Commit cebe2dba by Luca

### minor

parent f3cf3006
 ... ... @@ -7,12 +7,6 @@ MODULE gpl_module CONTAINS RECURSIVE FUNCTION factorial(n) result(res) integer, intent(in) :: n integer :: res res = merge(1,n*factorial(n-1),n==0) END FUNCTION factorial FUNCTION zeta(n) real(kind=prec) :: values(9), zeta integer :: n ... ... @@ -58,7 +52,6 @@ CONTAINS if(abs(z(i)) < zero) cycle ! skip zero values if(abs(y) > abs(z(i))) is_convergent = .false. end do END FUNCTION is_convergent RECURSIVE FUNCTION G_flat(z_flat,y) result(res) ... ...
 ! This is currently a stand alone program which will merely be used as a ! guide for the implementation of the shuffle algebra for GPL functions ! An implementation of the shuffle algebra ! in accordance with 1904.07279v1, polylogs for the masses, p.7-8 ! This implementation defines words as strings of characters and shuffles them ! into sums of words. PROGRAM shuffle_algebra implicit none ... ...
 ... ... @@ -60,18 +60,18 @@ CONTAINS END MODULE shuffle PROGRAM test use utils use shuffle implicit none ! PROGRAM test ! use utils ! use shuffle ! implicit none complex(kind=prec) :: v1(3), v2(2) integer :: amount_shuffles ! complex(kind=prec) :: v1(3), v2(2) ! integer :: amount_shuffles v1 = cmplx((/1,2,3/)) v2 = cmplx((/4,5/)) ! v1 = cmplx((/1,2,3/)) ! v2 = cmplx((/4,5/)) call print_matrix(shuffle_product(v1,v2)) ! call print_matrix(shuffle_product(v1,v2)) END PROGRAM test ! END PROGRAM test
 ... ... @@ -102,8 +102,8 @@ CONTAINS end subroutine do_GPL_tests subroutine do_shuffle_tests() integer :: v(3) = (/1,2,3/) integer :: w(2) = (/-1,-2/) complex(kind=prec) :: v(3) = cmplx((/1,2/)) complex(kind=prec) :: w(2) = cmplx((/3,4/)) call print_matrix(shuffle_product(v,w)) end subroutine do_shuffle_tests ... ...
 ... ... @@ -87,7 +87,7 @@ CONTAINS complex(kind=prec) :: res(n) res = 0 END FUNCTION zero_array RECURSIVE FUNCTION factorial(n) result(res) integer, intent(in) :: n integer :: res ... ... @@ -137,6 +137,7 @@ END MODULE utils ! PROGRAM test ! use globals ! use utils ! implicit none ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!