Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • 5505-public/dima
1 result
Show changes
Commits on Source (6)
...@@ -7,6 +7,7 @@ import pandas as pd ...@@ -7,6 +7,7 @@ import pandas as pd
import numpy as np import numpy as np
import h5py import h5py
import logging import logging
import json
#try: #try:
# from dima.utils import g5505_utils as utils # from dima.utils import g5505_utils as utils
...@@ -158,11 +159,22 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str, ...@@ -158,11 +159,22 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
stdout = inst stdout = inst
logging.error('Failed to create group %s into HDF5: %s', group_name, inst) logging.error('Failed to create group %s into HDF5: %s', group_name, inst)
if 'data_lineage_metadata.json' in filtered_filenames_list:
idx = filtered_filenames_list.index('data_lineage_metadata.json')
data_lineage_file = filtered_filenames_list[idx]
try:
with open('/'.join([dirpath,data_lineage_file]),'r') as dlf:
data_lineage_dict = json.load(dlf)
filtered_filenames_list.pop(idx)
except json.JSONDecodeError:
data_lineage_dict = {} # Start fresh if file is invalid
else:
data_lineage_dict = {}
for filenumber, filename in enumerate(filtered_filenames_list): for filenumber, filename in enumerate(filtered_filenames_list):
#file_ext = os.path.splitext(filename)[1]
#try:
# hdf5 path to filename group # hdf5 path to filename group
dest_group_name = f'{group_name}/{filename}' dest_group_name = f'{group_name}/{filename}'
source_file_path = os.path.join(dirpath,filename) source_file_path = os.path.join(dirpath,filename)
......
...@@ -161,6 +161,8 @@ def convert_dataframe_to_np_structured_array(df: pd.DataFrame): ...@@ -161,6 +161,8 @@ def convert_dataframe_to_np_structured_array(df: pd.DataFrame):
dtype.append((col, 'i4')) # Assuming 32-bit integer dtype.append((col, 'i4')) # Assuming 32-bit integer
elif pd.api.types.is_float_dtype(col_dtype): elif pd.api.types.is_float_dtype(col_dtype):
dtype.append((col, 'f4')) # Assuming 32-bit float dtype.append((col, 'f4')) # Assuming 32-bit float
elif pd.api.types.is_bool_dtype(col_dtype):
dtype.append((col,bool))
else: else:
# Handle unsupported data types # Handle unsupported data types
print(f"Unsupported dtype found in column '{col}': {col_data.dtype}") print(f"Unsupported dtype found in column '{col}': {col_data.dtype}")
......