False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,42,24123162000000.0,0.8906587219819212
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,33,38928780000000.0,0.9225977363384553
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,11,10787268000000.0,0.9220868333226546
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,5,16684078000000.0,0.8498555899238353
False,False,Steady,"['Forward Method:', ' """"""', ' The forward pass of the model.', ' ', ' input: x: torch.Tensor, the input to the model', ' ', ' output: x: torch.Tensor, the output of the model', ' """"""', ' # Amplitude = x[:,index+3].unsqueeze(-1) #Unsqueeze makes it compatible with batch dimensions.', ' # LS = x[:,2].unsqueeze(-1)', ' ', ' ', ' x = self.leaky(self.fc(x)) #Sigmoid early, to get the LS-Element thing going.', ' x = F.elu(-x)', ' x = self.dropout(x)', ' x = self.fcfinal(x)', ' # if torch.isnan(x).any():', ' # print(""x has a nan value: final "",x)', ' # quit()', ' weight2 = self.weight2_layer(x)', ' weight = self.weight_layer(x)', ' ', ' x = torch.exp(-x)', ' x = weight*x #This should create an exponential fit like Aexp(-bx)', ' return x + self.trainable_constant #By extension, this should then look like Aexp(-bx) + c', ' # return torch.exp(-x) + self.trainable_constant', ' # return x + self.trainable_constant', ' ', ' ', ' return x #This with lr 0.001 gives 0.74 on first', '', 'Number of epochs: 10000', 'Learning rate: 0.005']",5,2,75059000000000.0,0.9182668391462008