
Memorandum

Date: December 28, 2020

From: B.M. Wojek / Modified by A. Suter
E-Mail: andreas.suter@psi.ch

MUSRFIT plug-in for the calculation of the temperature dependence
of 1/λ2 for various gap symmetries

This memo is intended to give a short summary of the background on which the GapIntegrals plug-in for
musrfit [1] has been developed. The aim of this implementation is the efficient calculation of integrals of the
form

I(T) = 1 +
1

π

∫ 2π

0

∫ ∞
∆(ϕ,T)

(
∂f

∂E

)
E√

E2 −∆2(ϕ, T)
dEdϕ , (1)

where f = (1 + exp(E/kBT))−1, like they appear e.g. in the theoretical temperature dependence of 1/λ2 [4].
For gap symmetries which involve not only a E- and ϕ-dependence but also a θ-dependence, see the special
section towards the end of the memo. In order not to do too many unnecessary function calls during the final
numerical evaluation we simplify the integral (1) as far as possible analytically. The derivative of f is given by

∂f

∂E
= − 1

kBT

exp(E/kBT)

(1 + exp(E/kBT))
2 = − 1

4kBT

1

cosh2 (E/2kBT)
. (2)

Using (2) and doing the substitution E′2 = E2 −∆2(ϕ, T), equation (1) can be written as

I(T) = 1− 1

4πkBT

∫ 2π

0

∫ ∞
∆(ϕ,T)

1

cosh2 (E/2kBT)

E√
E2 −∆2(ϕ, T)

dEdϕ

= 1− 1

4πkBT

∫ 2π

0

∫ ∞
0

1

cosh2
(√

E′2 + ∆2(ϕ, T)/2kBT
)dE′dϕ .

(3)

Since a numerical integration should be performed and the function to be integrated is exponentially approaching
zero for E′ →∞ the infinite E′ integration limit can be replaced by a cutoff energy Ec which has to be chosen
big enough:

I(T) ' Ĩ(T) ≡ 1− 1

4πkBT

∫ 2π

0

∫ Ec

0

1

cosh2
(√

E′2 + ∆2(ϕ, T)/2kBT
)dE′dϕ . (4)

In the case that ∆2(ϕ, T) is periodic in ϕ with a period of π/2 (valid for all gap symmetries implemented at
the moment), it is enough to limit the ϕ-integration to one period and to multiply the result by 4:

Ĩ(T) = 1− 1

πkBT

∫ π/2

0

∫ Ec

0

1

cosh2
(√

E′2 + ∆2(ϕ, T)/2kBT
)dE′dϕ . (5)

For the numerical integration we use algorithms of the Cuba library [2] which require to have a Riemann
integral over the unit square. Therefore, we have to scale the integrand by the upper limits of the integrations.
Note that Ec and π/2 (or in general the upper limit of the ϕ integration) are now treated as dimensionless
scaling factors.

Ĩ(T) = 1− Ec

2kBT

∫ 1ϕ

0

∫ 1E

0

1

cosh2
(√

(EcE)2 + ∆2
(
π
2ϕ, T

)
/2kBT

)dEdϕ (6)

2 GapIntegrals

Implemented gap functions and function calls from MUSRFIT

Currently the calculation of Ĩ(T) is implemented for various gap functions. The temperature dependence of the
gap functions is either given by Eq.(7) [3], or by Eq.(8) [4].

A few words of warning: The temperature dependence of the gap function is typically derived from within
the BCS framework, and strongly links Tc and ∆0 (e.g. ∆0 = 1.76 kBTc for an s-wave superconductor). In a self-
consistent description this would mean that ∆0 of ∆(ϕ) is locked to Tc as well. In the implementation provided,
this limitation is lifted, and therefore the user should judge and question the result if the ratio ∆0/(kBTc) is
strongly deviating from BCS values!

∆(ϕ, T) ' ∆(ϕ) tanh

[
c0

√
aG

(
Tc

T
− 1

)]
(7)

with ∆(ϕ) as given below, and c0 and aG depends on the pairing state:

s-wave: aG = 1 with c0 = πkBTc
∆0

= π/1.76 = 1.785

d-wave: aG = 4/3 with c0 = πkBTc
∆0

= π/2.14 = 1.468

∆(ϕ, T) ' ∆(ϕ) tanh

[
1.82

(
1.018

(
Tc

T
− 1

))0.51
]
. (8)

The GapIntegrals plug-in calculates Ĩ(T) for the following ∆(ϕ):

s-wave gap:

∆(ϕ) = ∆0 (9)

musrfit theory line: userFcn libGapIntegrals TGapSWave 1 2 [3 4]

Parameters: Tc (K), ∆0 (meV), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature dependence
according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

d-wave gap [5]:

∆(ϕ) = ∆0 cos (2ϕ) (10)

musrfit theory line: userFcn libGapIntegrals TGapDWave 1 2 [3 4]

Parameters: Tc (K), ∆0 (meV), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature dependence
according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

non-monotonic d-wave gap [6]:

∆(ϕ) = ∆0 [a cos (2ϕ) + (1− a) cos (6ϕ)] (11)

musrfit theory line: userFcn libGapIntegrals TGapNonMonDWave1 1 2 3 [4 5]

Parameters: Tc (K), ∆0 (meV), a (1), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature
dependence according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

non-monotonic d-wave gap [7]:

∆(ϕ) = ∆0

[
2

3

√
a

3
cos (2ϕ) /

(
1 + a cos2 (2ϕ)

) 3
2

]
, a > 1/2 (12)

musrfit theory line: userFcn libGapIntegrals TGapNonMonDWave2 1 2 3 [4 5]

Parameters: Tc (K), ∆0 (meV), a (1), a (1), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature
dependence according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

— B.M. Wojek / A. Suter – December 28, 2020 —

GapIntegrals 3

anisotropic s-wave gap [8]:

∆(ϕ) = ∆0 [1 + a cos (4ϕ)] , 0 6 a 6 1 (13)

musrfit theory line: userFcn libGapIntegrals TGapAnSWave 1 2 3 [4 5]

Parameters: Tc (K), ∆0 (meV), a (1), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature
dependence according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

p-wave (point) [9]:

∆(θ, T) = ∆(T) sin(θ) = ∆(T) ·
√

1− z2 (14)

musrfit theory line: userFcn libGapIntegrals TGapPointPWave 1 2 [3 [4 5]]

Parameters: Tc (K), ∆0 (meV), [orientation_tag, [c0 (1), aG (1)]]. If c0 and aG are provided, the
temperature dependence according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.
orientation_tag: 0 = {aa, bb}, 1 = cc, and the default 2 = average (see Eq. (21))

p-wave (line) [10]:

∆(θ, T) = ∆(T) cos(θ) = ∆(T) · z (15)

musrfit theory line: userFcn libGapIntegrals TGapLinePWave 1 2 [3 [4 5]]

Parameters: Tc (K), ∆0 (meV), [orientation_tag, [c0 (1), aG (1)]]. If c0 and aG are provided, the
temperature dependence according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.
orientation_tag: 0 = {aa, bb}, 1 = cc, and the default 2 = average (see Eq. (21))

It is also possible to calculate a power law temperature dependence (in the two fluid approximation n = 4) and
the dirty s-wave expression. Obviously for this no integration is needed.

Power law return function:
λ(0)2

λ(T)2
= 1−

(
T

Tc

)n
(16)

musrfit theory line: userFcn libGapIntegrals TGapPowerLaw 1 2

Parameters: Tc (K), n (1)

dirty s-wave [11]:
λ(0)2

λ(T)2
=

∆(T)

∆0
tanh

[
∆(T)

2kBT

]
(17)

musrfit theory line: userFcn libGapIntegrals TGapDirtySWave 1 2 [3 4]

Parameters: Tc (K), ∆0 (meV), [c0 (1), aG (1)]. If c0 and aG are provided, the temperature dependence
according to Eq.(7) will be used, otherwise Eq.(8) will be utilized.

Currently there are two gap functions to be found in the code which are not documented here: TGapCosSqDWave
and TGapSinSqDWave. For details for these gap functions (superfluid density along the a/b-axis within the semi-
classical model assuming a cylindrical Fermi surface and a mixed dx2−y2 + s symmetry of the superconducting
order parameter (effectively: dx2−y2 with shifted nodes and a-b-anisotropy)) see the source code.

Gap Integrals for θ-, and (θ,ϕ)-dependent Gaps

First some general formulae as found in Ref. [3]. It assumes an anisotropic response which can be classified in
3 directions (a, b, and c).
For the case of a 2D Fermi surface (cylindrical symmetry):

n aa
bb

(T) = 1− 1

2πkBT

∫ 2π

0

dϕ
cos2(ϕ)

sin2(ϕ)

∫ ∞
0

dε

{
cosh

[√
ε2 + ∆2

2kBT

]}−2

︸ ︷︷ ︸
=G(∆(ϕ),T)

(18)

For the case of a 3D Fermi surface:

— B.M. Wojek / A. Suter – December 28, 2020 —

4 GapIntegrals

n aa
bb

(T) = 1− 3

4πkBT

∫ 1

0

dz (1− z2)

∫ 2π

0

dϕ
cos2(ϕ)

sin2(ϕ)
·G(∆(z, ϕ), T) (19)

ncc(T) = 1− 3

2πkBT

∫ 1

0

dz z2

∫ 2π

0

dϕ cos2(ϕ) ·G(∆(z, ϕ), T) (20)

The “powder averaged” superfluid density is then defined as

nS =
1

3
· [
√
naanbb +

√
naancc +

√
nbbncc] (21)

Isotropic s-Wave Gap

For the 2D/3D case this means that ∆ is just a constant.
For the 2D case it follows

n aa
bb

(T) = 1− 1

2kBT
·G(∆, T) = nS(T). (22)

This is the same as Eq.(3), assuming a ∆ 6= f(ϕ).

The 3D case for ∆ 6= f(θ, ϕ):
The variable transformation z = cos(θ) leads to dz = − sin(θ) dθ, z = 0→ θ = π/2, z = 1→ θ = 0, and hence
to

n aa
bb

(T) = 1− 3

4πkBT

∫ π/2

0

dθ sin3(θ)︸ ︷︷ ︸
=2/3

∫ 2π

0

dϕ
cos2(ϕ)

sin2(ϕ)︸ ︷︷ ︸
=π

·G(∆, T)

= 1− 1

2kBT
·G(∆, T).

ncc(T) = 1− 3

2πkBT

∫ π/2

0

dθ cos2(θ) sin(θ)︸ ︷︷ ︸
=1/3

∫ 2π

0

dϕ cos2(ϕ)︸ ︷︷ ︸
=π

·G(∆, T)

= 1− 1

2kBT
·G(∆, T).

And hence

nS(T) = 1− 1

2kBT
·G(∆, T).

3D Fermi Surface Gap ∆ 6= f(ϕ)

For this case the superfluid density integrals reduce to (z = cos(θ))

n aa
bb

(T) = 1− 3

4kBT

∫ 1

0

dz (1− z2) ·G(∆(z, T), T) (23)

ncc(T) = 1− 3

2kBT

∫ 1

0

dz z2 ·G(∆(z, T), T) (24)

License

The GapIntegrals library is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation [12]; either version 2 of the License,
or (at your option) any later version.

— B.M. Wojek / A. Suter – December 28, 2020 —

GapIntegrals 5

References

[1] A. Suter, and B.M. Wojek, Physics Procedia 30, 69 (2012). A. Suter, musrfit User Manual,
http://lmu.web.psi.ch/musrfit/user/MUSR/WebHome.html

[2] T. Hahn, Cuba – a library for multidimensional numerical integration, Comput. Phys. Com-
mun. 168 (2005) 78-95, http://www.feynarts.de/cuba/

[3] R. Prozorov and R.W. Giannetta, Magnetic penetration depth in unconventional superconductors, Super-
cond. Sci. Technol. 19 (2006) R41-R67, and Erratum in Supercond. Sci. Technol. 21 (2008) 082003.

[4] A. Carrington and F. Manzano, Physica C 385 (2003) 205

[5] G. Deutscher, Andreev-Saint-James reflections: A probe of cuprate superconductors,
Rev. Mod. Phys. 77 (2005) 109-135

[6] H. Matsui et al., Direct Observation of a Nonmonotonic dx2−y2-Wave Superconducting Gap in the Electron-
Doped High-Tc Superconductor Pr0.89LaCe0.11CuO4, Phys. Rev. Lett. 95 (2005) 017003

[7] I. Eremin, E. Tsoncheva, and A.V. Chubukov, Signature of the nonmonotonic d-wave gap in electron-doped
cuprates, Phys. Rev. B 77 (2008) 024508

[8] ??

[9] G.M. Pang, et al., Phys. Rev. B 91 (2015) 220502(R), and references in there.

[10] M. Ozaki, et al., Prog. Theor. Phys. 75 (1986) 442.

[11] M. Tinkham, Introduction to Superconductivity 2nd ed. (Dover Publications, New York, 2004).

[12] http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

— B.M. Wojek / A. Suter – December 28, 2020 —

