Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects
Commit 3c865c5e authored by frey_m's avatar frey_m
Browse files

SigmaGenerator: is matched again

parent a9acdb41
No related branches found
No related tags found
1 merge request!393Resolve "Matched Distribution: Not matched?"
...@@ -16,6 +16,7 @@ set (HDRS ...@@ -16,6 +16,7 @@ set (HDRS
LaserProfile.h LaserProfile.h
MapGenerator.h MapGenerator.h
matrix_vector_operation.h matrix_vector_operation.h
rdm.h
SigmaGenerator.h SigmaGenerator.h
) )
......
This diff is collapsed.
...@@ -44,6 +44,8 @@ ...@@ -44,6 +44,8 @@
#include <boost/numeric/ublas/matrix_sparse.hpp> #include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/vector.hpp> #include <boost/numeric/ublas/vector.hpp>
#include "rdm.h"
/// @brief This class computes the matched distribution /// @brief This class computes the matched distribution
class SigmaGenerator class SigmaGenerator
...@@ -58,7 +60,7 @@ public: ...@@ -58,7 +60,7 @@ public:
typedef boost::numeric::ublas::matrix<complex_t> cmatrix_type; typedef boost::numeric::ublas::matrix<complex_t> cmatrix_type;
/// Type for storing the sparse maps /// Type for storing the sparse maps
typedef boost::numeric::ublas::compressed_matrix<complex_t, typedef boost::numeric::ublas::compressed_matrix<double /*complex_t*/,
boost::numeric::ublas::row_major boost::numeric::ublas::row_major
> sparse_matrix_type; > sparse_matrix_type;
/// Type for storing vectors /// Type for storing vectors
...@@ -114,15 +116,15 @@ public: ...@@ -114,15 +116,15 @@ public:
* @param Mturn is a 6x6 dimensional one turn transfer matrix * @param Mturn is a 6x6 dimensional one turn transfer matrix
* @param R is the 6x6 dimensional transformation matrix (gets computed) * @param R is the 6x6 dimensional transformation matrix (gets computed)
*/ */
void eigsolve_m(const matrix_type& Mturn, sparse_matrix_type& R); // void eigsolve_m(const matrix_type& Mturn, sparse_matrix_type& R);
/*! /*!
* @param R is the 6x6 dimensional transformation matrix * @param R is the 6x6 dimensional transformation matrix
* @param invR is the 6x6 dimensional inverse transformation (gets computed) * @param invR is the 6x6 dimensional inverse transformation (gets computed)
* @return true if success * @return true if success
*/ */
bool invertMatrix_m(const sparse_matrix_type& R, // bool invertMatrix_m(const sparse_matrix_type& R,
sparse_matrix_type& invR); // sparse_matrix_type& invR);
/// Block diagonalizes the symplex part of the one turn transfer matrix /// Block diagonalizes the symplex part of the one turn transfer matrix
/*! It computes the transformation matrix <b>R</b> and its inverse <b>invR</b>. /*! It computes the transformation matrix <b>R</b> and its inverse <b>invR</b>.
...@@ -131,7 +133,8 @@ public: ...@@ -131,7 +133,8 @@ public:
* @param R is the 6x6 dimensional transformation matrix (gets computed) * @param R is the 6x6 dimensional transformation matrix (gets computed)
* @param invR is the 6x6 dimensional inverse transformation (gets computed) * @param invR is the 6x6 dimensional inverse transformation (gets computed)
*/ */
void decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR); /*void*/
vector_type decouple(const matrix_type& Mturn, sparse_matrix_type& R, sparse_matrix_type& invR);
/// Checks if the sigma-matrix is an eigenellipse and returns the L2 error. /// Checks if the sigma-matrix is an eigenellipse and returns the L2 error.
/*! /*!
...@@ -240,7 +243,12 @@ private: ...@@ -240,7 +243,12 @@ private:
* @param R is the transformation matrix * @param R is the transformation matrix
* @param invR is the inverse transformation matrix * @param invR is the inverse transformation matrix
*/ */
// matrix_type updateInitialSigma(const matrix_type&,
// sparse_matrix_type&,
// sparse_matrix_type&);
matrix_type updateInitialSigma(const matrix_type&, matrix_type updateInitialSigma(const matrix_type&,
const vector_type&,
sparse_matrix_type&, sparse_matrix_type&,
sparse_matrix_type&); sparse_matrix_type&);
...@@ -290,6 +298,16 @@ private: ...@@ -290,6 +298,16 @@ private:
const container_type& ds_turn); const container_type& ds_turn);
void writeMatrix(std::ofstream&, const matrix_type&); void writeMatrix(std::ofstream&, const matrix_type&);
/// <b>RDM</b>-class member used for decoupling
RDM<double, unsigned int> rdm_m;
template<class matrix>
void reduce(matrix&);
template<class matrix>
void expand(matrix&);
}; };
...@@ -326,4 +344,71 @@ std::array<double,3> SigmaGenerator::getEmittances() const ...@@ -326,4 +344,71 @@ std::array<double,3> SigmaGenerator::getEmittances() const
}}; }};
} }
template<class matrix>
void SigmaGenerator::reduce(matrix& M) {
/* The 6x6 matrix gets reduced to a 4x4 matrix in the following way:
*
* a11 a12 a13 a14 a15 a16
* a21 a22 a23 a24 a25 a26 a11 a12 a15 a16
* a31 a32 a33 a34 a35 a36 --> a21 a22 a25 a26
* a41 a42 a43 a44 a45 a46 a51 a52 a55 a56
* a51 a52 a53 a54 a55 a56 a61 a62 a65 a66
* a61 a62 a63 a64 a65 a66
*/
// copy x- and l-direction to a 4x4 matrix_type
matrix_type M4x4(4,4);
for (unsigned int i = 0; i < 2; ++i) {
// upper left 2x2 [a11,a12;a21,a22]
M4x4(i,0) = M(i,0);
M4x4(i,1) = M(i,1);
// lower left 2x2 [a51,a52;a61,a62]
M4x4(i + 2,0) = M(i + 4,0);
M4x4(i + 2,1) = M(i + 4,1);
// upper right 2x2 [a15,a16;a25,a26]
M4x4(i,2) = M(i,4);
M4x4(i,3) = M(i,5);
// lower right 2x2 [a55,a56;a65,a66]
M4x4(i + 2,2) = M(i + 4,4);
M4x4(i + 2,3) = M(i + 4,5);
}
M.resize(4,4,false);
M.swap(M4x4);
}
template<class matrix>
void SigmaGenerator::expand(matrix& M) {
/* The 4x4 matrix gets expanded to a 6x6 matrix in the following way:
*
* a11 a12 0 0 a13 a14
* a11 a12 a13 a14 a21 a22 0 0 a23 a24
* a21 a22 a23 a24 --> 0 0 1 0 0 0
* a31 a32 a33 a34 0 0 0 1 0 0
* a41 a42 a43 a44 a31 a32 0 0 a33 a34
* a41 a42 0 0 a43 a44
*/
matrix M6x6 = boost::numeric::ublas::identity_matrix<double>(6,6);
for (unsigned int i = 0; i < 2; ++i) {
// upper left 2x2 [a11,a12;a21,a22]
M6x6(i,0) = M(i,0);
M6x6(i,1) = M(i,1);
// lower left 2x2 [a31,a32;a41,a42]
M6x6(i + 4,0) = M(i + 2,0);
M6x6(i + 4,1) = M(i + 2,1);
// upper right 2x2 [a13,a14;a23,a24]
M6x6(i,4) = M(i,2);
M6x6(i,5) = M(i,3);
// lower right 2x2 [a22,a34;a43,a44]
M6x6(i + 4,4) = M(i + 2,2);
M6x6(i + 4,5) = M(i + 2,3);
}
// exchange
M.swap(M6x6);
}
#endif #endif
\ No newline at end of file
/**
* @file rdm.h
* They're ordered after the paper of Dr. C. Baumgarten: "Use of real Dirac matrices in two-dimensional coupled linear optics".
* The diagonalizing method is based on the paper "Geometrical method of decoupling" (2012) of Dr. C. Baumgarten.
* The template parameter Value_type is the datatype of the matrices and variables.
*
* @author Matthias Frey
* @version 1.0
*/
#ifndef RDM_H
#define RDM_H
#include <cmath>
#include <iostream>
#include <stdexcept>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include "matrix_vector_operation.h"
// Remark: Comments starting with "///" are doxygen comments, comments with "//" are normal comments.
/// @brief Real Dirac Matrix class
template<typename Value_type, typename Size_type>
class RDM
{
public:
/// Type of variables
typedef Value_type value_type;
/// Type for specifying sizes
typedef Size_type size_type;
/// Sparse matrix type definition
typedef boost::numeric::ublas::compressed_matrix<value_type,boost::numeric::ublas::row_major> sparse_matrix_type;
/// Dense matrix type definition
typedef boost::numeric::ublas::matrix<value_type> matrix_type;
/// Dense vector type definition
typedef boost::numeric::ublas::vector<value_type> vector_type;
/// Default constructor (sets only NumOfRDMs and DimOfRDMs)
RDM();
/// Returns the i-th Real Dirac matrix
/*!
* @param i specifying the matrix (has to be in the range from 0 to 15)
*/
sparse_matrix_type getRDM(short);
/// Decomposes a real-valued 4x4 matrix into a linear combination and returns a vector containing the coefficients
/*!
* @param M an arbitrary real-valued 4x4 matrix
*/
vector_type decompose(const matrix_type&);
/// Takes a vector of coefficients, evaluates the linear combination of RDMs with these coefficients and returns a 4x4 matrix
/*!
* @param coeffs is a vector of coefficients (at most length NumOfRDMs)
*/
matrix_type combine(const vector_type&);
/// Brings a 4x4 symplex matrix into Hamilton form and computes the transformation matrix and its inverse
/*!
* @param Ms is a 4x4 symplex matrix
* @param R is the 4x4 transformation matrix (gets computed)
* @param invR is the 4x4 inverse transformation matrix (gets computed)
*/
void diagonalize(matrix_type&, sparse_matrix_type&, sparse_matrix_type&);
/// Returns the symplex part of a 4x4 real-valued matrix
/*!
* @param M 4x4 real-valued matrix
*/
matrix_type symplex(const matrix_type&);
/// Returns the cosymplex part of a 4x4 real-valued matrix
/*!
* @param M 4x4 real-valued matrix
*/
matrix_type cosymplex(const matrix_type&);
/// The number of real Dirac matrices
short NumOfRDMs;
/// The matrix dimension (4x4)
short DimOfRDMs;
private:
/// Applies a rotation to the matrix M by a given angle
/*!
* @param M is the matrix to be transformed
* @param i is the i-th RDM used for transformation
* @param phi is the angle of rotation
* @param Rtot is a reference to the current transformation matrix
* @param invRtot is a reference to the inverse of the current transformation matrix
*/
void transform(matrix_type&, short, value_type, sparse_matrix_type&, sparse_matrix_type&);
};
// -----------------------------------------------------------------------------------------------------------------------
// PUBLIC MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------
template<typename Value_type, typename Size_type>
RDM<Value_type, Size_type>::RDM() : NumOfRDMs(16), DimOfRDMs(4) {};
template<typename Value_type, typename Size_type>
typename RDM<Value_type, Size_type>::sparse_matrix_type RDM<Value_type, Size_type>::getRDM(short i) {
sparse_matrix_type rdm(4,4,4); // #nrows, #ncols, #non-zeros
switch(i) {
case 0: rdm(0,1) = rdm(2,3) = 1; rdm(1,0) = rdm(3,2) = -1; break;
case 1: rdm(0,1) = rdm(1,0) = -1; rdm(2,3) = rdm(3,2) = 1; break;
case 2: rdm(0,3) = rdm(1,2) = rdm(2,1) = rdm(3,0) = 1; break;
case 3: rdm(0,0) = rdm(2,2) = -1; rdm(1,1) = rdm(3,3) = 1; break;
case 4: rdm(0,0) = rdm(3,3) = -1; rdm(1,1) = rdm(2,2) = 1; break;
case 5: rdm(0,2) = rdm(2,0) = 1; rdm(1,3) = rdm(3,1) = -1; break;
case 6: rdm(0,1) = rdm(1,0) = rdm(2,3) = rdm(3,2) = 1; break;
case 7: rdm(0,3) = rdm(2,1) = 1; rdm(1,2) = rdm(3,0) = -1; break;
case 8: rdm(0,1) = rdm(3,2) = 1; rdm(1,0) = rdm(2,3) = -1; break;
case 9: rdm(0,2) = rdm(1,3) = -1; rdm(2,0) = rdm(3,1) = 1; break;
case 10: rdm(0,2) = rdm(3,1) = 1; rdm(1,3) = rdm(2,0) = -1; break;
case 11: rdm(0,2) = rdm(1,3) = rdm(2,0) = rdm(3,1) = -1; break;
case 12: rdm(0,0) = rdm(1,1) = -1; rdm(2,2) = rdm(3,3) = 1; break;
case 13: rdm(0,3) = rdm(3,0) = -1; rdm(1,2) = rdm(2,1) = 1; break;
case 14: rdm(0,3) = rdm(1,2) = -1; rdm(2,1) = rdm(3,0) = 1; break;
case 15: rdm(0,0) = rdm(1,1) = rdm(2,2) = rdm(3,3) = 1; break;
default: throw std::out_of_range("Error in RDM::generate: 0 <= i <= 15"); break;
}
return rdm;
}
template<typename Value_type, typename Size_type>
typename RDM<Value_type, Size_type>::vector_type RDM<Value_type, Size_type>::decompose(const matrix_type& M) {
/*
* Formula (11) from paper:
* Geometrical method of decoupling
*/
if (M.size1() != 4 && M.size1() != M.size2())
throw std::length_error("Error in RDM::decompose: Wrong matrix dimensions.");
vector_type coeffs(16);
matrix_type left(4,4), right(4,4), rdm2(4,4);
value_type inv32 = 1.0 / 32.0;
// do it with iterators
for (short i = 0; i < 16; ++i) {
sparse_matrix_type rdm = getRDM(i);
left = boost::numeric::ublas::prod(M,rdm);
right = boost::numeric::ublas::prod(rdm,M);
rdm2 = boost::numeric::ublas::prod(rdm,rdm);
left *= inv32;
right *= inv32;
left += right;
coeffs(i) = matt_boost::trace(rdm2) * matt_boost::trace(left);
}
return coeffs;
}
template<typename Value_type, typename Size_type>
typename RDM<Value_type, Size_type>::matrix_type RDM<Value_type, Size_type>::combine(const vector_type& coeffs) {
if (coeffs.size() > 16)
throw std::length_error("Error in RDM::combine: Wrong size of coefficient vector.");
// initialize a 4x4 zero matrix
matrix_type M = boost::numeric::ublas::zero_matrix<value_type>(4,4);
// evaluate linear combination
for (short i = 0; i < 16; ++i)
M += coeffs(i)*getRDM(i);
return M;
}
template<typename Value_type, typename Size_type>
void RDM<Value_type, Size_type>::diagonalize(matrix_type& Ms, sparse_matrix_type& R, sparse_matrix_type& invR) {
// R and invR store the total transformation
R = boost::numeric::ublas::identity_matrix<value_type>(4);
invR = R;
vector_type P(3), E(3), B(3), b;
value_type mr, mg, mb, eps;
// Lambda function to compute vectors E, P, B and scalar eps (it takes the current Ms as reference argument (--> [&])
auto mult = [&](short i) {
/*
* For computing E, P, B, eps according to formula (C4) from paper:
* Geometrical method of decoupling
*/
matrix_type tmp = boost::numeric::ublas::prod(Ms,getRDM(i))+boost::numeric::ublas::prod(getRDM(i),Ms);
return 0.125*matt_boost::trace(tmp);
};
// 1. Transformation with \gamma_{0}
P(0) = mult(1); P(1) = mult(2); P(2) = mult(3);
E(0) = mult(4); E(1) = mult(5); E(2) = mult(6);
B(0) = -mult(7); B(1) = -mult(8); B(2) = -mult(9);
mr = boost::numeric::ublas::inner_prod(E,B); // formula (31), paper: Geometrical method of decoupling
mg = boost::numeric::ublas::inner_prod(B,P); // formula (31), paper: Geometrical method of decoupling
transform(Ms,short(0),0.5 * std::atan2(mg,mr),R,invR);
// 2. Transformation with \gamma_{7}
eps = -mult(0);
P(0) = mult(1); P(1) = mult(2); P(2) = mult(3);
E(0) = mult(4); E(1) = mult(5); E(2) = mult(6);
B(0) = -mult(7); B(1) = -mult(8); B(2) = -mult(9);
b = eps*B+matt_boost::cross_prod(E,P); // formula (32), paper: Geometrical method of decoupling
transform(Ms,short(7),0.5 * std::atan2(b(2),b(1)),R,invR);
// 3. Transformation with \gamma_{9}
eps = -mult(0);
P(0) = mult(1); P(1) = mult(2); P(2) = mult(3);
E(0) = mult(4); E(1) = mult(5); E(2) = mult(6);
B(0) = -mult(7); B(1) = -mult(8); B(2) = -mult(9);
b = eps*B+matt_boost::cross_prod(E,P);
transform(Ms,short(9),-0.5 * std::atan2(b(0),b(1)),R,invR);
// 4. Transformation with \gamma_{2}
eps = -mult(0);
P(0) = mult(1); P(1) = mult(2); P(2) = mult(3);
E(0) = mult(4); E(1) = mult(5); E(2) = mult(6);
B(0) = -mult(7); B(1) = -mult(8); B(2) = -mult(9);
mr = boost::numeric::ublas::inner_prod(E,B);
b = eps*B+matt_boost::cross_prod(E,P);
// Transformation distinction made according to function "rdm_Decouple_F" in rdm.c of Dr. Christian Baumgarten
if (std::fabs(mr) < std::fabs(b(1))) {
transform(Ms,short(2),0.5 * std::atanh(mr / b(1)),R,invR);
} else {
transform(Ms,short(2),0.5 * std::atanh(b(1) / mr),R,invR);
}
eps = -mult(0);
P(0) = mult(1); P(1) = mult(2); P(2) = mult(3);
E(0) = mult(4); E(1) = mult(5); E(2) = mult(6);
B(0) = -mult(7); B(1) = -mult(8); B(2) = -mult(9);
// formula (31), paper: Geometrical method of decoupling
mr = boost::numeric::ublas::inner_prod(E,B);
mg = boost::numeric::ublas::inner_prod(B,P);
mb = boost::numeric::ublas::inner_prod(E,P);
value_type P2 = boost::numeric::ublas::inner_prod(P,P);
value_type E2 = boost::numeric::ublas::inner_prod(E,E);
// 5. Transform with \gamma_{0}
transform(Ms,short(0),0.25 * std::atan2(mb,0.5 * (E2 - P2)),R,invR);
// 6. Transformation with \gamma_{8}
P(0) = mult(1); P(2) = mult(3);
transform(Ms,short(8),-0.5 * std::atan2(P(2),P(0)),R,invR);
}
template<typename Value_type, typename Size_type>
typename RDM<Value_type, Size_type>::matrix_type RDM<Value_type, Size_type>::symplex(const matrix_type& M) {
/*
* formula(16), p. 3
*/
sparse_matrix_type rdm0 = getRDM(0);
return 0.5 * (M + matt_boost::gemmm<matrix_type>(rdm0,boost::numeric::ublas::trans(M),rdm0));
}
template<typename Value_type, typename Size_type>
typename RDM<Value_type, Size_type>::matrix_type RDM<Value_type, Size_type>::cosymplex(const matrix_type& M) {
/*
* formula (16), p, 3
*/
sparse_matrix_type rdm0 = getRDM(0);
return 0.5 * (M - matt_boost::gemmm<matrix_type>(rdm0,boost::numeric::ublas::trans(M),rdm0));
}
// -----------------------------------------------------------------------------------------------------------------------
// PRIVATE MEMBER FUNCTIONS
// -----------------------------------------------------------------------------------------------------------------------
template<typename Value_type, typename Size_type>
void RDM<Value_type, Size_type>::transform(matrix_type& M, short i, value_type phi, sparse_matrix_type& Rtot, sparse_matrix_type& invRtot) {
if (phi) { // if phi == 0 --> nothing happens, since R and invR would be identity_matrix matrix
sparse_matrix_type R(4,4), invR(4,4);
sparse_matrix_type I = boost::numeric::ublas::identity_matrix<value_type>(4);
if (i < 7 && i != 0 && i < 11 && i != 14) {
R = I * std::cosh(phi) + getRDM(i) * std::sinh(phi);
invR = I * std::cosh(phi) - getRDM(i) * std::sinh(phi);
} else {
R = I * std::cos(phi) + getRDM(i) * std::sin(phi);
invR = I * std::cos(phi) - getRDM(i) * std::sin(phi);
}
// update matrices
M = matt_boost::gemmm<matrix_type>(R,M,invR);
Rtot = boost::numeric::ublas::prod(R,Rtot);
invRtot = boost::numeric::ublas::prod(invRtot,invR);
}
}
#endif
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment