### replace more units

parent 44a1df14
 ... @@ -672,7 +672,7 @@ On the first line, the two zeros following \texttt{1DProfile1} are the orders o ... @@ -672,7 +672,7 @@ On the first line, the two zeros following \texttt{1DProfile1} are the orders o Figure~\ref{plot-compare-default} compares the emittances and beam sizes obtained by using the hard edge map, the default map and the ELEGANT. One can see that the results produced by the hard edge map match the ELEGANT results when FINT is set to zero. Figure~\ref{plot-compare-default} compares the emittances and beam sizes obtained by using the hard edge map, the default map and the ELEGANT. One can see that the results produced by the hard edge map match the ELEGANT results when FINT is set to zero. \subsection{Integration Time Step} \subsection{Integration Time Step} When the hard edge map is used for a dipole, finer integration time step is needed to ensure the accurate of the calculation. Figure~\ref{plot-emit-dt} compares the normalized emittances generated using the hard edge map in \textit{OPAL} with varying time steps to those from the ELEGANT. {0.01}{\pico\second} seems to be a optimal time step for the fringe field region. To speed up the simulations, one can use larger time steps outside the fringe field regions. In Figure~\ref{plot-emit-dt}, one can observe a discontinuity in the horizontal emittance when the hard edge map is used in the calculation. This discontinuity comes from the fact that \textit{OPAL} emittance is calculated at an instant time. Once the beam or part of the beam gets into the dipole, its $P_x$ gets a kick which will result in a sudden emittance change. When the hard edge map is used for a dipole, finer integration time step is needed to ensure the accurate of the calculation. Figure~\ref{plot-emit-dt} compares the normalized emittances generated using the hard edge map in \textit{OPAL} with varying time steps to those from the ELEGANT. {0.01}{ps} seems to be a optimal time step for the fringe field region. To speed up the simulations, one can use larger time steps outside the fringe field regions. In Figure~\ref{plot-emit-dt}, one can observe a discontinuity in the horizontal emittance when the hard edge map is used in the calculation. This discontinuity comes from the fact that \textit{OPAL} emittance is calculated at an instant time. Once the beam or part of the beam gets into the dipole, its $P_x$ gets a kick which will result in a sudden emittance change. \begin{figure}[!htbp] \begin{figure}[!htbp] \centering \centering \includegraphics[width=0.5\textwidth, \includegraphics[width=0.5\textwidth, ... ...
 ... @@ -228,7 +228,7 @@ Table~\ref{distattruniversal,distattrinjected,distattrsemitted}. ... @@ -228,7 +228,7 @@ Table~\ref{distattruniversal,distattrinjected,distattrsemitted}. \tabline{TMULT}{\index{TMULT} {1.0} & None & Value used to scale the $t$ values of the distribution \tabline{TMULT}{\index{TMULT} {1.0} & None & Value used to scale the $t$ values of the distribution particles. Applied after the distribution is generated (or read in).} particles. Applied after the distribution is generated (or read in).} %\hline %\hline \tabline{OFFSETT}{\index{OFFSETT} {0.0} & {\second} & Distribution is emitted later by this amount relative to the reference particle.} \tabline{OFFSETT}{\index{OFFSETT} {0.0} & {s} & Distribution is emitted later by this amount relative to the reference particle.} %\hline %\hline \tabline{EMISSIONSTEPS}{\index{EMISSIONSTEPS} {1} & None & Number of time steps to take during emission. The simulation time step \tabline{EMISSIONSTEPS}{\index{EMISSIONSTEPS} {1} & None & Number of time steps to take during emission. The simulation time step will be adjusted during emission to ensure that this many time steps will be will be adjusted during emission to ensure that this many time steps will be ... @@ -370,7 +370,7 @@ We will begin by describing how to create a simple \texttt{GAUSS} distribution t ... @@ -370,7 +370,7 @@ We will begin by describing how to create a simple \texttt{GAUSS} distribution t \tabline{SIGMAZ}{\index{SIGMAZ} {0.0} & {m} & RMS length, $\sigma_{z}$, in longitudinal (z) direction. \texttt{SIGMAZ} is used \tabline{SIGMAZ}{\index{SIGMAZ} {0.0} & {m} & RMS length, $\sigma_{z}$, in longitudinal (z) direction. \texttt{SIGMAZ} is used for an \emph{injected} distribution.} for an \emph{injected} distribution.} %\hline %\hline \tabline{SIGMAT}{\index{SIGMAT} {0.0} & {\second} & RMS width, $\sigma_{t}$, in time (t). \texttt{SIGMAT} is used for an \emph{emitted} \tabline{SIGMAT}{\index{SIGMAT} {0.0} & {s} & RMS width, $\sigma_{t}$, in time (t). \texttt{SIGMAT} is used for an \emph{emitted} distribution.} distribution.} %\hline %\hline \tabline{SIGMAPX}{\index{SIGMAPX} {0.0} & Section~\ref{unitsdistattributes}& Parameter $\sigma_{px}$ for defining distribution. } \tabline{SIGMAPX}{\index{SIGMAPX} {0.0} & Section~\ref{unitsdistattributes}& Parameter $\sigma_{px}$ for defining distribution. } ... @@ -451,12 +451,12 @@ at an average position of $(\bar{x},\bar{y},\bar{z})=({1.0}{\millim}, {-2.0}{\mi ... @@ -451,12 +451,12 @@ at an average position of$(\bar{x},\bar{y},\bar{z})=({1.0}{\millim}, {-2.0}{\mi \hline \hline \tabhead{Attribute Name & Default Value & Units & Description } \tabhead{Attribute Name & Default Value & Units & Description } \hline \hline \tabline{TPULSEFWHM}{\index{TPULSEFWHM} {0.0} & {\second} & Flat top time see~Figure~\ref{flattop}. } \tabline{TPULSEFWHM}{\index{TPULSEFWHM} {0.0} & {s} & Flat top time see~Figure~\ref{flattop}. } %\hline %\hline \tabline{TRISE}{\index{TRISE} {0.0} & {\second} & Rise time see~Figure~\ref{flattop}. If defined will override \tabline{TRISE}{\index{TRISE} {0.0} & {s} & Rise time see~Figure~\ref{flattop}. If defined will override \texttt{SIGMAT}.} \texttt{SIGMAT}.} %\hline %\hline \tabline{TFALL}{\index{TFALL} {0.0} & {\second} & Fall time see~Figure~\ref{flattop}. If defined will override \tabline{TFALL}{\index{TFALL} {0.0} & {s} & Fall time see~Figure~\ref{flattop}. If defined will override \texttt{SIGMAT}.} \texttt{SIGMAT}.} %\hline %\hline \tabline{FTOSCAMPLITUDE}{\index{FTOSCAMPLITUDE} {0} & None & Sinusoidal oscillations can imposed on the flat top in Figure~\ref{flattop}. \tabline{FTOSCAMPLITUDE}{\index{FTOSCAMPLITUDE} {0} & None & Sinusoidal oscillations can imposed on the flat top in Figure~\ref{flattop}. ... @@ -657,15 +657,15 @@ with a uniform distribution in $z$. (Basically a cylinder with an elliptical cro ... @@ -657,15 +657,15 @@ with a uniform distribution in $z$. (Basically a cylinder with an elliptical cro %\hline %\hline \tabline{SIGMAR}{\index{SIGMAR} {0.0} & {m} & Hard edge radius. If nonzero \texttt{SIGMAR} overrides \texttt{SIGMAX} and \texttt{SIGMAY}. } \tabline{SIGMAR}{\index{SIGMAR} {0.0} & {m} & Hard edge radius. If nonzero \texttt{SIGMAR} overrides \texttt{SIGMAX} and \texttt{SIGMAY}. } %\hline %\hline \tabline{SIGMAT}{\index{SIGMAT} {0.0} & {\second} & RMS rise and fall of half Gaussian in flat top defined in \tabline{SIGMAT}{\index{SIGMAT} {0.0} & {s} & RMS rise and fall of half Gaussian in flat top defined in in Figure~\ref{flattop}.} in Figure~\ref{flattop}.} %\hline %\hline \tabline{TPULSEFWHM}{\index{TPULSEFWHM} {0.0} & {\second} & Flat top time. See Figure~\ref{flattop}. } \tabline{TPULSEFWHM}{\index{TPULSEFWHM} {0.0} & {s} & Flat top time. See Figure~\ref{flattop}. } %\hline %\hline \tabline{TRISE}{\index{TRISE} {0.0} & {\second} & Rise time. See Figure~\ref{flattop}. If defined will override \tabline{TRISE}{\index{TRISE} {0.0} & {s} & Rise time. See Figure~\ref{flattop}. If defined will override \texttt{SIGMAT}.} \texttt{SIGMAT}.} %\hline %\hline \tabline{TFALL}{\index{TFALL} {0.0} & {\second} & Fall time. See Figure~\ref{flattop}. If defined will override \tabline{TFALL}{\index{TFALL} {0.0} & {s} & Fall time. See Figure~\ref{flattop}. If defined will override \texttt{SIGMAT}.} \texttt{SIGMAT}.} %\hline %\hline \tabline{FTOSCAMPLITUDE}{\index{FTOSCAMPLITUDE} {0} & None & Sinusoidal oscillations can imposed on the flat top in Figure~\ref{flattop}. \tabline{FTOSCAMPLITUDE}{\index{FTOSCAMPLITUDE} {0} & None & Sinusoidal oscillations can imposed on the flat top in Figure~\ref{flattop}. ... @@ -695,7 +695,7 @@ The \texttt{FLATTOP} distribution was really intended for this mode of operation ... @@ -695,7 +695,7 @@ The \texttt{FLATTOP} distribution was really intended for this mode of operation common laser pulses in photoinjectors. The basic characteristic of a \texttt{FLATTOP} is a uniform, elliptical transverse distribution common laser pulses in photoinjectors. The basic characteristic of a \texttt{FLATTOP} is a uniform, elliptical transverse distribution and a longitudinal (time) distribution with a Gaussian rise and fall time as described in Section~\ref{gaussdisttypephotoinjector}. and a longitudinal (time) distribution with a Gaussian rise and fall time as described in Section~\ref{gaussdisttypephotoinjector}. Below we show an example of a \texttt{FLATTOP} distribution command with an elliptical cross section of {1}{\millim} by {2}{\millim} and a flat top, Below we show an example of a \texttt{FLATTOP} distribution command with an elliptical cross section of {1}{\millim} by {2}{\millim} and a flat top, in time, {10}{\pico\second} long with a {0.5}{\pico\second} rise and fall time as defined in Figure~\ref{flattop}. in time, {10}{ps} long with a {0.5}{ps} rise and fall time as defined in Figure~\ref{flattop}. \begin{verbatim} \begin{verbatim} Dist:DISTRIBUTION, TYPE = FLATTOP, Dist:DISTRIBUTION, TYPE = FLATTOP, ... @@ -860,7 +860,7 @@ Table~\ref{distattremitmodelnonequil}. ... @@ -860,7 +860,7 @@ Table~\ref{distattremitmodelnonequil}. \hline \hline \tabhead{Attribute Name & Default Value & Units & Description} \tabhead{Attribute Name & Default Value & Units & Description} \hline \hline \tabline{ELASER}{\index{ELASER} {4.86} & {eV} & Photoinjector drive laser energy. (Default is {255}{\nanom} light.)} \tabline{ELASER}{\index{ELASER} {4.86} & {eV} & Photoinjector drive laser energy. (Default is {255}{nm} light.)} %\hline %\hline \tabline{W}{\index{W} {4.31} & {eV} & Photocathode work function. (Default is atomically clean copper.)} \tabline{W}{\index{W} {4.31} & {eV} & Photocathode work function. (Default is atomically clean copper.)} %\hline %\hline ... ...
 ... @@ -63,7 +63,7 @@ Figure~\ref{walldrift} shows the parallel efficiency time as a function of used ... @@ -63,7 +63,7 @@ Figure~\ref{walldrift} shows the parallel efficiency time as a function of used \begin{figure}[!htb] \begin{figure}[!htb] \centering \centering \includegraphics[width=0.75\textwidth]{figures/drift2c1.png} \includegraphics[width=0.75\textwidth]{figures/drift2c1.png} \caption{Parallel efficiency and particles pushed per {\micro\second} as a function of cores} \caption{Parallel efficiency and particles pushed per {\micros} as a function of cores} \label{fig:walldrift} \label{fig:walldrift} \end{figure} \end{figure} %=========================================================== %=========================================================== ... ...
 ... @@ -95,8 +95,8 @@ The following example shows the usage of the multipacting simulation related com ... @@ -95,8 +95,8 @@ The following example shows the usage of the multipacting simulation related com \hline \hline \tabhead{Command &Purpose (Default)} \tabhead{Command &Purpose (Default)} \hline \hline \texttt{VW} \index{VW} & Velocity scalar in Maxwellian Dist ({1.0}{m/\second})\\ \texttt{VW} \index{VW} & Velocity scalar in Maxwellian Dist ({1.0}{m/s})\\ \texttt{VVTHERMAL} \index{VVTHERMAL} & Thermal velocity in Maxwellian Dist ({7.268929821e5}{m/\second})\\ \texttt{VVTHERMAL} \index{VVTHERMAL} & Thermal velocity in Maxwellian Dist ({7.268929821e5}{m/s})\\ \texttt{SECONDARYFLAG} \index{SECONDARYFLAG} & Secondary model type, 0:none, 1:Furman-Pivi, 2:Vaughan ({0})\\ \texttt{SECONDARYFLAG} \index{SECONDARYFLAG} & Secondary model type, 0:none, 1:Furman-Pivi, 2:Vaughan ({0})\\ \texttt{NEMISSIONMODE} \index{NEMISSIONMODE} & Emit real No. secondaries or not (\texttt{TRUE})\\ \texttt{NEMISSIONMODE} \index{NEMISSIONMODE} & Emit real No. secondaries or not (\texttt{TRUE})\\ \texttt{VEZERO} \index{VEZERO} & SEY will be $\delta_0$, if energy is less than \texttt{VEZERO} in Vaughan's model ({12.5}{eV})\\ \texttt{VEZERO} \index{VEZERO} & SEY will be $\delta_0$, if energy is less than \texttt{VEZERO} in Vaughan's model ({12.5}{eV})\\ ... ...
 ... @@ -109,7 +109,7 @@ Please don't try to run this mode in parallel environment, either. ... @@ -109,7 +109,7 @@ Please don't try to run this mode in parallel environment, either. \end{description} \end{description} The independent variable is: \textbf{t} [{\second}]. The independent variable is: \textbf{t} [{s}]. \subsubsection{NOTE: unit conversion of momentum in \textit{OPAL-t} and \textit{OPAL-cycl}} \subsubsection{NOTE: unit conversion of momentum in \textit{OPAL-t} and \textit{OPAL-cycl}} ... ...
 ... @@ -210,10 +210,10 @@ This file is used to log the statistical properties of the bunch in the ASCII va ... @@ -210,10 +210,10 @@ This file is used to log the statistical properties of the bunch in the ASCII va \endfoot \endfoot \hline \hline \endlastfoot \endlastfoot 1 & t & {\nano\second} & Time\\ 1 & t & {ns} & Time\\ 2 & s & {m} & Path length\\ 2 & s & {m} & Path length\\ 3 & numParticles & 1 & Number of macro particles\\ 3 & numParticles & 1 & Number of macro particles\\ 4 & charge & {\coulomb} & Charge of bunch\\ 4 & charge & {C} & Charge of bunch\\ 5 & energy & {MeV} & Mean energy of bunch\\ 5 & energy & {MeV} & Mean energy of bunch\\ 6 & rms\_x & {m} & Standard deviation of x-component of particles positions\\ 6 & rms\_x & {m} & Standard deviation of x-component of particles positions\\ 7 & rms\_y & {m} & Standard deviation of y-component of particles positions\\ 7 & rms\_y & {m} & Standard deviation of y-component of particles positions\\ ... @@ -250,7 +250,7 @@ This file is used to log the statistical properties of the bunch in the ASCII va ... @@ -250,7 +250,7 @@ This file is used to log the statistical properties of the bunch in the ASCII va 38 & Ey\_ref & {MV\perm} & Y-component of electric field at reference particle\\ 38 & Ey\_ref & {MV\perm} & Y-component of electric field at reference particle\\ 39 & Ez\_ref & {MV\perm} & Z-component of electric field at reference particle\\ 39 & Ez\_ref & {MV\perm} & Z-component of electric field at reference particle\\ 40 & dE & {MeV} & Energy spread of the bunch\\ 40 & dE & {MeV} & Energy spread of the bunch\\ 41 & dt & {\nano\second} & Size of time step\\ 41 & dt & {ns} & Size of time step\\ 42 & partsOutside & 1 & Number of particles outside $n \times gma$ of beam, where $n$ is controlled with \texttt{BEAMHALOBOUNDARY}\\ 42 & partsOutside & 1 & Number of particles outside $n \times gma$ of beam, where $n$ is controlled with \texttt{BEAMHALOBOUNDARY}\\ 43 & R0\_x & {m} & X-component of position of particle with ID 0 (only when run serial)\\ 43 & R0\_x & {m} & X-component of position of particle with ID 0 (only when run serial)\\ 44 & R0\_y & {m} & Y-component of position of particle with ID 0 (only when run serial)\\ 44 & R0\_y & {m} & Y-component of position of particle with ID 0 (only when run serial)\\ ... @@ -283,12 +283,12 @@ This file is used to log the statistical properties of the bunch in the ASCII va ... @@ -283,12 +283,12 @@ This file is used to log the statistical properties of the bunch in the ASCII va \endlastfoot \endlastfoot 1 & name & a string & Name of the monitor\\ 1 & name & a string & Name of the monitor\\ 2 & s & {m} & Position of the monitor in path length\\ 2 & s & {m} & Position of the monitor in path length\\ 3 & t & {\nano\second} & Time at which the reference particle pass\\ 3 & t & {ns} & Time at which the reference particle pass\\ 4 & numParticles & 1 & Number of macro particles\\ 4 & numParticles & 1 & Number of macro particles\\ 5 & rms\_x & {m} & Standard deviation of the x-component of the particles positions \\ 5 & rms\_x & {m} & Standard deviation of the x-component of the particles positions \\ 6 & rms\_y & {m} & Standard deviation of the y-component of the particles positions \\ 6 & rms\_y & {m} & Standard deviation of the y-component of the particles positions \\ 7 & rms\_s & {m} & Standard deviation of the s-component of the particles positions (only nonvanishing when type of \texttt{MONITOR} is \texttt{TEMPORAL})\\ 7 & rms\_s & {m} & Standard deviation of the s-component of the particles positions (only nonvanishing when type of \texttt{MONITOR} is \texttt{TEMPORAL})\\ 8 & rms\_t & {\nano\second} & Standard deviation of the passage time of the particles (zero if type is of \texttt{MONITOR} is \texttt{TEMPORAL}\\ 8 & rms\_t & {ns} & Standard deviation of the passage time of the particles (zero if type is of \texttt{MONITOR} is \texttt{TEMPORAL}\\ 9 & rms\_px & 1 & Standard deviation of the x-component of the particles momenta \\ 9 & rms\_px & 1 & Standard deviation of the x-component of the particles momenta \\ 10 & rms\_py & 1 & Standard deviation of the y-component of the particles momenta \\ 10 & rms\_py & 1 & Standard deviation of the y-component of the particles momenta \\ 11 & rms\_ps & 1 & Standard deviation of the s-component of the particles momenta \\ 11 & rms\_ps & 1 & Standard deviation of the s-component of the particles momenta \\ ... @@ -298,7 +298,7 @@ This file is used to log the statistical properties of the bunch in the ASCII va ... @@ -298,7 +298,7 @@ This file is used to log the statistical properties of the bunch in the ASCII va 15 & mean\_x & {m} & X-component of mean position relative to reference particle\\ 15 & mean\_x & {m} & X-component of mean position relative to reference particle\\ 16 & mean\_y & {m} & Y-component of mean position relative to reference particle\\ 16 & mean\_y & {m} & Y-component of mean position relative to reference particle\\ 17 & mean\_s & {m} & S-component of mean position relative to reference particle\\ 17 & mean\_s & {m} & S-component of mean position relative to reference particle\\ 18 & mean\_t & {\nano\second} & Mean time at which the particles pass\\ 18 & mean\_t & {ns} & Mean time at which the particles pass\\ 19 & ref\_x & {m} & X-component of reference particle in floor coordinate system\\ 19 & ref\_x & {m} & X-component of reference particle in floor coordinate system\\ 20 & ref\_y & {m} & Y-component of reference particle in floor coordinate system\\ 20 & ref\_y & {m} & Y-component of reference particle in floor coordinate system\\ 21 & ref\_z & {m} & Z-component of reference particle in floor coordinate system\\ 21 & ref\_z & {m} & Z-component of reference particle in floor coordinate system\\ ... @@ -404,7 +404,7 @@ The trajectory of the reference particle is stored in this ASCII file. The conte ... @@ -404,7 +404,7 @@ The trajectory of the reference particle is stored in this ASCII file. The conte 12 & {T} & Y-component of magnetic field at position\\ 12 & {T} & Y-component of magnetic field at position\\ 13 & {T} & Z-component of magnetic field at position\\ 13 & {T} & Z-component of magnetic field at position\\ 14 & {MeV} & Kinetic energy\\ 14 & {MeV} & Kinetic energy\\ 15 & {\second} & Time\\ 15 & {s} & Time\\ \end{longtable} \end{longtable} \end{center} \end{center} ... ...
 ... @@ -55,9 +55,9 @@ The attributes of the command are: ... @@ -55,9 +55,9 @@ The attributes of the command are: and reference momentum (default: \texttt{UNNAMED\_BEAM}). and reference momentum (default: \texttt{UNNAMED\_BEAM}). \index{UNNAMED\_BEAM} \index{UNNAMED\_BEAM} \item[T0] \item[T0] The initial time [{\second}] of the simulation, its default value is 0. The initial time [{s}] of the simulation, its default value is 0. \item[DT] \item[DT] Array of time step sizes for tracking, default length of the array is 1 and its only value is {1}{\pico\second}. Array of time step sizes for tracking, default length of the array is 1 and its only value is {1}{ps}. \item[MAXSTEPS] \item[MAXSTEPS] Array of maximal number of time steps, default length of the array is 1 and its only value is 10. Array of maximal number of time steps, default length of the array is 1 and its only value is 10. \item[ZSTART] \item[ZSTART] ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!