Commit b3dc000e by ulrich_y

### Moved zeta to maths

parent a82c1e91
 ... ... @@ -13,15 +13,6 @@ MODULE gpl_module CONTAINS FUNCTION zeta(n) real(kind=prec) :: values(9), zeta integer :: n values = (/1.6449340668482262, 1.2020569031595942, 1.0823232337111381, & 1.03692775514337, 1.0173430619844488, 1.008349277381923, & 1.0040773561979441, 1.0020083928260821, 1.000994575127818/) zeta = values(n-1) END FUNCTION zeta FUNCTION GPL_has_convergent_series(m,z,y) ! tests if GPL has a convergent series representation integer :: m(:) ... ...
 ... ... @@ -5,6 +5,15 @@ MODULE maths_functions implicit none CONTAINS FUNCTION zeta(n) real(kind=prec) :: values(9), zeta integer :: n values = (/1.6449340668482262, 1.2020569031595942, 1.0823232337111381, & 1.03692775514337, 1.0173430619844488, 1.008349277381923, & 1.0040773561979441, 1.0020083928260821, 1.000994575127818/) zeta = values(n-1) END FUNCTION zeta FUNCTION naive_polylog(m,x) result(res) ! Computes the classical polylogarithm Li_m(x) using series representation up to order n ... ... @@ -253,7 +262,11 @@ CONTAINS complex(kind=prec) :: x,res if(verb >= 70) print*, 'called polylog(',m,',',x,')' if(m == 2) then if ((m.le.9).and.(abs(x-1.).lt.zero)) then res = zeta(m) else if ((m.le.9).and.(abs(x+1.).lt.zero)) then res = -(1. - 2.**(1-m))*zeta(m) else if(m == 2) then res = dilog(x) else if(m == 3) then res = trilog(x) ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!