Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects
Commit 43b6cf47 authored by fische_r's avatar fische_r
Browse files

some bug fixes

parent ed5a18c7
No related branches found
No related tags found
No related merge requests found
......@@ -491,7 +491,7 @@ class image_filter:
print('prepare first')
else:
self.feature_stack = dask.array.stack(self.calculated_features, axis = 4)
self.feature_stack_time_independent = dask.array.stack(self.calculated_features, axis=3)
self.feature_stack_time_independent = dask.array.stack(self.calculated_features_time_independent, axis=3)
shp = self.feature_stack_time_independent.shape
self.feature_stack_time_independent = self.feature_stack_time_independent.reshape(shp[0],shp[1],shp[2],1,shp[3])
# TODO: rechunk?
......
......@@ -108,7 +108,7 @@ def training_set_per_image(label_name, trainingpath, feat_data, lazy = False):
# temporary workaround, make general
if c1 == 'x' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(x = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, time_0 = p2).data
elif c1 == 'x' and c2 == 'y':
feat_stack = feat_data['feature_stack'].sel(x = p1, y = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, y = p2).data
......@@ -120,10 +120,10 @@ def training_set_per_image(label_name, trainingpath, feat_data, lazy = False):
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, z = p2).data
elif c1 == 'y' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(y = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, time_0 = p2).data
elif c1 == 'z' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(z = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(z = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(z = p1, time_0 = p2).data
else:
print('coordinates not found')
# if lazy:
......@@ -175,8 +175,9 @@ class train_segmentation:
self.raw_data = rawdata
self.feat_data = data
# self.feat_data_tme_idp = data['feature_stack_time_independent']
self.feature_names = self.feat_data['feature'].data
self.feature_names_time_independent = self.feat_data['feature_time_independent'].data
self.feature_names = list(self.feat_data['feature'].data)
self.feature_names_time_independent = list(self.feat_data['feature_time_independent'].data)
self.combined_feature_names = self.feature_names + self.feature_names_time_independent
self.lazy = lazy
......@@ -283,7 +284,7 @@ class train_segmentation:
if c1 == 'x' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(x = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, time_0 = p2).data
elif c1 == 'x' and c2 == 'y':
feat_stack = feat_data['feature_stack'].sel(x = p1, y = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(x = p1, y = p2).data
......@@ -295,10 +296,10 @@ class train_segmentation:
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, z = p2).data
elif c1 == 'y' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(y = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(y = p1, time_0 = p2).data
elif c1 == 'z' and c2 == 'time':
feat_stack = feat_data['feature_stack'].sel(z = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(z = p1, time = p2).data
feat_stack_t_idp = feat_data['feature_stack_time_independent'].sel(z = p1, time_0 = p2).data
self.current_feat_stack = dask.array.concatenate([feat_stack, feat_stack_t_idp], axis = 2)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment