Code indexing in gitaly is broken and leads to code not being visible to the user. We work on the issue with highest priority.

Skip to content
Snippets Groups Projects
Commit b199eb83 authored by schuma_w's avatar schuma_w
Browse files

Results copper

parent 92442b70
No related branches found
No related tags found
No related merge requests found
Reduced input,Ramona norm,method,Kernel,K fold,Seed,Calcium_MAPA,Calcium_R2,Arsenic_MAPA,Arsenic_R2,Lead (Pb+2)_MAPA,Lead (Pb+2)_R2,Copper_MAPA,Copper_R2,Manganese_MAPA,Manganese_R2,Nickel_MAPA,Nickel_R2,Zinc_MAPA,Zinc_R2,Cobalt_MAPA,Cobalt_R2,Aluminium_MAPA,Aluminium_R2,Chromium_MAPA,Chromium_R2,Antimony_MAPA,Antimony_R2,Chloride_MAPA,Chloride_R2,Sulfate_MAPA,Sulfate_R2,Cadmium_MAPA,Cadmium_R2
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,42,24123162000000.0,0.8906587219819212
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,33,38928780000000.0,0.9225977363384553
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,11,10787268000000.0,0.9220868333226546
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,5,16684078000000.0,0.8498555899238353
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,2,75059000000000.0,0.9182668391462008
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment