Commit cc03c154 authored by snuverink_j's avatar snuverink_j
Browse files

bracket fixes

parent 03d33eef
......@@ -1054,10 +1054,6 @@ QP1: Quadrupole, L=1.20, ELEMEDGE=-0.5265,
FMAPFN="1T1.T7", K1=0.11;
\end{verbatim}
\clearpage
\section{Sextupole}
\label{sec:sextupole}
\index{SEXTUPOLE}
......@@ -1069,7 +1065,7 @@ A \texttt{SEXTUPOLE} has three real attributes:
\begin{description}
\item[K2]
The normal sextupole component
$K_2=\frac{\partial^2} B_y}{\partial x^2}$.
$K_2=\frac{\partial{^2} B_y}{\partial x^2}$.
The default is ${0}{T m^{-2}}$.
The component is positive, if $B_y$ is positive on the $x$-axis.
\item[K2S]
......@@ -1086,7 +1082,6 @@ The reference system for a sextupole is a Cartesian coordinate system
\ifthenelse{\boolean{ShowMap}}{see~Figure~\ref{straight}}{}.
\clearpage
\section{Octupole}
\label{sec:octupole}
\index{OCTUPOLE}
......@@ -1098,7 +1093,7 @@ An \texttt{OCTUPOLE} has three real attributes:
\begin{description}
\item[K3]
The normal octupole component
$K_3=\frac{\partial^3} B_y}{\partial x^3}$.
$K_3=\frac{\partial{^3} B_y}{\partial x^3}$.
The default is ${0}{Tm^{-3}}$.
The component is positive, if $B_y$ is positive on the positive $x$-axis.
\item[K3S]
......@@ -1127,7 +1122,7 @@ label:MULTIPOLE, TYPE=string, APERTURE=real-vector,
\item[KN]
A real vector see~Section~\ref{anarray},
containing the normal multipole coefficients,
$K_n=\frac{\partial^n} B_y}{\partial x^n}$.
$K_n=\frac{\partial{^n} B_y}{\partial x^n}$.
(default is ${0}{Tm^{-n}}$).
A component is positive, if $B_y$ is positive on the positive $x$-axis.
\item[KS]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment