Commit 61d15d2b authored by Nick Sauerwein's avatar Nick Sauerwein
Browse files

finished experiments

parent 5ac81a1b
......@@ -85,7 +85,6 @@ def mpaL(pos):
#print ('desired position: ',pos)
assert (not(pos < -5.3507 or pos > 0.522162))
cmd("MPA1,"+str(int(pos*1e6))+",0")
# while cmd("GS1",output=True)[-2]!=str(3):
......
......@@ -32,9 +32,8 @@ default_config = {'channel':2,
class FaradayCup:
#mendatory functions
def __init__(self, config, DRS4):
def __init__(self, config):
self.drs = DRS4
self.config = config
self.plot_server = None
......@@ -63,8 +62,14 @@ class FaradayCup:
def measure(self):
import time as ttime
ttime.sleep(0.2)
sig_time, sig_uvolt = self.drs.readChannel(self.channel)
ttime.sleep(0.4)
from glob import glob
file_name = glob('/mnt/lwfa-oszi/Autosave/C'+str(self.channel)+'*')[-1]
sig = np.loadtxt(file_name, delimiter=',', skiprows=5)
sig_time = sig[:,0] * 1e9
sig_uvolt = sig[:,1] * 1e6
import datetime
time = datetime.datetime.now()
measurement = {}
......
......@@ -106,7 +106,7 @@ class SpectroMeter:
Q1field = Q1.field
config['Q1_gradient'] = np.abs(Q1field)
config['Q1_angle'] = np.angle(Q1field)
config['Q1_angle'] = np.angle(Q1field)*180/np.pi
else:
config['Q1_gradient'] = 0.
......@@ -117,7 +117,7 @@ class SpectroMeter:
Q2field = Q2.field
config['Q2_gradient'] = np.abs(Q2field)
config['Q2_angle'] = np.angle(Q2field)
config['Q2_angle'] = np.angle(Q2field)*180/np.pi
else:
config['Q2_gradient'] = 0.
......@@ -128,7 +128,7 @@ class SpectroMeter:
Q3field = Q3.field
config['Q3_gradient'] = np.abs(Q3field)
config['Q3_angle'] = np.angle(Q3field)
config['Q3_angle'] = np.angle(Q3field)*180/np.pi
else:
config['Q3_gradient'] = 0.
......@@ -139,7 +139,7 @@ class SpectroMeter:
D1field = D1.field
config['D1_field'] = np.abs(D1field)
config['D1_angle'] = np.angle(D1field)
config['D1_angle'] = np.angle(D1field)*180/np.pi
else:
config['D1_field'] = 0.
......@@ -351,13 +351,13 @@ class HalbachArray:
dphi = phio - phii
return self.coefs_dphi_f_per(dphi)[self.mag_type] * np.exp(1j * phii) * self.rotating_coil_calibration
return self.coefs_dphi_f_per(dphi)[self.mag_type] * np.exp(1j * phii / 180 * np.pi) * self.rotating_coil_calibration
@field.setter
def field(self, field):
coef_wanted = np.abs(field)/self.rotating_coil_calibration
angle_wanted = np.angle(field)
angle_wanted = np.angle(field) * 180/np.pi
from scipy.optimize import minimize_scalar
......
......@@ -50,16 +50,14 @@
"outputs": [],
"source": [
"device_pool = DevicePool()\n",
"io = IO('Data/EXP171107/')\n",
"io = IO('Data/EXP171112/blade_and_block_grounded/40bar/')\n",
"measurement_manager = MeasurementManager(device_pool, io)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"# this function reloads the last state of the device_pool. This includes all configurations and connections \n",
......@@ -68,15 +66,20 @@
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"scrolled": false
},
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Widget Javascript not detected. It may not be installed or enabled properly.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d32f832561144a0ca9a140c66d9c924c"
"model_id": "4c7390d0263c406cba97beb4340ac9a5"
}
},
"metadata": {},
......@@ -103,7 +106,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "00b751ce0c224cba95aeaf529e07968f"
"model_id": "0ddae74a66c54bce9cc8d8710423dd0d"
}
},
"metadata": {},
......@@ -117,7 +120,9 @@
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
......@@ -129,7 +134,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a3b8151fe5c043d8aa188f8896d189b1"
"model_id": "c5fdea9002df4fe090126775a64b37aa"
}
},
"metadata": {},
......@@ -138,7 +143,33 @@
{
"data": {
"text/html": [
"<script type='text/javascript'>window.open('http://localhost:5006/?bokeh-session-id=FocusCamera', '_blank','width=530, height=500');</script>"
"<script type='text/javascript'>window.open('http://localhost:5006/?bokeh-session-id=FaradayCup', '_blank','width=800, height=500');</script>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<script type='text/javascript'>window.open('http://localhost:5006/?bokeh-session-id=PlasmaCamHorizontal', '_blank','width=530, height=500');</script>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/data/anaconda3/lib/python3.5/site-packages/bokeh/models/sources.py:91: BokehUserWarning: ColumnDataSource's columns must be of the same length. Current lengths: ('x', 25002), ('y', 2)\n",
" \"Current lengths: %s\" % \", \".join(sorted(str((k, len(v))) for k, v in data.items())), BokehUserWarning))\n"
]
},
{
"data": {
"text/html": [
"<script type='text/javascript'>window.open('http://localhost:5006/?bokeh-session-id=ScreenCamera', '_blank','width=530, height=500');</script>"
]
},
"metadata": {},
......
......@@ -690,7 +690,7 @@ class ParameterChooser:
config = device.config
current_value = config[device.name][parameter]
current_value = config[parameter]
self.current_value.value = '<b> current value: '+str(current_value)+' </b>'
......
......@@ -179,8 +179,8 @@ class MeasurementManager:
for device, par_name, scan_value in zip(devices_to_change, parameters_to_change, parameter):
config_ini[device][par_name] = scan_value
self.device_pool.config = config_ini
self.device_pool[device].config = config_ini[device]
self.loop(n_loop, rate, comment = comment+', current values: '+str(parameter),
name = folder_name+'/'+str(parameters_to_change).replace("'","")+'='+str(parameter),
......
File mode changed from 100644 to 100755
......@@ -15,7 +15,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6138d23dfda64266bdf77dd488a690e7"
"model_id": "5a5c9223660448048dce6d56f4cff82f"
}
},
"metadata": {},
......
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from glob import glob"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"file_name = glob('/mnt/lwfa-oszi/C3*')[-1]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"sig = np.loadtxt(file_name, delimiter=',', skiprows=5)\n",
"time = sig[:,0]\n",
"signal = sig[:,1]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f25d1b542b0>]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEJCAYAAACdePCvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8m9Wd7/HPT7IdJ8HZncRZnI2wBQiLSVjahp0sFEoL\nHaCdrtNcWphy77Rzp1w6bSm9bW7pnen0BS2Tabl0YWn7akNpEwh7ww4JhJCQEEwSmn3f4ySW9Lt/\nSLJlR7ZlS3okW9/365VXpEfPcmTZ56tzzvOcx9wdEREpPaFCF0BERApDASAiUqIUACIiJUoBICJS\nohQAIiIlSgEgIlKiFAAiIiVKASAiUqIUACIiJaqs0AVoz5AhQ3zs2LGFLoaISLexZMmSHe5encm6\nRR0AY8eOZfHixYUuhohIt2FmH2S6rrqARERKlAJARKREKQBEREqUAkBEpETlJADM7D4z22Zmy9t4\n/UIz22tmSxP/vpWL44qISNfl6iyg+4G7gV+1s87z7n5ljo4nIiJZykkLwN0XAbtysS8REQlGkGMA\n55vZMjN7zMwmBXjcglq0ejvrdhwsdDFERI4R1IVgbwC17n7AzGYCjwAT061oZrOB2QC1tbUBFS9/\nPnPfawCsmzOrwCUREWkpkBaAu+9z9wOJxwuAcjMb0sa6c929zt3rqqszupq5aMViXugiiIi0KZAA\nMLPhZmaJx1MSx90ZxLEL6UgkVugiiIi0KSddQGb2EHAhMMTMNgDfBsoB3P1e4Frgy2YWARqA6929\nx389jvX8tygi3VhOAsDdb+jg9buJnyZaUqIKABEpYroSOI80BiAixUwBkEeq/0WkmCkA8iiqBBCR\nIqYAyCMNAotIMVMA5JECQESKmQIgj9QFJCLFTAGQJ+7OnX95p9DFEBFpkwIgTyIxZ+GKrYUuhohI\nmxQAeRKJqvtHRIqbAiBPGmOaB0hEipsCIE/UAhCRYqcAyJPGqFoAIlLcFAB5ogAQkWKnAMgTdQGJ\nSLFTAOSJWgAiUuwUAHnSqBaAiBQ5BUCeRHQaqIgUOQVAnrRuAZTAHTBFpJtRAORJ6zEAzQsnIsVG\nAZAnraeC1tTQIlJsFAB50noIQFNDi0ixyUkAmNl9ZrbNzJa38bqZ2U/MrN7MlpnZWbk4bjFr/Y1f\nDQARKTa5agHcD0xv5/UZwMTEv9nAz3J03KKlLiARKXY5CQB3XwTsameVq4FfedwrwAAzq8nFsYtV\n6/o+qgAQkSIT1BjASGB9yvMNiWXHMLPZZrbYzBZv3749kMLlwzFdQLosQESKTNENArv7XHevc/e6\n6urqQheny1oP+qoFICLFJqgA2AiMTnk+KrGsx2p90o/GAESk2AQVAI8Cn0mcDXQusNfdNwd07IJo\nfeWvAkBEik1ZLnZiZg8BFwJDzGwD8G2gHMDd7wUWADOBeuAQ8PlcHLeYHdMC0BiAiBSZnASAu9/Q\nwesO3JyLY3UXOg1URIpd0Q0C9xQKABEpdgqAPDkmANQFJCJFRgGQJ60rfLUARKTYKADyRF1AIlLs\nFAB50rq+VwCISLFRAORJ6yt/NRu0iBQbBUCeqAtIRIqdAiBPWn/j1w1hRKTYKADypPVUEGoAiEix\nUQDkSSymLiARKW4KgDyJqgtIRIqcAiBPkl1A99wYv/3xS+/vLGRxRESOoQDIk2SXTzhkANy18N1C\nFkdE5BgKgDxJ9viUJQJARKTYKADyJNkCKAsrAESkOCkA8iR5FlBZSD9iESlOqp3ypKkLKKUF0Pra\nABGRQlIA5EmyC6g8JQCORHRTABEpHgqAPEm2AMyaA6AxqgAQkeKhAMgTdydk0JjyrV/XgolIMclJ\nAJjZdDN718zqzewbaV6/0Mz2mtnSxL9v5eK4xSwac0JmNDRGm5ZpDEBEiklZtjswszBwD3AZsAF4\n3cwedfd3Wq36vLtfme3xuouYQyhkHDoabbFMRKRY5KIFMAWod/c17n4UeBi4Ogf77daSXUAXnzS0\naZkmhBORYpKLABgJrE95viGxrLXzzWyZmT1mZpNycNyiFvN4F1BleZjvfezUpmUiIsUi6y6gDL0B\n1Lr7ATObCTwCTEy3opnNBmYD1NbWBlS83Is5hBJnACX/V/0vIsUkFy2AjcDolOejEsuauPs+dz+Q\neLwAKDezIel25u5z3b3O3euqq6tzULzCiMac5BmgyemANCW0iBSTXATA68BEMxtnZhXA9cCjqSuY\n2XBLnBBvZlMSx+3R8yO7e9NMoKHE/+oCEpFiknUXkLtHzOwWYCEQBu5z9xVmdlPi9XuBa4Evm1kE\naACu9x5+TqS6gESk2OVkDCDRrbOg1bJ7Ux7fDdydi2N1F7HEWUDQ3AWkFoCIFBNdCZwnMW+eBiLZ\nAtAQgIgUEwVAnsRizS0AUwtARIqQAiBPYu6EW7cA1AQQkSKiAMgTdQGJSLFTAOSJu5O8GVg48b+6\ngESkmCgA8iQ5FQQ0twQUACJSTBQAeRLVdQAiUuQUAHmi6wBEpNgpAPLEU7qANAgsIsVIAZAnsRgp\nYwDxZZoMTkSKiQIgT2LePBtoclK4Hj79kYh0MwqAPIkF2AW0ftehpovMDh6J0BiNdbCFiIgCIG9i\n3vzNP59TQfzihbV8+IfPcstDbwAw6dsL+cL9r+f8OCLS8wR1R7CS0/IsoOyuA4jFnO0HjjCsXyUA\nB45E2NvQyFvr93DnX94BYMHbW3h8+RYAnn9vB/sON9KvshyAvQ2NlIWMvr30cYtIM7UA8iTdVBBd\nbQDc82w9U7//NBv3NABw1nef5II5z/CVB95osd5Nv1nS9Pj07zzR9HjyHU8w7a5nu3ZwEemx9JUw\nTzzNdQBdPQvo8RXxb/Y/eeo9Rg7szdEM+/j/34trqSiLZ/yOA0d54b0d8XK4M2lEP6oqy9i+/wij\nBvbpUrlEpHtTAORJNJa7qSBWbNoHwG8Xr+/Udnf8+Z0Wzz/9i1dbPP/YGSN4ZOkmVn9vRlNQiEjp\nUADkSSTqlIXjFX/zaaCd38/ehsa0y+///DlUVZaxbd8R+vYqo6ExSu2gPqzeup9bH16a0b4fWbop\nvq+X1rJo9Q5q+ldSVVnO1WeMYOzgvvTvEx9DeGfTPhxn0oj+nX8DIlK0FAB5cjQao6o8/uPNZiqI\nWT95Pu3yC08cmnb5yTX9Mg6ApO8vWNXi+X0vrqW6qhev334p7s7MRBne//7MpjATke5PAZAnkViM\n8sQ80NlcB7Bhd0OL5/O/+iGGVlVmtO3wfpVs2XeYb3/0FJZt2Mu8NzdmfNzt+49w2x+Xsf9wpGnZ\nJf/3Oa45cxTRWIyTa/ox47QaDjdGqd92gMHHVfDHNzZSWR7G3YnGnCsmDceBcUP68syqrdQO6sPx\nQ6t482+7aYw6U8YNOua47s6i93YQicaYNKI/w/tn9l4lvzbtacCBkQN6F7oogTgaibFy8z4mjx7Q\n5X18sPMgvSvCGf+9Hm6M8t7WA5w2KriWtgIgTyJRpyzH1wF87vyxGXXDXHLSUJ5etY3/Nm08d/z5\nHWacWsPk0QM6FQAAD73Wcsxh3c5D/PtTq5ueL/jqh7nnuXrmL9ucdvsfPBZvWTz4pal84f7FAKz8\n7nSu+elLALx828XU9G9Zocx/ezO3PPhm8zHnzOpUmSU/zp/zDFA6n8f3F6zk/pfW8fTXpjGh+rgu\n7WPaXc8Bmf/M/vWR5fx+yQZeue2SwL745CQAzGw68B9AGPi5u89p9bolXp8JHAI+5+5vHLOjHFm/\n6xCPLd/MvX9dw/evOZXVWw8w7YRqAFZt2UdVZTnrdx3iE2ePYsPuBuY8tpKbpk1gb0Mjp9T0Y96b\nG6kd1Ic3/rabT587hrU7DhIyY/v+I9T0r2TM4L40RmP8+a1NnDCsiqH9erFi0z5Wbt7Hp88dwzub\n9rFqy34mDI3/4jSfBtq5AKjfdqDp8YcnDuFbV56S0XZzP1NHYzRGr7IQf3fOaPpUlDG8fyXL77iC\nsBmRWIz9hyPxgeqQ8eSKLXyn1YBxJma20T3V2lcfaq7QJ9/RfHrqxT/6Kw2NUXqXhzGDoVW9WLfz\nUIttb/r1ErbtP0xZKMSlpwzllTW7WL11P4P6VrDnUCNjh/TljQ92M3ZIH86fMAQz2HXgKIOOq2DG\nqTXc9se36VdZxjljB3HOuEEsW78HgJfX7OS88YPZuv8wq7cc4JtXnsz+wxFqB/XhxfodfOzMkSxe\nt5uoO2fWDmDeGxtZsWkvV00eydTxg3ixfgd7Gxo5uaYfSz7YTWM0xuiBfTh9VH9Wbt7PBccP5uU1\nO3mxfgdXTR7JvsONnDN2EG8ljg+wbudBnnhnK6MG9mZYVSWb9jRw49Ra3t64l8mjBjA6UZaysLFp\nz2H+z+OrmHnqcMYO6cu0E6rZdzjCcb3K+Nrv3+LWS47n4pOGsWXvYbbuO8zuQ0epqizn7DEDWbvj\nIPPe3MhHT69haL9KfvzUaj5x1igOHY2yt6GRoVW96N+7nPlvb+aM0QO44Pgh/HX1dsJmVJaHWPzB\n7qYy//z5Nbz0/k7uuGoSjy3fzKiBfajfdoBlG/Zw4vAqhhzXi787ZzTLNuxl4+4G6rcfYF9DIzGH\nkQMqGT0ofsZZyIya/pXsbWikMeps3XeYC0+s5gcLVrFpbwM3TZvAEyu28PSqbUw7oZpBfSu45ORh\nbNnbwKtrd/H3547h+fd2cPBohIlDq5h+6nBWbNzL3oZG+lTEx8Tqtx1gYJ9yDjdGGdi3gq37DjN3\n0RpOGFbF9VNq2XngCI8v38Llk4bzibNG8traXTz/3g5+/coHTe/34df+xsC+FVx39mjmL9vE5NED\nuGvhu7y2dhc3TKll1MDerNl+kNrBfVi2YQ9rdxxkQO8KvnLRhKZ91H3vKUYMqKR+2wFum3ES/XqX\ns+dQI8s37uWaM0fym1c/4JN1o/n9kg0A3Prwm0w/dTifv2BcRn9f2bBs56cxszCwGrgM2AC8Dtzg\n7u+krDMT+EfiATAV+A93n9rRvuvq6nzx4sWdLtPYb8zv9Db5MO2Ean75hSm8u2U/V/x4EffceBaz\nTq/JePvU9/GlD4/j9lmZBUBnrd1xkIt+9BwQb61oyiL41NRaHnj1bwCcNz5emSeNH9KXNTsOtrv9\nN2edzPfmr2yx7MVvXMwFiW/SmfhfM086ZnymPevmzDrmd//t71zOaSnXhPStCHPwaLTd/Tz4D1O5\n8eevtrtOsTlxWBXvbt3f5e0nVPfl/e3tf6ZB62pry8yWuHtdJuvmogUwBah39zWJgz8MXA2kfqW8\nGviVx9PmFTMbYGY17p6+76CH+OjkEUBubgl524yTc1GktMYN6ct7/3sGAEbiyuFwiD4VYQAaozFO\n+dZCAN7818s4Go3xT79byov1zZXiP19xInctfDdvZQxasvIHWlT+QIeVP3BM5Q90qvKHYwfnO5Lu\ni09q5Q90WPkD3a7yB7Kq/IGiq/yDkouTv0cCqZ3FGxLLOrsOAGY228wWm9ni7du356B4hbN8414g\n++sARg/qTSjPZ9+Uh0OUh0OUhUMMPi7eJZBc1qei+XvCwL4VDOtXyVcvnthi++qqXnktn4jkXtFd\n/ePuc929zt3rqqurC12crBw8Ej+DprNTQcxftpnfvt78DfTOq0/NedmyNXX8YNbNmcU1Z8ZzPGzG\nujmzmv6t/cFMPnPemBbbrLpzOvWJlgbQ1OoAuO7sUV0qx6o7p3dpO+m8B/9hKlXdfD6pZ79+IZ9t\n9XuZK+19CXrif3ykU/v64bWnZ1ucjOQiADYCo1Oej0os6+w6Pc71U+JvuTPXAby9YS83P/gG//KH\nt5uWFcONZK6aPILh/Y49M+HaRMXd+pROM2t67aITq6kIh6gsD1MWDnHl6TXUDupDeTjElHGDOKt2\nQNO6AEOOq6C9Bs8/X3Fi0+PK8jCXnjyUk2v6pf0DvG3GSZ16n9LS+RMGNz0+qaYft89q7oq84PjB\n6TbJWj5bkzX9K/n4WV37stGegX3K+fZH42N0Jw2vOub10e1Mt/LFDx072Hve+Pz8bFvLxSBwGfFB\n4EuIV+qvAze6+4qUdWYBt9A8CPwTd5/S0b67Ogh8NBJrMbXB2Xc+yc6DR3nt9ksYWlVJJBojZIZZ\nvHItC4eIJc6IaS3Zr5ockEmu19b6ED/bx52m19fvOsSHf/gsP7pucouKLp3F63Zx7b0vt1j2s0+d\nxYzTMh887kla//yzFY054cTnBzR9lgBO81Xb0ZhjrZYBLbZL1Xp/MY//XqX+LrS1bdJ7W/dz2b8v\nanp+/oTB/PqLU7E023ziZy+x5IPdPDz7XKaOG4Q7/OiJd/npc+8fs9+bL5rA1y47ESf+ZcSsZVmS\nP5PU95EUSlneUTdkLOZc87OXeGv9Hv7w5fM4e8wgYrH4jZGS3aBt7SvTzzlZXyXfQ3I/mWzf1ntI\n3Wdb27V+Dx3tOxbzY3532pPcPhe/750ZBM66BeDuEeKV+0JgJfA7d19hZjeZ2U2J1RYAa4B64L+A\nr2R73Pa0ntfmXxLfAvv3jk9tUBYOEQoZZkZZ8mKtNj6om6ZNYNyQvk3Pk+u198dgZi1eb7oOIINv\n8snypDprzMAOt+upZp1Ww7njj71grKvCKZ9fqNXj1D/WcJplrbdra3ko1Px7lfq70Na2SSMHxq+J\n+O7VkwD40kfGN5WjtVsuPh6If9tMHuOqM0a0WOfik+JXi3908oim99I0Q23KflPfY3J567JmMgYV\nChk3Xxg//XHisKqmZa0rznT7+sgJ1VwxaViHxzBr+R6SBvWt4OuXn9Bh+TraZ1vbtfd6un2n+93J\nZPtbL5kY6Hha1i2AfOpqC6DYbNrTwPlznmHOx0/j+im17a77T79dyh9TLtg6b/xgHpp9br6LKCI9\nRKAtAOlYU/O6g6x19xaVP8DsaePzVSwRKXHde0i/m8h0KojGaMvX/3TzBVnNRSIi0h61AAKQ6VQQ\nRyItL9LpVa6PR0TyRzVMADKdDXTPoZZz/xfD6Z8i0nMpAAKQ6XUArad+Pn5o12YhFBHJhAIgAMlT\nyDr6Rn+4sbkLaMk3L6VXWTiv5RKR0qYACECmt4RsSAmAXuWq/EUkvxQAAcikC+jgkQhfeaD5Fgm9\ndJN2Eckz1TIByGQQOHU620tPHtp0NzERkXxRAAQgk+sAUvv/f3z9mR1eei4iki0FQAAyuQ7gSGOs\n6XFv9f+LSAAUAAEINZ0F1PY6qS2AzkwiJSLSVQqAAGQyCHw40vGt+kREckkBEABL3Hsg0y4gEZEg\nKAACEjJr9yygZBfQzz51VkAlEpFSpwAISMg66gKKtwCmndi974MsIt2HAiAglmELoFLTP4hIQBQA\nAQl1MAZwuDFGReJWlSIiQVAABCRk1u5kcEciUc3/LyKBUo0TkHCHXUAxzf4pIoHK6paQZjYI+C0w\nFlgHfNLdd6dZbx2wH4gCkUxvWNyTWAeDwEcao1SqBSAiAcq2xvkG8LS7TwSeTjxvy0XufkYpVv4A\noZC1PwYQiVKpKSBEJEDZBsDVwC8Tj38JfCzL/fVYHV8HEFMLQEQClVUXEDDM3TcnHm8BhrWxngNP\nmVkU+E93n5vlcbud9q4DOHQ0wjOrtgVcIhEpdR0GgJk9BQxP89LtqU/c3c2sre+4H3L3jWY2FHjS\nzFa5+6I2jjcbmA1QW1vbUfG6jfh1AOl/PDv2Hw24NCIiGQSAu1/a1mtmttXMatx9s5nVAGm/xrr7\nxsT/28xsHjAFSBsAidbBXIC6uroObqLYfYQMYm1M9/P+9gPBFkZEhOzHAB4FPpt4/FngT61XMLO+\nZlaVfAxcDizP8rjdTridFsCRiCaCE5HgZRsAc4DLzOw94NLEc8xshJktSKwzDHjBzN4CXgPmu/vj\nWR6322lvKohIW00DEZE8ymoQ2N13ApekWb4JmJl4vAaYnM1xeoJQqO2pICLR+PJHbr4gyCKJSInT\neYcBCbXTBdSYuFXY4L4VQRZJREqcAiAg7V0H0JhoAZSH9XGISHBU4wTEDKJtdQElxgDKw5oJVESC\nowAISFnIiLXRBEi2AMrUAhCRAKnGCUjIjEibAaAWgIgETwEQkLJw2y2ASFMA6OMQkeCoxglIuN0W\nQKILSHcDE5EAKQACEg61fRpoJBajLGSYKQBEJDgKgICEQ9Z0wVdrRxpjVJTpoxCRYKnWCUg4ZG2e\nBvrzF9bqZjAiEjgFQEDCofQ3hV+6fg8Auw5qSmgRCZYCICDhUChtAOw5pIpfRApDARCQsJE2AMI6\n80dECkQBEJB0LYBozPnd4g0FKpGIlDoFQEDCoWNbAA+8+gF/fmsTAJee3NbtlEVE8kMBEJCyUOiY\nG79s2nO46fEXLhgbcIlEpNQpAAISCh07HXQ0JRA0EZyIBE21TkAOHomwdsfBFvMBpVb6ZZoITkQC\npgAIyDOrtgHw8pqdTcvKU84AKg/poxCRYKnWCdiRSLTpcercP2oBiEjQFAAB+dz5YwFIHQcOpQSA\n7gUgIkHLKgDM7DozW2FmMTOra2e96Wb2rpnVm9k3sjlmd/WZ88YAcOBIpGlZ6jVgZeoCEpGAZVvr\nLAc+DixqawUzCwP3ADOAU4AbzOyULI/b7fSpKAPg4NGUAAipC0hECqcsm43dfSXQ0Tz2U4B6d1+T\nWPdh4GrgnWyO3d0ku3hSp4RO/bHpbmAiErQgap2RwPqU5xsSy9Iys9lmttjMFm/fvj3vhQtK8pTP\n5P1/AYyUFoDmBBKRgHXYAjCzp4DhaV663d3/lOsCuftcYC5AXV1d+gn0u6GmFkDKdQBOyjUBGgMQ\nkYB1GADufmmWx9gIjE55PiqxrKQkK/hISgug5UVhagGISLCC+Nr5OjDRzMaZWQVwPfBoAMctKskW\nwNGUMYCULFAAiEjgsj0N9Boz2wCcB8w3s4WJ5SPMbAGAu0eAW4CFwErgd+6+Irtidz9mRlnIWrYA\nUm4RqSuBRSRo2Z4FNA+Yl2b5JmBmyvMFwIJsjtUTlIWtxRhAagCENAgsIgHT184AlYdDLc4CSneH\nMBGRoCgAApQaAMs37uWnz71f4BKJSClTAAQoPgYQ/9Z/9zP1BS6NiJQ6BUCA4i2AeAC0f/G0iEj+\nKQACFA5Z013AFAAiUmgKgACFQ0ZU474iUiQUAAEKWfPVv6nzAImIFIICIEDxLqBEE0D1v4gUmAIg\nQCEzop5sATSb/9UPFaZAIlLSFAABCoesuQsoZRR40oj+hSqSiJQwBUCA4oPAx7YAREQKQQEQoJCZ\npn8QkaKhAAhQOGRNE8DpOgARKTQFQIDCKS0A1f8iUmgKgACFQs0zgJqaACJSYAqAAJWFQhoDEJGi\noQAIUChlKgh9/xeRQlMABCicMhWEEkBECk0BEKDUqSBcPUEiUmAKgACFrPk00IjGAkSkwLIKADO7\nzsxWmFnMzOraWW+dmb1tZkvNbHE2x+zOUlsAkZR7A4uIFEJZltsvBz4O/GcG617k7juyPF63FkqZ\nCkItABEptKwCwN1Xgs5pz1TYjDXbD/LS+zt44b2SzkIRKQJBjQE48JSZLTGz2QEds+iEQ/GgvPG/\nXqWhMVrg0ohIqeuwBWBmTwHD07x0u7v/KcPjfMjdN5rZUOBJM1vl7ovaON5sYDZAbW1thrvvHkJq\nKYlIEekwANz90mwP4u4bE/9vM7N5wBQgbQC4+1xgLkBdXV2P6igPp2lvnT9hcPAFEREhgC4gM+tr\nZlXJx8DlxAePS06yCygpZPDgl84tUGlEpNRlexroNWa2ATgPmG9mCxPLR5jZgsRqw4AXzOwt4DVg\nvrs/ns1xu6vWXUA6EUhECinbs4DmAfPSLN8EzEw8XgNMzuY4PUXrFoCISCHpSuAAaRBYRIqJAiBA\nrVsAahGISCEpAAIUazUD3B1XTSpQSUREFACBSr0ZzAXHD+bT544pYGlEpNQpAAKUOv9PebqLAkRE\nAqRaKEDRaHMAlIX0oxeRwlItFKDUFoAaACJSaKqGApQ6CKxTQkWk0BQAAUptASgARKTQFAABisaa\n7wIW0jUAIlJgCoAARaKpZwEpAESksBQAAUodAziuV7Z34xQRyY4CIEAaAxCRYqIACFDqlcATqvsW\nsCQiIgqAQCXHAMYP6cu1Z48ucGlEpNQpAAJUURb/cc/5xOn0rggXuDQiUuo0Ehmgu649nV+/8gF1\nYwYWuigiIgqAIA3tV8nXLj+x0MUQEQHUBSQiUrIUACIiJUoBICJSorIKADO7y8xWmdkyM5tnZgPa\nWG+6mb1rZvVm9o1sjikiIrmRbQvgSeBUdz8dWA3c1noFMwsD9wAzgFOAG8zslCyPKyIiWcoqANz9\nCXePJJ6+AoxKs9oUoN7d17j7UeBh4OpsjisiItnL5RjAF4DH0iwfCaxPeb4hsSwtM5ttZovNbPH2\n7dtzWDwREUnV4XUAZvYUMDzNS7e7+58S69wORIAHsi2Qu88F5gLU1dV5B6uLiEgXdRgA7n5pe6+b\n2eeAK4FL3D1dhb0RSJ34ZlRiWYeWLFmyw8w+yGTdgA0BdhS6EAHTey4Npfaee+L7HZPpipa+zs5w\nY7PpwL8B09w9bX+NmZURHyC+hHjF/zpwo7uv6PKBC8zMFrt7XaHLESS959JQau+51N5va9mOAdwN\nVAFPmtlSM7sXwMxGmNkCgMQg8S3AQmAl8LvuXPmLiPQUWc0F5O7Ht7F8EzAz5fkCYEE2xxIRkdzS\nlcBdM7fQBSgAvefSUGrvudTebwtZjQGIiEj3pRaAiEiJUgB0QinOaWRm95nZNjNbXuiyBMHMRpvZ\ns2b2jpmtMLNbC12mfDOzSjN7zczeSrznOwpdpqCYWdjM3jSzvxS6LIWgAMhQCc9pdD8wvdCFCFAE\n+Jq7nwKcC9xcAp/zEeBid58MnAFMN7NzC1ymoNxK/OzEkqQAyFxJzmnk7ouAXYUuR1DcfbO7v5F4\nvJ945dDm1CU9gccdSDwtT/zr8YODZjYKmAX8vNBlKRQFQOY6NaeRdH9mNhY4E3i1sCXJv0RXyFJg\nG/Cku/f49wz8GPifQKzQBSkUBYBIGmZ2HPAH4L+7+75Clyff3D3q7mcQn6plipmdWugy5ZOZXQls\nc/clhS4KLyNeAAAB8ElEQVRLISkAMtflOY2kezGzcuKV/wPu/sdClydI7r4HeJaeP+5zAXCVma0j\n3p17sZn9prBFCp4CIHOvAxPNbJyZVQDXA48WuEySY2ZmwC+Ale7+b4UuTxDMrDp5Nz8z6w1cBqwq\nbKnyy91vc/dR7j6W+N/yM+7+6QIXK3AKgAyV6pxGZvYQ8DJwopltMLMvFrpMeXYB8PfEvxEuTfyb\n2dFG3VwN8KyZLSP+RedJdy/J0yJLja4EFhEpUWoBiIiUKAWAiEiJUgCIiJQoBYCISIlSAIiIBCCX\nEyua2UUpZ6ktNbPDZvaxTu9HZwGJiOSfmX0EOAD8yt1zdqW1mQ0C6oFR7n6oM9uqBSAiEoB0Eyua\n2QQze9zMlpjZ82Z2Uhd2fS3wWGcrf1AAiIgU0lzgH939bODrwE+7sI/rgYe6cvCsbgovIiJdk5hw\n8Hzg9/EZSADolXjt48B302y20d2vSNlHDXAa8RkKOk0BICJSGCFgT2IW1hYSkxBmMhHhJ4F57t7Y\n1QKIiEjAEtOMrzWz6yA+EaGZTe7kbm6gi90/oAAQEQlEGxMrfgr4opm9BaygE3cZTNywaDTw1y6X\nSaeBioiUJrUARERKlAJARKREKQBEREqUAkBEpEQpAERESpQCQESkRCkARERKlAJARKRE/X/ICHPe\nOMQYmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f25aa296d68>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(time,signal)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment