maths_functions.f90 10.4 KB
Newer Older
1 2 3 4 5

MODULE maths_functions
  use globals
  use utils
  implicit none
ulrich_y's avatar
ulrich_y committed
6 7 8
  interface polylog
    module procedure polylog1, polylog2
  end interface polylog
9

ulrich_y's avatar
ulrich_y committed
10
  real(kind=prec), parameter :: zeta(2:10) = (/1.6449340668482262, 1.2020569031595942, 1.0823232337111381, &
ulrich_y's avatar
ulrich_y committed
11 12 13
               1.03692775514337, 1.0173430619844488, 1.008349277381923, &
               1.0040773561979441, 1.0020083928260821, 1.000994575127818/)

ulrich_y's avatar
ulrich_y committed
14 15 16 17 18 19 20
  type el
    type(inum) :: c
    complex(kind=prec) ans
  end type el

  type(el) :: cache(PolyLogCacheSize(1),PolyLogCacheSize(2))
  integer :: plcachesize(PolyLogCacheSize(1)) = 0
ulrich_y's avatar
ulrich_y committed
21
CONTAINS
22

ulrich_y's avatar
ulrich_y committed
23
  FUNCTION naive_polylog(m,x) result(res)
24 25 26
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
    complex(kind=prec) :: x, res
27
    integer :: i
28
    res=0.
29
    do i=1,PolylogInfinity
30 31 32 33
      if(i**m.lt.0) return ! roll over
      if(abs(x**i).lt.1.e-250) return
      res = res+x**i/i**m
    enddo
34
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

   real (kind=prec):: X,Y,T,S,A,PI3,PI6,ZERO,ONE,HALF,MALF,MONE,MTWO
   real (kind=prec):: C(0:18),H,ALFA,B0,B1,B2,LI2_OLD
   real (kind=prec):: Li2
   integer :: i

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/
   DATA PI3 /3.289868133696453_prec/, PI6 /1.644934066848226_prec/

   DATA C( 0) / 0.4299669356081370_prec/
   DATA C( 1) / 0.4097598753307711_prec/
   DATA C( 2) /-0.0185884366501460_prec/
   DATA C( 3) / 0.0014575108406227_prec/
   DATA C( 4) /-0.0001430418444234_prec/
   DATA C( 5) / 0.0000158841554188_prec/
   DATA C( 6) /-0.0000019078495939_prec/
   DATA C( 7) / 0.0000002419518085_prec/
   DATA C( 8) /-0.0000000319334127_prec/
   DATA C( 9) / 0.0000000043454506_prec/
   DATA C(10) /-0.0000000006057848_prec/
   DATA C(11) / 0.0000000000861210_prec/
   DATA C(12) /-0.0000000000124433_prec/
   DATA C(13) / 0.0000000000018226_prec/
   DATA C(14) /-0.0000000000002701_prec/
   DATA C(15) / 0.0000000000000404_prec/
   DATA C(16) /-0.0000000000000061_prec/
   DATA C(17) / 0.0000000000000009_prec/
   DATA C(18) /-0.0000000000000001_prec/

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
    LI2_OLD=PI6
    Li2 = Real(LI2_OLD,prec)
    RETURN
80
   ELSE IF(abs(x-MONE) < zero) THEN
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    LI2_OLD=MALF*PI6
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
    A=-PI3+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
    A=-PI6+A*(A+LOG(ONE+ONE/T))
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
    A=-PI6+A*(MALF*A+LOG(ONE+T))
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
    A=PI6+HALF*LOG(T)**2
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
   DO  I = 18,0,-1
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
126

127
  RECURSIVE FUNCTION dilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
128
    ! evaluates dilog for any argument |x|<1
129 130
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
131

ulrich_y's avatar
ulrich_y committed
132 133
    if(abs(aimag(x)) < zero ) then
      res = Li2(real(x))
134
    else
ulrich_y's avatar
ulrich_y committed
135 136
      res = naive_polylog(2,x)
    endif
137 138
  END FUNCTION dilog

Luca's avatar
Luca committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
    real (kind=prec):: CA(0:18),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:18),HB,ALFAB,BB0,BB1,BB2, YB
    DATA CA(0) / 0.4617293928601208/
    DATA CA(1) / 0.4501739958855029/
    DATA CA(2) / -0.010912841952292843/
    DATA CA(3) / 0.0005932454712725702/
    DATA CA(4) / -0.00004479593219266303/
    DATA CA(5) / 4.051545785869334e-6/
    DATA CA(6) / -4.1095398602619446e-7/
    DATA CA(7) / 4.513178777974119e-8/
    DATA CA(8) / -5.254661564861129e-9/
    DATA CA(9) / 6.398255691618666e-10/
    DATA CA(10) / -8.071938105510391e-11/
    DATA CA(11) / 1.0480864927082917e-11/
    DATA CA(12) / -1.3936328400075057e-12/
    DATA CA(13) / 1.8919788723690422e-13/
    DATA CA(14) / -2.6097139622039465e-14/
    DATA CA(15) / 3.774985548158685e-15/
    DATA CA(16) / -5.671361978114946e-16/
    DATA CA(17) / 1.1023848202712794e-16/
    DATA CA(18) / -5.0940525990875006e-17/
    DATA CB(0) / -0.016016180449195803/
    DATA CB(1) / -0.5036424400753012/
    DATA CB(2) / -0.016150992430500253/
    DATA CB(3) / -0.0012440242104245127/
    DATA CB(4) / -0.00013757218124463538/
    DATA CB(5) / -0.000018563818526041144/
    DATA CB(6) / -2.841735345177361e-6/
    DATA CB(7) / -4.7459967908588557e-7/
    DATA CB(8) / -8.448038544563037e-8/
    DATA CB(9) / -1.5787671270014e-8/
    DATA CB(10) / -3.0657620579122164e-9/
    DATA CB(11) / -6.140791949281482e-10/
    DATA CB(12) / -1.2618831590198e-10/
    DATA CB(13) / -2.64931268635803e-11/
    DATA CB(14) / -5.664711482422879e-12/
    DATA CB(15) / -1.2303909436235178e-12/
    DATA CB(16) / -2.7089360852246495e-13/
    DATA CB(17) / -6.024075373994343e-14/
    DATA CB(18) / -1.2894320641440237e-14/
    real (kind=prec):: Li3
    real (kind=prec), parameter :: zeta2 = 1.6449340668482264365
    real (kind=prec), parameter :: zeta3 = 1.2020569031595942854
    integer :: i


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
      LI3=zeta3
    RETURN
200
    ELSE IF( abs(x+1) < zero) THEN
Luca's avatar
Luca committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
      LI3=-0.75_prec*zeta3
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
      A=-LOG(-X)*(zeta2+LOG(-x)**2/6._prec)
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
      A=zeta3 + zeta2*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
      A=2*zeta2*Log(x)-Log(x)**3/6._prec
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
    DO  I = 18,0,-1
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
242 243

  FUNCTION trilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
244
    ! evaluates trilog for any argument |x|<1
Luca's avatar
Luca committed
245 246
    complex(kind=prec) :: res
    complex(kind=prec) :: x
ulrich_y's avatar
ulrich_y committed
247 248
    if(abs(aimag(x)) < zero ) then
      res = Li3(real(x))
Luca's avatar
Luca committed
249
    else
ulrich_y's avatar
ulrich_y committed
250 251
      res = naive_polylog(3,x)
    endif
Luca's avatar
Luca committed
252 253
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
    integer n
    complex(kind=prec) :: x, res
    select case(n)
      case(1)
        res = -1/2. + x
      case(2)
        res = 1/6. - x + x**2
      case(3)
        res = x/2. - 3*x**2/2. + x**3
      case(4)
        res = -1/30. + x**2 - 2*x**3 + x**4
      case(5)
        res = -x/6. + 5*x**3/3 - 5*x**4/2 + x**5
      case(6)
        res = 1/42. - x**2/2 + 5*x**4/2 - 3*x**5 + x**6
      case(7)
        res = x/6. - 7*x**3/6 + 7*x**5/2 - 7*x**6/2 + x**7
      case(8)
        res = -1/30. + 2*x**2/3 - 7*x**4/3 + 14*x**6/3 - 4*x**7 + x**8
      case(9)
        res = -3*x/10 + 2*x**3 - 21*x**5/5 + 6*x**7 - 9*x**8/2 + x**9
      case(10)
        res = 5/66. - 3*x**2/2 + 5*x**4 - 7*x**6 + 15*x**8/2 - 5*x**9 + x**10
      case(11)
        res = 5*x/6 - 11*x**3/2 + 11*x**5 - 11*x**7 + 55*x**9/6 - 11*x**10/2 + x**11
      case(12)
        res = -691/2730. + 5*x**2 - 33*x**4/2 + 22*x**6 - 33*x**8/2 + 11*x**10 - 6*x**11 + x**12
      case(13)
        res = -691*x/210 + 65*x**3/3 - 429*x**5/10 + 286*x**7/7 - 143*x**9/6 + 13*x**11 - 13*x**12/2 + x**13
      case(14)
        res = 7/6. - 691*x**2/30 + 455*x**4/6 - 1001*x**6/10 + 143*x**8/2 - 1001*x**10/30 + 91*x**12/6 - 7*x**13 + x**14
      case(15)
        res = 35*x/2 - 691*x**3/6 + 455*x**5/2 - 429*x**7/2 + 715*x**9/6 - 91*x**11/2 + 35*x**13/2 - 15*x**14/2 + x**15
      case default
        print*,"Bernoulli beyond 15 is not implemented"
        stop
    end select


  END FUNCTION

ulrich_y's avatar
ulrich_y committed
296
  RECURSIVE FUNCTION polylog1(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
297 298
    ! computes the polylog
    
299
    integer :: m
ulrich_y's avatar
ulrich_y committed
300
    type(inum) :: x, inv
301
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
302 303
    integer i

304
    
ulrich_y's avatar
ulrich_y committed
305
#ifdef DEBUG
306
    if(verb >= 70) print*, 'called polylog(',m,',',x%c,x%i0,')'
ulrich_y's avatar
ulrich_y committed
307 308 309 310 311 312 313 314 315 316
#endif
#ifndef NOCACHE
    if (m.le.5) then
      do i=1,plcachesize(m)
        if( abs(cache(m,i)%c%c-x%c).lt.zero ) then
          res = cache(m,i)%ans
          return
        endif
      enddo
    endif
ulrich_y's avatar
ulrich_y committed
317
#endif
318
    if ((m.le.9).and.(abs(x%c-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
319
      res = zeta(m)
320
    else if ((m.le.9).and.(abs(x%c+1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
321
      res = -(1. - 2.**(1-m))*zeta(m)
322
    else if (abs(x) .gt. 1) then
ulrich_y's avatar
ulrich_y committed
323 324 325
      inv = inum(1./x%c, x%i0)
      res = (-1)**(m-1)*polylog(m,inv) &
          - cmplx(0,2*pi)**m * bernoulli_polynomial(m, 0.5-cmplx(0.,1.)*conjg(log(-x%c))/2/pi) / factorial(m)
ulrich_y's avatar
ulrich_y committed
326
    else if(m == 2) then
327
      res = dilog(x%c)
Luca's avatar
Luca committed
328
    else if(m == 3) then
329
      res = trilog(x%c)
Luca's avatar
Luca committed
330
    else
331
      res = naive_polylog(m,x%c)
332
    end if
ulrich_y's avatar
ulrich_y committed
333 334 335 336 337 338 339 340 341

#ifndef NOCACHE
    if (m.le.PolyLogCacheSize(1)) then
      if (plcachesize(m).lt.PolyLogCacheSize(2)) then
        plcachesize(m) = plcachesize(m) + 1
        cache(m,plcachesize(m)) = el(x,res)
      endif
    endif
#endif
ulrich_y's avatar
ulrich_y committed
342 343 344 345 346 347 348 349 350
  END FUNCTION polylog1




  RECURSIVE FUNCTION polylog2(m,x,y) result(res)
    type(inum) :: x, y
    integer m
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
351
    !TODO!!
ulrich_y's avatar
ulrich_y committed
352 353 354 355 356 357 358 359 360
    res=polylog1(m,inum(x%c/y%c,di0))
  END FUNCTION POLYLOG2


  FUNCTION PLOG1(a,b)
  ! calculates log(1-a/b)
  implicit none
  type(inum) :: a,b
  complex(kind=prec) plog1
ulrich_y's avatar
ulrich_y committed
361
  !TODO!!
ulrich_y's avatar
ulrich_y committed
362 363
  plog1 = log(1.-a%c/b%c)
  END FUNCTION
Luca's avatar
Luca committed
364

ulrich_y's avatar
ulrich_y committed
365 366 367 368 369 370
#ifndef NOCACHE
  SUBROUTINE CLEARCACHE
  plcachesize=0
  END SUBROUTINE
#endif

371 372
END MODULE maths_functions

Luca's avatar
Luca committed
373 374 375 376 377 378 379
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
380