pid.tex 1.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
%!TEX root=manual
\section{Particle identification in \mcmule{}}
\label{sec:pid}

The following table lists the {\tt which\_pieces} of \mcmule{} as well
as the corresponding PID. This information is obtained by compare the
entry for a {\tt which\_piece} in {\tt src/integrands.f95} with the
entry in {\tt src/mat\_el.f95}. For example for {\tt m2ennee0} we find
in {\tt integrands}
\begin{lstlisting}
    case('m2ennee0')
      call set_func(b'000000', pm2enneeav)
      ps => psd6_23_24_34_e56 ; fxn => sigma_0
      nparticle = 6 ; ndim = 11
      masses(1:6) = (/ Mm, Me, 0._prec, 0._prec, Me, Me /)
      convfac = 0.25/Mm
      polarised = .true.
\end{lstlisting}
This indicates that the process is available with polarised muons. The
masses give a first indication for PID. To narrow this down, we find
in {\tt mat\_el} for {\tt pm2enneeav}
\begin{lstlisting}
  use mudecrare, only: pm2enneeav!!(p1,n1,p2,qa,qb,p3,p4)
    !! mu+(p1) -> e+(p2) \nu_mu(qA) \bar{\nu}_\mu(qB) e+(p4) e-(p3)
    !! mu-(p1) -> e-(p2) \bar{mu}_e(qA)  \nu_\tau(qB) e-(p4) e+(p3)
\end{lstlisting}
This means that $p_1 = {\tt p1}$, $p_2 = {\tt p2}$, $p_3 = {\tt qa}$,
$p_4 = {\tt qb}$, $p_5 = {\tt p3}$, $p_6 = {\tt p4}$.


\input{figures/tab/tab:pid}