Commit 271629dc authored by snuverink_j's avatar snuverink_j
Browse files

replace longexample

parent 62fa44f3
......@@ -98,7 +98,7 @@ The input beam is described in \textbf{card 1} in terms of the semi-axes of a si
\item $\sqrt{\sigma_{66}}$ [\%] represents one-half of the momentum spread;
\item p(0) is the momentum of the central trajectory [GeV/c].
\end{itemize}
If the input beam is tilted (Twiss alphas not zero), \textbf{ card 12} must be used, inserting the 15 correlations $r_{ij}$ parameters among the 6 beam components. The correlation parameters are defined as following:
If the input beam is tilted (Twiss alphas not zero), \textbf{card 12} must be used, inserting the 15 correlations $r_{ij}$ parameters among the 6 beam components. The correlation parameters are defined as following:
\begin{equation}
r_{ij}=\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}gma_{jj}}}
\end{equation}
......@@ -732,7 +732,7 @@ To benchmark the CSR effect, we set up a simple beamline with 0.1m drift $+$ 30
When CSR calculations are enabled for both the bending magnet and the following drift, Figure~\ref{plot-dpp-csr-on} shows the average $\delta$ or $\frac{\Delta p}{p}$ change along the beam line, and Figure~\ref{plot-emit-csr-on} compares the normalized transverse and longitudinal emittances obtained by these two codes. The average $\frac{\Delta p}{p}$ can be found in the centroid output file (Cdelta) from ELEGANT, while in \textit{OPAL}, one can calculate it using $\frac{\Delta p}{p} = \frac{1}{\beta^2}\frac{\Delta \overline{E}}{\overline{E}+mc^2}$, where $\Delta \overline{E}$ is the average kinetic energy from the {\it .stat} output file.
\begin{figure}[!htbp]
\centering
\includegraphics{figures/Benchmarks/dpp-csr-on}
\includegraphics{figures/Benchmarks/dpp-csr-on.png}
\caption{$\frac{\Delta p}{p}$ in Elegant and \textit{OPAL}}
\label{fig:plot-dpp-csr-on}
\end{figure}
......@@ -751,7 +751,7 @@ This benchmark compares rms quantities such as beam size and emittance of \texti
particles is $N_{\text{p}} = 10^{5}$.
\subsection{\textit{OPAL} Input}
\begin{longexample}
\begin{verbatim}
OPTION, ECHO = FALSE, PSDUMPFREQ = 10,
STATDUMPFREQ = 10, REPARTFREQ = 1000,
PSDUMPLOCALFRAME = FALSE, VERSION=10600;
......@@ -789,11 +789,11 @@ TRACK, LINE = L1, BEAM = Beam1, MAXSTEPS = 1000, ZSTOP = 1.0, DT = 1.0e-10;
RUN, METHOD = "PARALLEL-T", BEAM = Beam1, FIELDSOLVER = Fs1, DISTRIBUTION = Dist1;
ENDTRACK;
STOP;
\end{longexample}
\end{verbatim}
\subsection{\texttt{Impact-t} Input}
\begin{longexample}
!Welcome to \texttt{Impact-t} input file.
\begin{verbatim}
!Welcome to Impact-t input file.
!All comment lines start with "!" as the first character of the line.
! col row
1 1
......@@ -849,7 +849,7 @@ STOP;
! rotation error x, y, z
! L/m N/A N/A type location of starting edge v1 <B0><B0><B0> v23 /
1.0 0 0 0 0.0 0.5 /
\end{longexample}
\end{verbatim}
\subsection{Results}
A good agreement is shown in the Figure~\ref{plot-opal-impact1,plot-opal-impact2}. This proves to some extend the compatibility of the
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment