Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects
Commit a80382ca authored by ulrich_y's avatar ulrich_y
Browse files

Added Moller validation analysis

parent 094d690c
No related branches found
No related tags found
No related merge requests found
name=validation
figures=xicut.pdf kfac
include ../../tools/makefile.conf
# vim: foldmethod=marker
## Init{{{
# We begin by loading pyMule
from pymule import *
# and point it to the correct folder
setup(folder='ee2ee0504191/out.tar.bz2', obs='8')
##########################################################################}}}
## Load data{{{
# Load the LO with the correct factors of alpha and conv
lo = scaleset(mergefks(sigma('ee2ee0')), alpha**2*conv)
# Load the NLO, either with plot or without
#nlo = scaleset(mergefks(sigma('ee2eeF'), sigma('ee2eeR')), alpha**3*conv)
figxi, nlo = mergefkswithplot(
[[sigma('ee2eeF')], [sigma('ee2eeR')]],
scale=alpha**3*conv
)
figxi.savefig("xicut.pdf")
##########################################################################}}}
## Make plots{{{
### Simple plots{{{
# Let's start with a quick LO plot. Because we already have a figure
# open (the $\xi_c$-study), we first need a new one
figure()
errorband(lo['thcms'])
# Next, we look at the tK factor
printnumber(dividenumbers(nlo['value'], lo['value']))
# Now we can make a K-plot
figK, (ax1, ax2) = kplot(
{'lo': mergebins(lo['thcms'], 4), 'nlo': mergebins(nlo['thcms'], 4)},
labelx='$\\theta_{CMS}$',
labelsigma='$\\D\\sigma/\\D\\theta_{CMS}\ / \ {\\rm \upmu b}$',
legend={
'lo': '$\\sigma^{(0)}$',
'nlo': '$\\sigma^{(1)}$'
},
legendopts={'what': 'u', 'loc': 'upper center', 'ncol': 2}
)
ax1.set_yscale('log')
figK.savefig("kfac.pdf")
###########################################################}}}
### bin-wise $\chi^2${{{
# Let's also look at the bin-wise $\chi^2$ of the FKS merge. For this
# we have to do the FKS merge manually. Let's begin by loading the
# relevant data.
dataF = sigma('ee2eeF')
dataR = sigma('ee2eeR')
# Next, we need to know the FKS parameters used. These are the keys of
# the sigma result. We will assume they are the same for R and F,
# otherwise we would have to use an intersection routine such as
# pymule.loader.multiintersect
xicuts = dataF.keys()
# Now we can add the thcms plot of ee2eeF and ee2eeF for each $\xi_c$
# and merge the results.
pl, chi = mergeplots([
addplots(
sigma('ee2eeF')[xic]['thcms'],
sigma('ee2eeR')[xic]['thcms']
) for xic in xicuts],
True
)
figure()
scatter(chi[:, 0], chi[:, 1])
xlabel('$\\theta_{CMS}$')
ylabel('$\\chi^2$')
###########################################################}}}
##########################################################################}}}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment