Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects
Commit accbefa6 authored by ulrich_y's avatar ulrich_y
Browse files

5: basic error tools in re #17

parent 29d5c82f
No related branches found
No related tags found
No related merge requests found
......@@ -2,3 +2,5 @@ import numpy as np
import matplotlib.pyplot as plt
from vegas import importvegas
from errortools import mergenumbers, plusnumbers, dividenumbers, timesnumbers,\
mergeplots, addplots, combineNplots, scaleplot
import numpy as np
def mergenumbers(values, quiet=False):
if type(values) == list:
values = np.array(values)
weight = sum(1 / values[:,1]**2)
value = sum(values[:,0] / values[:,1]**2 / weight)
chi = 1./len(values) * sum(
((values[:,0]-value) / values[:,1])**2
)
ans = np.array([value, np.sqrt(1/weight)])
if not quiet:
print chi
return ans
else:
return chi, ans
def plusnumbers(*args):
if len(args) == 1:
lst = np.array(args[0])
else:
lst = np.array(args)
return np.array([
sum(lst[:,0]),
np.sqrt(sum(lst[:,1]**2))
])
def dividenumbers(a, b):
return np.array([
a[0]/b[0],
np.sqrt((b[1]**2*a[0]**2)/b[0]**4 + a[1]**2/b[0]**2)
])
def timesnumbers(a, b):
return np.array([
a[0]*b[0],
np.sqrt(b[0]**2*a[1]**2 + a[0]**2*b[1]**2)
])
def mergeplots(ps, returnchi=False):
if type(ps) == list:
ps = np.array(ps)
with np.errstate(divide='ignore', invalid='ignore'):
w = sum(1/ps[:,:,2]**2)
out = np.zeros(ps[0].shape)
out[:,0] = ps[0,:,0]
out[:,1] = sum(ps[:,:,1]/ps[:,:,2]**2 / w)
out[:,2] = np.sqrt(1/w)
# if one bin is empty, the zero causes trouble
out[~np.isfinite(out)] = 0
chi = 1./(len(ps)-1)*sum((ps[:,:,1]-out[:,1])**2/ps[:,:,2]**2)
chi = np.column_stack((out[:,0], chi))
chi[~np.isfinite(chi)] = 0
if returnchi:
return out, chi
else:
return out
def addplots(a, b, sa=1., sb=1.):
# There must be a better way of doing this
maskA = [False]*len(a)
maskB = [False]*len(b)
for ia in range(len(a)):
for ib in range(len(b)):
if abs(1-a[ia, 0] / b[ib, 0]) < 1e-15:
maskA[ia] = True
maskB[ib] = True
x = a[maskA, 0]
y = sa*a[maskA, 1] + sb*b[maskB, 1]
e = np.sqrt(sa**2 * a[maskA, 2]**2 + sb**2 * b[maskB, 2]**2)
return np.column_stack((x, y, e))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment