Commit 03d33eef authored by snuverink_j's avatar snuverink_j
Browse files

replace kdescription with description

parent eea0cb15
......@@ -25,7 +25,7 @@ STATIC, LINE=name, BEAM=name, FILE=string, ORDER=integer;
both evaluate the truncated Taylor series map for one turn up to order
\texttt{ORDER} and perform normal-form analysis on the result.
Both have the following attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a \textbf{beam line or sequence} see~Chapter~\ref{lines} defined
previously (no default). Its transfer map will be evaluated and
......@@ -42,7 +42,7 @@ The name of the file to be written
(default = "\texttt{dynamic}" or "\texttt{static}" respectively).
\item[ORDER]
The maximum order for the map.
\end{kdescription}
\end{description}
\subsection{Normal-Form Analysis for Dynamic Map}
\label{sec:dynamic}
......
......@@ -106,7 +106,7 @@ OPTION,ECHO=logical,INFO=logical,TRACE=logical,
REPARTFREQ=integer, REBINFREQ=integer, TELL=logical, VERSION=integer;
\end{verbatim}
\begin{kdescription}
\begin{description}
\item[VERSION]
\index{VERSION}
......@@ -119,10 +119,10 @@ OPTION,ECHO=logical,INFO=logical,TRACE=logical,
\texttt{Mmmpp} where \texttt{M} stands for the major, \texttt{m} for
the minor and \texttt{p} for the patch version. For version 1.6.0 of
\textit{OPAL} \texttt{VERSION} should read \texttt{10600}.
\end{kdescription}
\end{description}
The next five logical flags activate or deactivate execution options:
\begin{kdescription}
\begin{description}
\item[ECHO]
\index{OPTION!ECHO}
Controls printing of an echo of input lines on the standard error file.
......@@ -323,7 +323,7 @@ The next five logical flags activate or deactivate execution options:
\index{MEMORYDUMP}
If true, it writes the memory consumption of every core to a SDDS file (*.mem).\ The write frequency corresponds to
STATDUMPFREQ.\ Default: FALSE
\end{kdescription}
\end{description}
\noindent Examples:
......@@ -723,14 +723,14 @@ All required elements and parameters are also written.
All expressions are evaluated and only their values appear in the
output.
The command has the following attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The line for which a flat sequence is to be written.
\item[NAME]
The name to be given to the sequence written.
\item[FILE]
The name of the file to receive the output.
\end{kdescription}
\end{description}
}{}
\section{IF: Conditional Execution}
......
This diff is collapsed.
......@@ -50,7 +50,7 @@ affected must be specified with the command
ERROR, LINE=name, SEED=real, ADD=logical, CLEAR=logical;
\end{verbatim}
It has the following attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The line to be affected.
\item[SEED]
......@@ -65,7 +65,7 @@ It has the following attributes:
ones.
\item[CLEAR]
If this value is true, all errors are erased from the given line.
\end{kdescription}
\end{description}
After this command \textit{OPAL} enters ``error mode'', in which it accepts only
the error defining commands see~Table~\ref{errorcmd}.
Normal mode is resumed by entering the command
......@@ -105,7 +105,7 @@ EALIGN, DX=real, DY=real, DS=real, DPHI=real,
DTHETA=real,DPSI=real, MREX=real,MREY=real;
\end{verbatim}
Its attributes are:
\begin{kdescription}
\begin{description}
\item[DX]
The misalignment in the $x$-direction
for the entry of the beam element (default: 0 m).
......@@ -139,7 +139,7 @@ Its attributes are:
The vertical read error for a beam position monitor (default: 0 m).
This is ignored if the element is not a monitor.
For a positive value see~Figure~\ref{monitor} the reading for $y$ is too high.
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
EALIGN, QF[2], DX=0.002, DY=0.0004*RANF(),
......@@ -349,7 +349,7 @@ while \texttt{EFCOMP} defines them in terms
of relative or absolute components.
Both commands have the attributes:
\begin{kdescription}
\begin{description}
\item[ORDER]
If relative errors are entered for multipoles,
this defines the order of the base component to which the relative
......@@ -358,9 +358,9 @@ Both commands have the attributes:
\item[RADIUS]
Radius $R$ were the relative components are specified (default 1 m).
This attribute is required if any relative component is used.
\end{kdescription}
\end{description}
The command \texttt{EFIELD} has the following additional attributes:
\begin{kdescription}
\begin{description}
\item[DK]
A {vector} see~Section~\ref{vector} of deferred expressions see~Section~\ref{adefer}.
Its component $k$ is the absolute error amplitude
......@@ -376,9 +376,9 @@ The command \texttt{EFIELD} has the following additional attributes:
Its component $k$ is the rotation angle see~Figure~\ref{xydisp}
for the multipole strength with $(2k+2)$-poles
(default: 0 rad).
\end{kdescription}
\end{description}
The command \texttt{EFCOMP} has the following additional attributes:
\begin{kdescription}
\begin{description}
\item[DKN]
A {vector} see~Section~\ref{vector} of deferred expressions see~Section~\ref{adefer}.
Its component $k$ is the absolute error for the normal multipole
......@@ -395,7 +395,7 @@ The command \texttt{EFCOMP} has the following additional attributes:
A {vector} see~Section~\ref{vector} of deferred expressions see~Section~\ref{adefer}.
Its component $k$ is the relative error for the skew multipole
strength with $(2k+2)$-poles (default: $0 \mathrm{m}^k$).
\end{kdescription}
\end{description}
All random vectors have an unlimited length.
Examples:
......@@ -468,7 +468,7 @@ EPRINT, FILE=string, ALIGN=logical, FIELD=logical,
ORDER=integer, RADIUS=real;
\end{verbatim}
The command has the following attributes:
\begin{kdescription}
\begin{description}
\item[FILE]
The file to receive the output.
\item[ALIGN]
......@@ -481,7 +481,7 @@ The command has the following attributes:
\item[RADIUS]
The radius used for normalizing, like on \texttt{EFIELD} and
\texttt{EFCOMP}.
\end{kdescription}
\end{description}
\section{Save Machine Imperfections}
\label{sec:errorsave}
......@@ -507,7 +507,7 @@ and the \texttt{RADIUS} and \texttt{ORDER} must be entered as used on the
%If {OPTION,\textit{OPAL}8} see~Section~\ref{option} is active,
%the output is given in \textit{OPAL}-8 format.
The command has the following attributes:
\begin{kdescription}
\begin{description}
\item[FILE]
The file to receive the output.
\item[ALIGN]
......@@ -520,6 +520,6 @@ The command has the following attributes:
\item[RADIUS]
The radius used for normalizing, like on \texttt{EFIELD} and
\texttt{EFCOMP}.
\end{kdescription}
\end{description}
\index{Errors|)}
\ No newline at end of file
......@@ -31,7 +31,7 @@ At present the \texttt{GEOMETRY} command is still an \textbf{experimental featur
\end{center}
\end{table}
\begin{kdescription}
\begin{description}
\item[FGEOM]
Define the geometry file, an \textsc{H5Fed} file, containing the surface mesh of the geometry.
......@@ -46,6 +46,6 @@ The semi-major axis of the ellipse in [m].
\item[B]
The semi-minor axis of the ellipse in [m].
\end{kdescription}
\end{description}
\input{footer}
\ No newline at end of file
......@@ -38,10 +38,10 @@ Example:
L:LINE=(A,B,C,D,A,D);
\end{verbatim}
\begin{kdescription}
\begin{description}
\item[ORIGIN] Position vector of the origin of the line. All elements in this line that are placed using \texttt{ELEMEDGE} use this position as reference.
\item[ORIENTATION] Vector of Tait-Bryan angles \ref{bib:tait-bryan} of the orientation of the line at the origin.
\end{kdescription}
\end{description}
\section{Sub-lines}
\label{sec:subline}
......
......@@ -79,7 +79,7 @@ A parameter to be varied is specified by the command:
VARY, NAME=variable, STEP=real, LOWER=real, UPPER=real;
\end{verbatim}
It has four attributes:
\begin{kdescription}
\begin{description}
\item[NAME]
\index{NAME}
The name of the parameter see~Section~\ref{variable} or
......@@ -98,7 +98,7 @@ It has four attributes:
\item[UPPER]
\index{UPPER}
Upper limit for the parameter (optional).
\end{kdescription}
\end{description}
Upper and/or lower limits can also be imposed via the
{CONSTRAINT}~command see~Section~\ref{constraint},
which is usually faster than entering limits on the
......@@ -225,14 +225,14 @@ LMDIF, CALLS=integer, TOLERANCE=real;
\end{verbatim}
It is the fastest minimisation method available in \textit{OPAL}.
The command has two attributes:
\begin{kdescription}
\begin{description}
\item[CALLS]
\index{CALLS}
The maximum number of calls to the penalty function (default:~1000).
\item[TOLERANCE]
\index{TOLERANCE}
The desired tolerance for the minimum (default:~\(10^{-6}\)).
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
LMDIF, CALLS=2000, TOLERANCE=1.0E-8;
......@@ -247,7 +247,7 @@ function using its numerical derivatives of the sum of squares:
MIGRAD, CALLS=integer, TOLERANCE=real, STRATEGY=1;
\end{verbatim}
The command has three attributes:
\begin{kdescription}
\begin{description}
\item[CALLS]
\index{CALLS}
The maximum number of calls to the penalty function (default:~1000).
......@@ -259,7 +259,7 @@ The command has three attributes:
A code for the strategy to be used (default:~1).
The user is referred to the MINUIT manual for
\bibref{explanations}{MINUIT}.
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
MIGRAD, CALLS=2000, TOLERANCE=1.0E-8;
......@@ -276,14 +276,14 @@ SIMPLEX, CALLS=integer, TOLERANCE=real;
The user is referred to the MINUIT manual for
\bibref{explanations}{MINUIT}.
The command has two attributes:
\begin{kdescription}
\begin{description}
\item[CALLS]
\index{CALLS}
The maximum number of calls to the penalty function (default:~1000).
\item[TOLERANCE]
\index{TOLERANCE}
The desired tolerance for the minimum (default:~\(10^{-6}\)).
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
SIMPLEX, CALLS=2000, TOLERANCE=1.0E-8;
......
......@@ -13,13 +13,13 @@ label:BEAM, PARTICLE=name, MASS=real, CHARGE=real,
\end{verbatim}
The \texttt{label} is optional, it defaults to \texttt{UNNAMED\_BEAM}.
\index{UNNAMED\_BEAM}. The particle mass and charge are defined by:
\begin{kdescription}
\begin{description}
\item[PARTICLE]
The name of particles in the machine.
\end{kdescription}
\end{description}
\textit{OPAL} knows the mass and the charge for the following particles:
\begin{kdescription}
\begin{description}
\item[POSITRON]
The particles are positrons (\texttt{MASS}=$m_e$,
\texttt{CHARGE}=1),
......@@ -59,21 +59,21 @@ The \texttt{label} is optional, it defaults to \texttt{UNNAMED\_BEAM}.
\item[XENON]
The particles are of type xenon (\texttt{MASS}=$m_{xe}$,
\texttt{CHARGE}=20).
\end{kdescription}
\end{description}
For other particle names one may enter:
\begin{kdescription}
\begin{description}
\item[MASS]
\index{Particle!Mass}\index{Mass}
The particle mass in GeV.
\item[CHARGE]
\index{Particle!Charge}\index{Charge}
The particle charge expressed in elementary charges.
\end{kdescription}
\end{description}
The other attributes are:
\begin{kdescription}
\begin{description}
\item[BFREQ]
The bunch frequency in MHz.
\item[BCURRENT]
......@@ -81,6 +81,6 @@ The bunch current in A.
$\text{\texttt{BCURRENT}} = Q \times \text{\texttt{BFREQ}}$ with $Q$ the total charge.
\item[NPART]
The number of macro particles for the simulations
\end{kdescription}
\end{description}
\input{footer}
\ No newline at end of file
......@@ -126,18 +126,18 @@ SELECT,LINE=name, RANGE=range, CLASS=name, TYPE=name,
\end{verbatim}
\index{SELECT}
All three forms require the parameter
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a previously defined beam line see~Chapter~\ref{lines} or
table see~Chapter~\ref{tables} on which the selection is to be done (no default).
\end{kdescription}
\end{description}
The first format sets the selection flag for all elements in the beam line
and the second format clears the selection flags for all elements.
The third format keeps all existing selections and additionally marks those
elements as selected which belong to the intersection of the following four
sets:
\begin{kdescription}
\begin{description}
\item[RANGE]
If \texttt{RANGE} is omitted, the first set contains all elements;
if it is given, the first set is limited to the named range in the line.
......@@ -156,7 +156,7 @@ sets:
if it is given, the {regular expression} see~Section~\ref{wildcard}
is applied to all element names, and the set contains only the matching
elements.
\end{kdescription}
\end{description}
The effect of subsequent \texttt{SELECT} commands produces the union of all
selections.
If a fresh selection is desired, precede the new \texttt{SELECT} command
......@@ -212,7 +212,7 @@ It has the form
SETINTEGRATOR, LINE=name, TYPE=name, SLICES=integer;
\end{verbatim}
with the meaning
\begin{kdescription}
\begin{description}
\item[LINE]
The name of the beam line to be affected.
\item[TYPE]
......@@ -229,7 +229,7 @@ with the meaning
\index{TEAPOT}
is used, for more slices, the thin lenses are placed in equidistant
places.
\end{kdescription}
\end{description}
The command runs through all elements in the beam line,
and attaches an integrator as specified by \texttt{TYPE} to all
selected elements.
......@@ -255,7 +255,7 @@ of the reference orbit in the global coordinate system see~Figure~\ref{global}
$(X,Y,Z)$.
Omitted attributes assume zero values.
Valid attributes are:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a previously defined beam line (no default).
\item[RANGE]
......@@ -280,7 +280,7 @@ Valid attributes are:
The initial angle phi [rad].
\item[PSI0]
The initial angle psi [rad].
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
......@@ -374,7 +374,7 @@ THREADBPM,LINE=name, BEAM=name, RANGE=range, TOL=real,
LISTC=logical, LISTM=logical;
\end{verbatim}
This command has the attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a previously defined beam line (no default).
\item[BEAM]
......@@ -393,7 +393,7 @@ This command has the attributes:
If true, list the corrector settings after correction.
\item[LISTM]
If true, list the monitor readings after correction.
\end{kdescription}
\end{description}
\section{Closed Orbit Correction}
\label{sec:micado}
......@@ -408,7 +408,7 @@ MICADO,LINE=name, BEAM=name, RANGE=range, METHOD=name,
LISTC2=logical, LISTM2=logical;
\end{verbatim}
This command has the attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a previously defined beam line (no default).
\item[BEAM]
......@@ -420,7 +420,7 @@ This command has the attributes:
\item[METHOD]
This attribute specifies the method to be used for tracking the orbit.
Known names are:
\begin{kdescription}
\begin{description}
\item[THIN]
Use thin lens approximations.
\item[LINEAR]
......@@ -428,7 +428,7 @@ This command has the attributes:
This is the default.
\item[THICK]
Use finite-length lenses.
\end{kdescription}
\end{description}
\item[CORRECTORS]
The maximum number of correctors to be used in each iteration.
\item[TOL]
......@@ -442,14 +442,14 @@ This command has the attributes:
\item[PLANE]
The plane to be corrected.
Known names are:
\begin{kdescription}
\begin{description}
\item[X]
Correct the horizontal plane only.
\item[Y]
Correct the vertical plane only.
\item[BOTH]
Correct both planes (default).
\end{kdescription}
\end{description}
\item[LISTC1]
If true, list the corrector settings before each iteration.
\item[LISTM1]
......@@ -458,7 +458,7 @@ This command has the attributes:
If true, list the corrector settings after correction.
\item[LISTM2]
If true, list the monitor readings after correction.
\end{kdescription}
\end{description}
\section{Lattice Function Tables}
\label{sec:twiss}
......@@ -482,7 +482,7 @@ range, while the second command, \texttt{TWISSTRACK} a selected line
of another twiss table.
The table can be referred to by its label for later manipulation.
Both commands have the following read/write attributes:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a previously defined beam line (no default).
\item[BEAM]
......@@ -497,7 +497,7 @@ Both commands have the following read/write attributes:
\item[METHOD]
This attribute specifies the method to be used for filling the table.
Known names are:
\begin{kdescription}
\begin{description}
\item[THIN]
Use thin lens approximations.
\item[LINEAR]
......@@ -505,7 +505,7 @@ Both commands have the following read/write attributes:
This is the default.
\item[THICK]
Use finite-length lenses.
\end{kdescription}
\end{description}
\item[REVBEAM]
If true, the beam is assumed to run backwards through the beam line
(from $s=C$ to $s=0$).
......@@ -515,9 +515,9 @@ Both commands have the following read/write attributes:
This attribute may be used in matching, when tracking lattice
functions from a known position back to a position to be used to
adjust an insertion.
\end{kdescription}
\end{description}
The \texttt{TWISS} command has the following read-only attributes:
\begin{kdescription}
\begin{description}
\item[L]
The total arc length [m].
\item[FREQ0]
......@@ -536,16 +536,16 @@ The \texttt{TWISS} command has the following read-only attributes:
The computed damping partition number for mode 2.
\item[JE]
The computed damping partition number for mode 3.
\end{kdescription}
\end{description}
The values related to damping exist only when the flag \texttt{DAMP}
has been set.
The \texttt{TWISSTRACK} can be initialised by the following attribute:
\begin{kdescription}
\begin{description}
\item[INIT]
If this attribute is given, the initial position and direction is taken
from the specified row of another \texttt{TWISS} table.
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
......@@ -911,7 +911,7 @@ LIST,TABLE=name, FILE=name, ALL=logical,
COLUMN={expression,...,expression};
\end{verbatim}
The attributes of this command are:
\begin{kdescription}
\begin{description}
\item[TABLE]
The name of the table to be listed (no default).
The rows to be listed can be selected by a
......@@ -939,7 +939,7 @@ The attributes of this command are:
\texttt{width} denotes the column width in characters (default~12),
and \texttt{precision} controls the number of digits in the column
(default~\texttt{width}-4).
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
list, table=su1, file=term, column={x,y,z,s*z:16:12};
......@@ -955,7 +955,7 @@ MATRIX, TABLE=name, FILE=name;
TWISS3, TABLE=name, FILE=name;
\end{verbatim}
These commands provide the following output:
\begin{kdescription}
\begin{description}
\item[EIGEN]
The name of the element, the arc length, the closed orbit,
and the eigenvectors see~Table~\ref{twiss-eig}.
......@@ -968,9 +968,9 @@ These commands provide the following output:
\item[TWISS3]
The name of the element, the arc length, the closed orbit,
and the Mais-Ripken functions see~Table~\ref{twiss-col}.
\end{kdescription}
\end{description}
The attributes of these commands are:
\begin{kdescription}
\begin{description}
\item[TABLE]
The name of the table to be listed (no default).
The rows to be listed can be selected by a
......@@ -978,7 +978,7 @@ The attributes of these commands are:
\item[FILE]
The name of the file to be written (default \texttt{LIST}).
If the file name is \texttt{TERM}, output goes to the terminal.
\end{kdescription}
\end{description}
\index{List|)}
\index{Tables|)}
......@@ -43,7 +43,7 @@ in \texttt{DT}, \texttt{MAXSTEPS} and \texttt{ZSTOP}. This can be used to change
The attributes of the command are:
\begin{kdescription}
\begin{description}
\item[LINE]
The label of a preceding \texttt{LINE} see~Section~\ref{line}
\ifthenelse{\boolean{ShowMap}}{ or \texttt{SEQUENCE} see~Section~\ref{sequence}}{} (no default).
......@@ -65,7 +65,7 @@ The attributes of the command are:
\item[TIMEINTEGRATOR]
Define the time integrator. Currently only available in \textit{OPAL-cycl}.
The valid options are \texttt{RK-4}, \texttt{LF-2} and \texttt{MTS}:
\begin{kdescription}
\begin{description}
\item[RK-4] the fourth-order Runge-Kutta integrator. This is the default integrator for \textit{OPAL-cycl}.
\item[LF-2] the second-order Boris-Buneman (leapfrog-like) integrator.
Currently, \texttt{LF-2} is only available for multi-particles with/without space charge.
......@@ -110,12 +110,12 @@ In general all step quantities should be divided by MTSSUBSTEPS.
In our first experiments on PSI injector II cyclotron, simulations with reduced
space charge solving frequency by a factor of 10 lie still very close to the original solution.
How large \texttt{MTSSUBSTEPS} can be chosen of course depends on the importance of space charge effects.
\end{kdescription}
\end{description}
\item[STEPSPERTURN]
Number of time steps per revolution period. Only available for \textit{OPAL-cycl}, default value is 720.
\end{kdescription}
\end{description}
\ifthenelse{\boolean{ShowMap}}{
In \textit{OPAL-t} and \textit{OPAL-map}, the command format is:
......@@ -212,11 +212,11 @@ particle bunch for initial conditions.
The particle positions may be the result of previous tracking.
Its attributes are:
\begin{kdescription}
\begin{description}
\item[METHOD]
The name (a string, see Section~\ref{astring}) of the tracking method to be used.
For the time being the following methods are known:
\begin{kdescription}
\begin{description}
\ifthenelse{\boolean{ShowMap}}{
\item[THIN]
All elements are treated a s thin lenses.
......@@ -228,7 +228,7 @@ Its attributes are:
This method puts \textit{OPAL} in \textit{OPAL-cycl} mode see~Chapter~\ref{opalcycl}.
\item[STATISTICAL-ERRORS]
This is a method to let \textit{OPAL} run multiple times in parallel while adding imperfections to alignment and other physical quantities.
\end{kdescription}
\end{description}
\item[FIELDSOLVER]
The field solver to be used see~Chapter~\ref{fieldsolver}.
......@@ -263,7 +263,7 @@ Its attributes are:
\item[MULTIPACTING] see~Chapter~\ref{multpact}\TODO{Describe attribute}
\item[OBJECTIVES] An array of column names from the \textit{.stat} file used in \texttt{STATISTICAL-ERRORS} to compute mean value and standard deviation across all runs.
\end{kdescription}
\end{description}
Example:
\begin{verbatim}
run, file="table", turns=5, mbmode="AUTO", paramb=10.0,
......
......@@ -197,7 +197,7 @@ label:FILTER, TYPE=string, NFREQ=real, THRESHOLD=real,
NPOINTS=real, NLEFT=real, NRIGHT=real,
POLYORDER=real
\end{verbatim}
\begin{kdescription}
\begin{description}
\item[TYPE]
The type of filter: \texttt{Savitzky-Golay}, \texttt{Stencil}, \texttt{FixedFFTLowPass}, \texttt{RelativFFTLowPass}
\item[NFREQ]
......@@ -212,7 +212,7 @@ label:FILTER, TYPE=string, NFREQ=real, THRESHOLD=real,
Only used in \texttt{Savitzky-Golay}: number of points to the right
\item[POLYORDER]
Only used in \texttt{Savitzky-Golay}: polynomial order to be used in least square approximation
\end{kdescription}
\end{description}
The \texttt{Savitzky-Golay} filter and the ones based on the FFT routine provide a derivative on a natural way. For the \texttt{Stencil} filter a second order stencil is used to calculate the derivative.
An implementation of the \texttt{Savitzky-Golay} filter can be found in the Numerical Recipes. The \texttt{Stencil} filter uses the following two stencil consecutively to smooth the line density:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment