maths_functions.f90 25.1 KB
Newer Older
1 2 3

MODULE maths_functions
  use globals
ulrich_y's avatar
ulrich_y committed
4
  use ieps
5
  use utils, only: factorial, binom
6
  implicit none
ulrich_y's avatar
ulrich_y committed
7 8 9
  interface polylog
    module procedure polylog1, polylog2
  end interface polylog
10

ulrich_y's avatar
ulrich_y committed
11 12 13 14 15
  real(kind=prec), parameter :: zeta(2:10) = (/ 1.6449340668482264364724151666460251892189499012068_prec,  &
      1.2020569031595942853997381615114499907649862923405_prec, 1.0823232337111381915160036965411679027747509519187_prec,  &
      1.0369277551433699263313654864570341680570809195019_prec, 1.0173430619844491397145179297909205279018174900329_prec,  &
      1.0083492773819228268397975498497967595998635605652_prec, 1.0040773561979443393786852385086524652589607906499_prec,  &
      1.0020083928260822144178527692324120604856058513949_prec, 1.0009945751278180853371459589003190170060195315645_prec /)
16 17 18 19 20 21

  real(kind=prec), parameter :: DirichletBeta(2:10) = (/ 0.91596559417721901505460351493238411077414937428167_prec, &
    0.96894614625936938048363484584691860006954026768391_prec, 0.98894455174110533610842263322837782131586088706273_prec, &
    0.99615782807708806400631936863097528151139552938826_prec, 0.99868522221843813544160078786020654967836454612651_prec, &
    0.99955450789053990949634654989905898300218848194998_prec, 0.99984999024682965633806705924046378147600743300743_prec, &
    0.99994968418722008982135887329384752737274799691796_prec, 0.99998316402619687740554072995833414145685781649717_prec /)
ulrich_y's avatar
ulrich_y committed
22
  type el
23
    complex(kind=prec) :: c
ulrich_y's avatar
ulrich_y committed
24 25 26 27 28
    complex(kind=prec) ans
  end type el

  type(el) :: cache(PolyLogCacheSize(1),PolyLogCacheSize(2))
  integer :: plcachesize(PolyLogCacheSize(1)) = 0
ulrich_y's avatar
ulrich_y committed
29
CONTAINS
30

ulrich_y's avatar
ulrich_y committed
31
  FUNCTION naive_polylog(m,x) result(res)
32 33
    ! Computes the classical polylogarithm Li_m(x) using series representation up to order n
    integer :: m
34
    complex(kind=prec) :: x, res, del
35
    integer(kind=ikin) :: i
ulrich_y's avatar
ulrich_y committed
36
    res=0._prec
37 38 39 40

    i = 1
    del = 1._prec
    do while (abs(del) > zero)
41
      if(i**m.lt.0) return ! roll over
ulrich_y's avatar
ulrich_y committed
42
      if(abs(x**i).lt.1.e-250_prec) return
43 44 45 46
      del = x**i/i**m
      res = res+del
      i = i+1
    end do
47
  END FUNCTION naive_polylog
Luca's avatar
Luca committed
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
  FUNCTION bernoullinumber(n)
    ! This returns the n-th Bernoulli number by computing all Bernoulli numbers
    ! up to the n-th recursively using the relation
    !   Sum[ Binomial[m+1, k] BernoulliB[k], {k,0,m} ] = 0
    ! for m > 0 (https://mathworld.wolfram.com/BernoulliNumber.html).
    ! Solving this for BernoulliB[m] results in
    !   BernoulliB[m] = - Sum[Binomial[m, k] BernoulliB[k] / (m-k+1), {k,0,m-1}]
    ! for m > 0 and BernoulliB[0] = 1.
    ! Care is taken to avoid multiple computation.
    integer, intent(in) :: n
    real(kind=prec) :: bernoullinumber
    integer, parameter :: nmax = 40
    ! keep track of the bernoulli numbers we have already calculated
    real(kind=prec), save :: bernoulli(0:nmax) = 0.
ulrich_y's avatar
ulrich_y committed
63 64
    integer, save :: m = 2
    integer k
65 66 67 68 69 70

    !TODO error handling or dynamic allocation for bernoulli(:)

    bernoulli(0) = 1.
    bernoulli(1) = -0.5

ulrich_y's avatar
ulrich_y committed
71
    do m=m,n,2
72 73 74 75 76 77 78 79 80
      bernoulli(m) = 0.
      do k=0,m-1
        bernoulli(m) = bernoulli(m) - binom(m, k) * bernoulli(k) / (m - k + 1)
      enddo
    enddo

    bernoullinumber = bernoulli(n)
  END FUNCTION bernoullinumber

81 82 83 84 85 86 87 88 89 90 91 92 93 94
  FUNCTION harmonicnumber(n)
    integer, intent(in) :: n
    real(kind=prec) :: harmonicnumber
    integer, parameter :: nmax = 40
    real(kind=prec), save :: Harmonic(0:nmax) = 0
    integer, save :: m = 0

    do m=m, n+1
      harmonic(m+1) = harmonic(m) + 1._prec / real(m+1)
    enddo
    harmonicnumber = harmonic(n)

  END FUNCTION

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  FUNCTION logz_polylog(n, z) result(res)
    ! Computes the classical polylogarithm Li_m(z) using series
    ! representation in log(z). valid for log z < 2pi.
    !
    ! The algorithm works by using (1.4) or [Crandall 2006]
    !
    !  PolyLog[n, z] = Ssum[Zeta[n-m] Log[z]^m / m!, {m,0,Infinity}]
    !                + Log[z]^(n-1) (HarmonicNumber[n-1] -  Log[-Log[z]]) / (n-1)!
    !
    ! where Ssum[..] excludes the singular Zeta[1] term at m = n-1. In
    ! Fortran, we split the Ssum in a sum from 0..n-2 with positive
    ! arguments in the Zeta function. The next term m=n we do manually
    ! to not have to implement Zeta[0] = -1/2 and then we use
    ! Zeta[n-m] = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
    ! for the remaining terms.
    !
    ! References
    ! R. E. Crandall, Note on fast polylogarithm computation,
    ! www.reed.edu/~crandall/papers/Polylog.pdf, January 2006.
    ! or http://functions.wolfram.com/10.08.06.0024.01
    integer, parameter :: nmax = 40
    real(kind=prec) :: fac, zetamn
    complex(kind=prec), intent(in) :: z
    complex(kind=prec) :: res, logz
    integer, intent(in) :: n
    integer m

    logz = log(z)

    ! The factorial will become a problem later. We do the first few
    ! terms and iterate later.
    fac = real(factorial(n-1),kind=prec)

    ! Non-sum term
    res = logz**(n-1) / fac * (harmonicnumber(n-1) - log(-logz))

    ! positive arguments in the Zeta function, 0..,n-2
    do m=0,n-2
      res = res + zeta(n-m) / factorial(m) * logz**m
    enddo

    ! Zeta[0], i.e. m=n case
    res = res - 0.5_prec * logz**n / fac / n

    ! All remaining terms
    do m=n+1,n+nmax-1,2
      zetamn = (-1)**(m-n) * bernoullinumber(1+m-n) / (1+m-n)
      fac = fac * m * (m-1)
      res = res + zetamn / fac * logz**m
    enddo
  END FUNCTION logz_polylog

147

148 149 150 151
  FUNCTION Li2(x)

   !! Dilogarithm for arguments x < = 1.0

ulrich_y's avatar
ulrich_y committed
152
   real (kind=prec):: X,Y,T,S,A,ZERO,ONE,HALF,MALF,MONE,MTWO
ulrich_y's avatar
ulrich_y committed
153
   real (kind=prec):: C(0:42),H,ALFA,B0,B1,B2,LI2_OLD
154
   real (kind=prec):: Li2
ulrich_y's avatar
ulrich_y committed
155
   integer :: i, maxi
156 157 158 159 160

   DATA ZERO /0.0_prec/, ONE /1.0_prec/
   DATA HALF /0.5_prec/, MALF /-0.5_prec/ 
   DATA MONE /-1.0_prec/, MTWO /-2.0_prec/

ulrich_y's avatar
ulrich_y committed
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
   DATA C( 0) / 0.42996693560813697203703367869938799_prec/
   DATA C( 1) / 0.40975987533077105846826371092525528_prec/
   DATA C( 2) /-0.01858843665014591964764164914021227_prec/
   DATA C( 3) / 0.00145751084062267855367392841645949_prec/
   DATA C( 4) /-0.00014304184442340048774883012009088_prec/
   DATA C( 5) / 0.00001588415541879553236190550471677_prec/
   DATA C( 6) /-0.00000190784959386582722719632114209_prec/
   DATA C( 7) / 0.00000024195180854164749499461464343_prec/
   DATA C( 8) /-0.00000003193341274251783460496014143_prec/
   DATA C( 9) / 0.00000000434545062676912298795717848_prec/
   DATA C(10) /-0.00000000060578480118407444429705331_prec/
   DATA C(11) / 0.00000000008612097799359498244283685_prec/
   DATA C(12) /-0.00000000001244331659938867989642421_prec/
   DATA C(13) / 0.00000000000182255696235736330065548_prec/
   DATA C(14) /-0.00000000000027006766049114651808572_prec/
   DATA C(15) / 0.00000000000004042209263152664648833_prec/
   DATA C(16) /-0.00000000000000610325145269187950378_prec/
   DATA C(17) / 0.00000000000000092862975330195758613_prec/
   DATA C(18) /-0.00000000000000014226020855112446840_prec/
   DATA C(19) / 0.00000000000000002192631718153957354_prec/
   DATA C(20) /-0.00000000000000000339797324215897863_prec/
   DATA C(21) / 0.00000000000000000052919542448331471_prec/
   DATA C(22) /-0.00000000000000000008278580814278998_prec/
   DATA C(23) / 0.00000000000000000001300371734545560_prec/
   DATA C(24) /-0.00000000000000000000205022224255282_prec/
   DATA C(25) / 0.00000000000000000000032435785491489_prec/
   DATA C(26) /-0.00000000000000000000005147799903343_prec/
   DATA C(27) / 0.00000000000000000000000819387747717_prec/
   DATA C(28) /-0.00000000000000000000000130778354057_prec/
   DATA C(29) / 0.00000000000000000000000020925629306_prec/
   DATA C(30) /-0.00000000000000000000000003356166151_prec/
   DATA C(31) / 0.00000000000000000000000000539465777_prec/
   DATA C(32) /-0.00000000000000000000000000086891932_prec/
   DATA C(33) / 0.00000000000000000000000000014022817_prec/
   DATA C(34) /-0.00000000000000000000000000002267156_prec/
   DATA C(35) / 0.00000000000000000000000000000367174_prec/
   DATA C(36) /-0.00000000000000000000000000000059562_prec/
   DATA C(37) / 0.00000000000000000000000000000009677_prec/
   DATA C(38) /-0.00000000000000000000000000000001574_prec/
   DATA C(39) / 0.00000000000000000000000000000000257_prec/
   DATA C(40) /-0.00000000000000000000000000000000042_prec/
   DATA C(41) / 0.00000000000000000000000000000000007_prec/
   DATA C(42) /-0.00000000000000000000000000000000001_prec/
204 205 206 207 208 209 210 211

   if(X > 1.00000000001_prec) then
     print*, 'crashes because Li called with bad arguments'
   elseif(X > 1.0_prec) then
     X = 1._prec
   endif    

   IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
212
    LI2_OLD=zeta(2)
213 214
    Li2 = Real(LI2_OLD,prec)
    RETURN
215
   ELSE IF(abs(x-MONE) < zero) THEN
ulrich_y's avatar
ulrich_y committed
216
    LI2_OLD=MALF*zeta(2)
217 218 219 220 221 222
    RETURN
   END IF
   T=-X
   IF(T .LE. MTWO) THEN
    Y=MONE/(ONE+T)
    S=ONE
ulrich_y's avatar
ulrich_y committed
223
    A=-2*zeta(2)+HALF*(LOG(-T)**2-LOG(ONE+ONE/T)**2)
224 225 226 227
   ELSE IF(T .LT. MONE) THEN
    Y=MONE-T
    S=MONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
228
    A=-zeta(2)+A*(A+LOG(ONE+ONE/T))
229 230 231 232
   ELSE IF(T .LE. MALF) THEN
    Y=(MONE-T)/T
    S=ONE
    A=LOG(-T)
ulrich_y's avatar
ulrich_y committed
233
    A=-zeta(2)+A*(MALF*A+LOG(ONE+T))
234 235 236 237 238 239 240 241 242 243 244
   ELSE IF(T .LT. ZERO) THEN
    Y=-T/(ONE+T)
    S=MONE
    A=HALF*LOG(ONE+T)**2
   ELSE IF(T .LE. ONE) THEN
    Y=T
    S=ONE
    A=ZERO
   ELSE
    Y=ONE/T
    S=MONE
ulrich_y's avatar
ulrich_y committed
245
    A=zeta(2)+HALF*LOG(T)**2
246 247 248 249 250 251
   END IF

   H=Y+Y-ONE
   ALFA=H+H
   B1=ZERO
   B2=ZERO
ulrich_y's avatar
ulrich_y committed
252 253 254 255 256 257
   if (precision(1._prec) < 20) then
     maxi = 18
   else
     maxi = 42
   endif
   DO  I = maxi,0,-1
258 259 260 261 262 263 264 265
     B0=C(I)+ALFA*B1-B2
     B2=B1
     B1=B0
   ENDDO
   LI2_OLD=-(S*(B0-H*B2)+A)
         ! Artificial conversion           
   Li2 = Real(LI2_OLD,prec)
  END FUNCTION Li2
Luca's avatar
Luca committed
266

267
  RECURSIVE FUNCTION dilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
268
    ! evaluates dilog for any argument |x|<1
269 270
    complex(kind=prec) :: res
    complex(kind=prec) :: x
Luca's avatar
Luca committed
271

ulrich_y's avatar
ulrich_y committed
272
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
273
      res = Li2(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
274 275
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(2,x)
276
    else
ulrich_y's avatar
ulrich_y committed
277 278
      res = naive_polylog(2,x)
    endif
279 280
  END FUNCTION dilog

Luca's avatar
Luca committed
281 282 283 284 285 286
  FUNCTION Li3(x)
    ! Trilogarithm for arguments x < = 1.0
    ! This was hacked from LI2 to also follow C332
    ! In theory this could also produce Re[Li [x]] for x>1

    real (kind=prec):: X,S,A
ulrich_y's avatar
ulrich_y committed
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    real (kind=prec):: CA(0:52),HA,ALFAA,BA0,BA1,BA2, YA
    real (kind=prec):: CB(0:52),HB,ALFAB,BB0,BB1,BB2, YB

    DATA CA( 0) / 0.46172939286012092817954516381760016_prec/
    DATA CA( 1) / 0.45017399588550288560580364647352070_prec/
    DATA CA( 2) /-0.01091284195229295374494914320402658_prec/
    DATA CA( 3) / 0.00059324547127243642952756961712713_prec/
    DATA CA( 4) /-0.00004479593219280756178998757870776_prec/
    DATA CA( 5) / 0.00000405154578580684540984293800468_prec/
    DATA CA( 6) /-0.00000041095398606214457668547736075_prec/
    DATA CA( 7) / 0.00000004513178770934181970313262557_prec/
    DATA CA( 8) /-0.00000000525466158515342604029419927_prec/
    DATA CA( 9) / 0.00000000063982547910449452549291936_prec/
    DATA CA(10) /-0.00000000008071938839872532971820424_prec/
    DATA CA(11) / 0.00000000001048073680087126094928657_prec/
    DATA CA(12) /-0.00000000000139365085138335067524094_prec/
    DATA CA(13) / 0.00000000000018907205037339730044704_prec/
    DATA CA(14) /-0.00000000000002609371657183250621931_prec/
    DATA CA(15) / 0.00000000000000365481859219879483309_prec/
    DATA CA(16) /-0.00000000000000051855842492271228151_prec/
    DATA CA(17) / 0.00000000000000007441491722173878908_prec/
    DATA CA(18) /-0.00000000000000001078686838424874221_prec/
    DATA CA(19) / 0.00000000000000000157774237809543778_prec/
    DATA CA(20) /-0.00000000000000000023264073800573828_prec/
    DATA CA(21) / 0.00000000000000000003455457587964154_prec/
    DATA CA(22) /-0.00000000000000000000516658458392580_prec/
    DATA CA(23) / 0.00000000000000000000077718849383139_prec/
    DATA CA(24) /-0.00000000000000000000011755815708807_prec/
    DATA CA(25) / 0.00000000000000000000001787262690583_prec/
    DATA CA(26) /-0.00000000000000000000000272999302683_prec/
    DATA CA(27) / 0.00000000000000000000000041881267359_prec/
    DATA CA(28) /-0.00000000000000000000000006451004176_prec/
    DATA CA(29) / 0.00000000000000000000000000997383916_prec/
    DATA CA(30) /-0.00000000000000000000000000154744603_prec/
    DATA CA(31) / 0.00000000000000000000000000024087296_prec/
    DATA CA(32) /-0.00000000000000000000000000003760889_prec/
    DATA CA(33) / 0.00000000000000000000000000000588900_prec/
    DATA CA(34) /-0.00000000000000000000000000000092463_prec/
    DATA CA(35) / 0.00000000000000000000000000000014555_prec/
    DATA CA(36) /-0.00000000000000000000000000000002297_prec/
    DATA CA(37) / 0.00000000000000000000000000000000363_prec/
    DATA CA(38) /-0.00000000000000000000000000000000058_prec/
    DATA CA(39) / 0.00000000000000000000000000000000009_prec/
    DATA CA(40) /-0.00000000000000000000000000000000001_prec/
    DATA CB( 0) /-0.01601618044919582873670691984756338_prec/
    DATA CB( 1) /-0.50364244007530129181209541016960792_prec/
    DATA CB( 2) /-0.01615099243050025888745446951929454_prec/
    DATA CB( 3) /-0.00124402421042449361265610524413112_prec/
    DATA CB( 4) /-0.00013757218124461673921971996409271_prec/
    DATA CB( 5) /-0.00001856381852603773316486795183129_prec/
    DATA CB( 6) /-0.00000284173534515440415934505790039_prec/
    DATA CB( 7) /-0.00000047459967905789937221638951390_prec/
    DATA CB( 8) /-0.00000008448038543781200676091819474_prec/
    DATA CB( 9) /-0.00000001578767124043400543246870475_prec/
    DATA CB(10) /-0.00000000306576207139903798128889004_prec/
    DATA CB(11) /-0.00000000061407921728125845808062189_prec/
    DATA CB(12) /-0.00000000012618830243156719690872484_prec/
    DATA CB(13) /-0.00000000002649314179819609957126783_prec/
    DATA CB(14) /-0.00000000000566470854636425926158812_prec/
    DATA CB(15) /-0.00000000000123041115779581117517467_prec/
    DATA CB(16) /-0.00000000000027093457836786768143960_prec/
    DATA CB(17) /-0.00000000000006038026463383701279197_prec/
    DATA CB(18) /-0.00000000000001360008993995749682352_prec/
    DATA CB(19) /-0.00000000000000309244740631856875855_prec/
    DATA CB(20) /-0.00000000000000070917249609207158220_prec/
    DATA CB(21) /-0.00000000000000016388083639226002471_prec/
    DATA CB(22) /-0.00000000000000003813464350168994613_prec/
    DATA CB(23) /-0.00000000000000000893010739611811656_prec/
    DATA CB(24) /-0.00000000000000000210331341599359416_prec/
    DATA CB(25) /-0.00000000000000000049802988416537866_prec/
    DATA CB(26) /-0.00000000000000000011850292695597351_prec/
    DATA CB(27) /-0.00000000000000000002832460494402074_prec/
    DATA CB(28) /-0.00000000000000000000679854955943073_prec/
    DATA CB(29) /-0.00000000000000000000163816629435900_prec/
    DATA CB(30) /-0.00000000000000000000039616291258646_prec/
    DATA CB(31) /-0.00000000000000000000009613022139972_prec/
    DATA CB(32) /-0.00000000000000000000002340035706102_prec/
    DATA CB(33) /-0.00000000000000000000000571315840877_prec/
    DATA CB(34) /-0.00000000000000000000000139876183805_prec/
    DATA CB(35) /-0.00000000000000000000000034336361321_prec/
    DATA CB(36) /-0.00000000000000000000000008449733573_prec/
    DATA CB(37) /-0.00000000000000000000000002084253881_prec/
    DATA CB(38) /-0.00000000000000000000000000515255292_prec/
    DATA CB(39) /-0.00000000000000000000000000127646290_prec/
    DATA CB(40) /-0.00000000000000000000000000031685555_prec/
    DATA CB(41) /-0.00000000000000000000000000007880228_prec/
    DATA CB(42) /-0.00000000000000000000000000001963363_prec/
    DATA CB(43) /-0.00000000000000000000000000000490016_prec/
    DATA CB(44) /-0.00000000000000000000000000000122499_prec/
    DATA CB(45) /-0.00000000000000000000000000000030671_prec/
    DATA CB(46) /-0.00000000000000000000000000000007691_prec/
    DATA CB(47) /-0.00000000000000000000000000000001931_prec/
    DATA CB(48) /-0.00000000000000000000000000000000486_prec/
    DATA CB(49) /-0.00000000000000000000000000000000122_prec/
    DATA CB(50) /-0.00000000000000000000000000000000031_prec/
    DATA CB(51) /-0.00000000000000000000000000000000008_prec/
    DATA CB(52) /-0.00000000000000000000000000000000002_prec/
Luca's avatar
Luca committed
384
    real (kind=prec):: Li3
ulrich_y's avatar
ulrich_y committed
385
    integer :: i, maxi
Luca's avatar
Luca committed
386 387 388 389 390 391 392 393 394


    if(x > 1.00000000001_prec) then
      print*, 'need to crash Li3, since not convergent'
    elseif(x > 1.0_prec) then
      x = 1._prec
    endif

    IF(X > 0.999999_prec) THEN
ulrich_y's avatar
ulrich_y committed
395
      LI3=zeta(3)
Luca's avatar
Luca committed
396
    RETURN
397
    ELSE IF( abs(x+1) < zero) THEN
ulrich_y's avatar
ulrich_y committed
398
      LI3=-0.75_prec*zeta(3)
Luca's avatar
Luca committed
399 400 401 402 403
    RETURN
    END IF
    IF(X .LE. -1._prec) THEN
      YA=1._prec/x ; YB=0._prec
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
404
      A=-LOG(-X)*(zeta(2)+LOG(-x)**2/6._prec)
Luca's avatar
Luca committed
405 406 407 408 409 410 411 412 413 414 415
    ELSE IF(X .LE. 0._prec) THEN
      YA=x ; YB=0._prec
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 0.5_prec) THEN
      YA=0._prec ; YB=x
      S=-1._prec
      A=0._prec
    ELSE IF(X .LE. 1._prec) THEN
      YA=(x-1._prec)/x ; YB=1._prec-x
      S=1._prec
ulrich_y's avatar
ulrich_y committed
416
      A=zeta(3) + zeta(2)*Log(x) - (Log(1._prec - X)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
417 418 419
    ELSE IF(X .LE. 2._prec) THEN
      YA=1._prec - X ; YB=(X-1._prec)/X
      S=1._prec
ulrich_y's avatar
ulrich_y committed
420
      A=zeta(3) + zeta(2)*Log(x) - (Log(X - 1._prec)*Log(X)**2)/2._prec + Log(X)**3/6._prec
Luca's avatar
Luca committed
421 422 423
    ELSE
      YA=0._prec ; YB=1._prec/X
      S=-1._prec
ulrich_y's avatar
ulrich_y committed
424
      A=2*zeta(2)*Log(x)-Log(x)**3/6._prec
Luca's avatar
Luca committed
425 426 427 428 429 430 431 432
    END IF


    HA=-2._prec*YA-1._prec ; HB= 2._prec*YB
    ALFAA=HA+HA ; ALFAB = HB+HB

    BA0 = 0. ; BA1=0. ; BA2=0.
    BB0 = 0. ; BB1=0. ; BB2=0.
ulrich_y's avatar
ulrich_y committed
433 434 435 436 437 438
    if (precision(1._prec) < 20) then
      maxi = 18
    else
      maxi = 42
    endif
    DO  I = maxi,0,-1
Luca's avatar
Luca committed
439 440 441 442 443
       BA0=CA(I)+ALFAA*BA1-BA2 ; BA2=BA1 ; BA1=BA0
       BB0=CB(I)+ALFAB*BB1-BB2 ; BB2=BB1 ; BB1=BB0
    ENDDO
    Li3 = A + S * (  (BA0 - HA*BA2) + (BB0 - HB*BB2) )
  END FUNCTION Li3
Luca's avatar
Luca committed
444 445

  FUNCTION trilog(x) result(res)
ulrich_y's avatar
ulrich_y committed
446
    ! evaluates trilog for any argument |x|<1
Luca's avatar
Luca committed
447 448
    complex(kind=prec) :: res
    complex(kind=prec) :: x
ulrich_y's avatar
ulrich_y committed
449
    if(abs(aimag(x)) < zero ) then
ulrich_y's avatar
ulrich_y committed
450
      res = Li3(real(x,kind=prec))
ulrich_y's avatar
ulrich_y committed
451 452
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(3,x)
Luca's avatar
Luca committed
453
    else
ulrich_y's avatar
ulrich_y committed
454 455
      res = naive_polylog(3,x)
    endif
Luca's avatar
Luca committed
456 457
  END FUNCTION trilog

ulrich_y's avatar
ulrich_y committed
458
  FUNCTION BERNOULLI_POLYNOMIAL(n, x) result(res)
ulrich_y's avatar
ulrich_y committed
459
    integer, parameter :: maxn = 15
ulrich_y's avatar
ulrich_y committed
460
    integer n
ulrich_y's avatar
ulrich_y committed
461 462
    complex(kind=prec) :: x, res
    complex(kind=prec) :: xpow(maxn+1)
ulrich_y's avatar
ulrich_y committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    integer, parameter :: coeffN(maxn+1, maxn) = reshape((/ &
        -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1, -   1, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   1, -   2, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, -   1,     0, +   5, -   5, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
        +   1,     0, -   1,     0, +   5, -   3, +   1,     0,     0,     0,     0,     0,     0,     0,     0,     0, &
            0, +   1,     0, -   7,     0, +   7, -   7, +   1,     0,     0,     0,     0,     0,     0,     0,     0, &
        -   1,     0, +   2,     0, -   7,     0, +  14, -   4, +   1,     0,     0,     0,     0,     0,     0,     0, &
            0, -   3,     0, +   2,     0, -  21,     0, +   6, -   9, +   1,     0,     0,     0,     0,     0,     0, &
        +   5,     0, -   3,     0, +   5,     0, -   7,     0, +  15, -   5, +   1,     0,     0,     0,     0,     0, &
            0, +   5,     0, -  11,     0, +  11,     0, -  11,     0, +  55, -  11, +   1,     0,     0,     0,     0, &
        - 691,     0, +   5,     0, -  33,     0, +  22,     0, -  33,     0, +  11, -   6, +   1,     0,     0,     0, &
            0, - 691,     0, +  65,     0, - 429,     0, + 286,     0, - 143,     0, +  13, -  13, +   1,     0,     0, &
        +   7,     0, - 691,     0, + 455,     0, -1001,     0, + 143,     0, -1001,     0, +  91, -   7, +   1,     0, &
            0, +  35,     0, - 691,     0, + 455,     0, - 429,     0, + 715,     0, -  91,     0, +  35, -  15, +   1 /), &
            (/maxn+1, maxn/))
    integer, parameter :: coeffD(maxn+1, maxn) = reshape((/ &
        +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   6, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   3, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  42, +   1, +   2, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   6, +   1, +   2, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  30, +   1, +   3, +   1, +   3, +   1, +   3, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +  10, +   1, +   1, +   1, +   5, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +  66, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, +   6, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   6, +   2, +   1, +   1, +   1, +   1, +   1, &
        +2730, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   2, +   1, +   1, +   1, +   1, +   1, +   1, +   1, &
        +   1, + 210, +   1, +   3, +   1, +  10, +   1, +   7, +   1, +   6, +   1, +   1, +   2, +   1, +   1, +   1, &
        +   6, +   1, +  30, +   1, +   6, +   1, +  10, +   1, +   2, +   1, +  30, +   1, +   6, +   1, +   1, +   1, &
        +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   1, +   6, +   1, +   2, +   1, +   2, +   2, +   1 /), &
            (/maxn+1, maxn/))

ulrich_y's avatar
ulrich_y committed
498
    real(kind=prec), parameter :: coeff(maxn+1,maxn) = coeffN/real(coeffD,kind=prec)
ulrich_y's avatar
ulrich_y committed
499 500 501 502 503 504
    integer i

    if (n>maxn) then
      print*,"Bernoulli beyond 15 is not implemented"
      stop
    endif
ulrich_y's avatar
ulrich_y committed
505

ulrich_y's avatar
ulrich_y committed
506 507
    xpow(1:n+1) = (/ ( x**i, i = 0, n ) /)
    res = sum( xpow(1:n+1) * coeff(1:n+1,n) )
ulrich_y's avatar
ulrich_y committed
508 509 510

  END FUNCTION

ulrich_y's avatar
ulrich_y committed
511 512 513 514 515 516 517 518 519 520 521 522 523
  FUNCTION MYLOG(x)
    complex(kind=prec) :: x, mylog
    if (abs(aimag(x)) < zero) then
      if (real(x) > 0) then
        mylog = cmplx(log(real(+x,kind=prec)),     kind=prec)
      else
        mylog = cmplx(log(real(-x,kind=prec)), pi, kind=prec)
      endif
    else
      mylog = log(x)
    endif
  END FUNCTION

ulrich_y's avatar
ulrich_y committed
524
  RECURSIVE FUNCTION polylog1(m,x) result(res)
Luca Naterop's avatar
Luca Naterop committed
525 526
    ! computes the polylog
    
527
    integer :: m
528
    complex(kind=prec) :: x, inv
529
    complex(kind=prec) :: res
ulrich_y's avatar
ulrich_y committed
530 531
    integer i

532
    
ulrich_y's avatar
ulrich_y committed
533
#ifdef DEBUG
534
    if(verb >= 70) print*, 'called polylog(',m,',',x,')'
ulrich_y's avatar
ulrich_y committed
535 536 537 538
#endif
#ifndef NOCACHE
    if (m.le.5) then
      do i=1,plcachesize(m)
539
        if( abs(cache(m,i)%c-x).lt.zero ) then
ulrich_y's avatar
ulrich_y committed
540 541 542 543 544
          res = cache(m,i)%ans
          return
        endif
      enddo
    endif
ulrich_y's avatar
ulrich_y committed
545
#endif
546
    if ((m.le.9).and.(abs(x-1.).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
547
      res = zeta(m)
548
    else if ((m.le.9).and.(abs(x+1._prec).lt.zero)) then
ulrich_y's avatar
ulrich_y committed
549
      res = -(1._prec - 2._prec**(1-m))*zeta(m)
550 551 552 553
    else if ((m.le.9).and.(abs(x-i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) + i_*dirichletbeta(m)
    else if ((m.le.9).and.(abs(x+i_).lt.zero)) then
      res = -(0.5_prec**m - 0.5_prec**(2*m-1)) * zeta(m) - i_*dirichletbeta(m)
554
    else if (abs(x) .gt. 1) then
555
      inv = 1._prec/x
ulrich_y's avatar
ulrich_y committed
556
      res = (-1)**(m-1)*polylog(m,inv) &
ulrich_y's avatar
ulrich_y committed
557
          - (2._prec*pi*i_)**m * bernoulli_polynomial(m, 0.5_prec-i_*mylog(-x)/2._prec/pi) / factorial(m)
ulrich_y's avatar
ulrich_y committed
558
    else if(m == 2) then
559
      res = dilog(x)
Luca's avatar
Luca committed
560
    else if(m == 3) then
561
      res = trilog(x)
ulrich_y's avatar
ulrich_y committed
562 563
    else if ( (0.5_prec .lt. abs(x)) .and. (abs(x) .lt. 2._prec) ) then
      res = logz_polylog(m,x)
Luca's avatar
Luca committed
564
    else
565
      res = naive_polylog(m,x)
566
    end if
ulrich_y's avatar
ulrich_y committed
567 568 569 570 571 572 573 574 575

#ifndef NOCACHE
    if (m.le.PolyLogCacheSize(1)) then
      if (plcachesize(m).lt.PolyLogCacheSize(2)) then
        plcachesize(m) = plcachesize(m) + 1
        cache(m,plcachesize(m)) = el(x,res)
      endif
    endif
#endif
ulrich_y's avatar
ulrich_y committed
576 577 578 579 580 581 582 583 584
  END FUNCTION polylog1




  RECURSIVE FUNCTION polylog2(m,x,y) result(res)
    type(inum) :: x, y
    integer m
    complex(kind=prec) :: res
585 586 587 588 589 590 591 592 593 594 595
    res=polylog1(m,x%c/y%c)
    if ( (abs(aimag(x)).lt.zero).and.(abs(aimag(y)).lt.zero) ) then
      ! Both arguments are real, only here does the ieps matter
      ! FIXME this is rather ugly..
      if (real(x).gt.real(y) .and. real(y).gt. 0) then
        ! Force the sign to be -b%i0
        res = cmplx(real(res), sign(aimag(res), -y%i0*1._prec), kind=prec)
      elseif(real(x).lt.real(y) .and. real(y).lt. 0) then
        res = cmplx(real(res), sign(aimag(res), +y%i0*1._prec), kind=prec)
      endif
    endif
ulrich_y's avatar
ulrich_y committed
596 597 598 599 600 601 602 603
  END FUNCTION POLYLOG2


  FUNCTION PLOG1(a,b)
  ! calculates log(1-a/b)
  implicit none
  type(inum) :: a,b
  complex(kind=prec) plog1
604 605 606 607 608 609 610 611 612 613 614

  if ( (abs(aimag(a)).lt.zero).and.(abs(aimag(b)).lt.zero) ) then
    ! Both arguments are real, only here does the ieps matter
    plog1 = log(abs(1.-a%c/b%c))
    ! this does not depend on the sign of a
    if (real(a).gt.real(b) .and. real(b).gt. 0) then
      plog1 = plog1 + b%i0*i_*pi
    elseif(real(a).lt.real(b) .and. real(b).lt. 0) then
      plog1 = plog1 - b%i0*i_*pi
    endif
  else
ulrich_y's avatar
ulrich_y committed
615
    plog1 = mylog(1.-a%c/b%c)
616
  endif
ulrich_y's avatar
ulrich_y committed
617
  END FUNCTION
Luca's avatar
Luca committed
618

ulrich_y's avatar
ulrich_y committed
619 620 621 622 623 624
#ifndef NOCACHE
  SUBROUTINE CLEARCACHE
  plcachesize=0
  END SUBROUTINE
#endif

625 626
END MODULE maths_functions

Luca's avatar
Luca committed
627 628 629 630 631 632 633
! PROGRAM test
!   use maths_functions
!   implicit none
!   complex(kind=prec) :: res
!   res = Li3(0.4d0)
!   print*, res
! END PROGRAM test
634