0.0005932454712725702/
    DATA CA(4) / -0.00004479593219266303/
    DATA CA(5) / 4.051545785869334e-6/
    DATA CA(6) / -4.1095398602619446e-7/
    DATA CA(7) / 4.513178777974119e-8/
    DATA CA(8) / -5.254661564861129e-9/
    DATA CA(9) / 6.398255691618666e-10/
    DATA CA(10) / -8.071938105510391e-11/
    DATA CA(11) / 1.0480864927082917e-11/
    DATA CA(12) / -1.3936328400075057e-12/
    DATA CA(13) / 1.8919788723690422e-13/
    DATA CA(14) / -2.6097139622039465e-14/
    DATA CA(15) / 3.774985548158685e-15/
    DATA CA(16) / -5.671361978114946e-16/
    DATA CA(17) / 1.1023848202712794e-16/
    DATA CA(18) / -5.0940525990875006e-17/
    DATA CB(0) / -0.016016180449195803/
    DATA CB(1) / -0.5036424400753012/
    DATA CB(2) / -0.016150992430500253/
    DATA CB(3) / -0.0012440242104245127/
    DATA CB(4) / -0.00013757218124463538/
    DATA CB(5) / -0.000018563818526041144/
    DATA CB(6) / -2.841735345177361e-6/
    DATA CB(7) / -4.7459967908588557e-7/
    DATA CB(8) / -8.448038544563037e-8/
    DATA CB(9) / -1.5787671270014e-8/
    DATA CB(10) / -3.0657620579122164e-9/
    DATA CB(11) / -6.140791949281482e-10/
    DATA CB(12) / -1.2618831590198e-10/
    DATA CB(13) / -2.64931268635803e-11/
    DATA CB(14) / -5.664711482422879e-12/
    DATA CB(15) / -1.2303909436235178e-12/
    DATA CB(16) / -2.7089360852246495e-13/
    DATA CB(17) / -6.024075373994343e-14/
    DATA CB(18) / -1.2894320641440237e-14/
    real (kind=prec):: Li3
    real (kind=prec), parameter :: zeta2 = 1.6449340668482264365
    real (kind=prec), parameter :: zeta3 = 1.2020569031595942854
    integer :: i


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
      LI3=zeta3
    RETURN
    ELSE IF(X .EQ. -1._prec) THEN
      LI3=-0.75_prec*zeta3
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
      A=-LOG(-X)*(zeta2+LOG(-x)**2/6._prec)
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
      A=2*zeta2*Log(x)-Log(x)**3/6._prec
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
    DO  I = 18,0,-1
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
231 232 233 234 235 236

  FUNCTION trilog(x) result(res)
    ! evaluates trilog for any argument
    complex(kind=prec) :: res
    complex(kind=prec) :: x
    if(abs(x) <= 1.0) then
237 238 239 240 241
      if(abs(aimag(x)) < zero ) then
        res = Li3(real(x))
      else
        res = naive_polylog(3,x)
      endif
Luca's avatar
Luca committed
242 243 244 245 246
    else
     res = naive_polylog(3,sub_ieps(x)**(-1)) - (log(-sub_ieps(x)))**3/6 - pi**2/6 * log(-sub_ieps(x))
   end if
  END FUNCTION trilog

247
  FUNCTION polylog(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
248 249
    ! computes the polylog
    
250 251
    integer :: m
    complex(kind=prec) :: x,res
252
    
Luca's avatar
Luca committed
253
    if(verb >= 70) print*, 'called polylog(',m,',',x,')'
254 255
    if(m == 2) then
      res = dilog(x)
Luca's avatar
Luca committed
256 257 258
    else if(m == 3) then
      res = trilog(x)
    else
259 260 261
      res = naive_polylog(m,x)
    end if
  END FUNCTION polylog
Luca's avatar
Luca committed
262

263 264
END MODULE maths_functions

Luca's avatar
Luca committed
265 266 267 268 269 270 271
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
272