Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
O OPALManualWiki
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
    • Locked Files
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
    • Iterations
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Analytics
    • Analytics
    • CI/CD
    • Code Review
    • Issue
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • snuverink_j
  • OPALManualWiki
  • Wiki
  • opal madx

Last edited by Jochem Snuverink Sep 13, 2017
Page history

opal madx

Table of Contents
  • 1. OPAL - MADX Conversion Guide

1. OPAL - MADX Conversion Guide

We note with \alpha,\beta and \gamma the Twiss parameters.

\begin{aligned}
\sigma_{beam} &=& \begin{pmatrix}\sigma_{x} & \sigma_{x p_{x}}\\\sigma_{x p_{x}} &  \sigma_{ p_{x}}\end{pmatrix}
= \begin{pmatrix} \sigma_{x} & \delta\cdot\sqrt{\sigma_{x}\sigma_{ p_{x}}}\\\delta\cdot\sqrt{\sigma_{x}\sigma_{ p_{x}}} & \sigma_{ p_{x}}\end{pmatrix}
= \begin{pmatrix} <x^{2}> & <x p_{x}>\\<x p_{x}> & < p_{x}^{2}> \end{pmatrix} \\
&=& \begin{pmatrix}
  \frac{1}{N}\sum_{i=1}^{N}x_{i}^{2} & \frac{1}{N}\sum_{i=1}^{N}x_{i} p_{x_{i}}\\
  \frac{1}{N}\sum_{i=1}^{N}x_{i} p_{x_{i}} & \frac{1}{N}\sum_{i=1}^{N} p_{x_{i}}^{2}
 \end{pmatrix}
= \epsilon\cdot\begin{pmatrix} \beta & -\alpha\\ -\alpha & \gamma\end{pmatrix}
\end{aligned}
\begin{aligned}
\bar{p}_{x} & = & \sqrt{\frac{1}{N}\sum_{i=1}^{N} p_{x_{i}}^{2}} & = & \sqrt{\sigma_{ p_{x}}} & & \bar{x} & = & \sqrt{\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}} \\
\bar{p}_{y} & = & \sqrt{\frac{1}{N}\sum_{i=1}^{N}p_{y_{i}}^{2}} & = & \sqrt{\sigma_{p_{y}}} & & \bar{y} & = & \sqrt{\frac{1}{N}\sum_{i=1}^{N}y_{i}^{2}} \\
\\
\\
\gamma & = & \frac{E_{kin}+m_{p}}{m_{p}} & & & & \beta & = & \sqrt{1-\frac{1}{\gamma^{2}}} = \frac{v}{c} \\
(\beta\gamma) & = & \frac{E_{kin}+m_{p}}{m_{p}}\cdot\sqrt{1-\frac{1}{\gamma^{2}}}& = & \frac{\beta}{\sqrt{1-\beta^{2}}} & & \text{B}\rho & = & \frac{\left(\beta\gamma\right)\cdot m_{p}\cdot 10^{9}}{c}~\left[\text{T m}\right] \\
m_{p} & = & 0.939277 [GeV] & & & & c & = & 299792458 [m/s]
\end{aligned}
Quantity MADX Conversion OPAL-Output

Momenta

\bar{p}_{x}

[rad]

\bar{p}_{x}[\beta\gamma]

=

\left(\bar{p}_{x}\left[\text{rad}\right]\right)\cdot\left(\beta\gamma\right)

\bar{p}_{x}

[\beta\gamma]

Correlation of \bar{x},\bar{p}_{x}

\delta

[1]

\delta

=

\left(\sigma_{x p_{x}}\left[\text{m }\text{rad}\right]\right)/\left(\left(\bar{p}_{x}\left[\text{rad}\right]\right)\cdot\left( \bar{x}\left[\text{m}\right]\right)\right)

\delta

[1]

=

\left(\sigma_{x p_{x}}\left[\text{m }\text{rad}\right]\right)/\sqrt{\left(\sigma_{x}\left[\text{m}^{2}\right]\right)\cdot\left(\sigma_{ p_{x}}\left[\text{rad}^{2}\right]\right)}

Emittance

\epsilon_{x}

[m rad]

\epsilon_{x}[m \beta\gamma]

=

\sqrt{\left( \bar{p}_{x}\left[ \beta\gamma \right] \right) ^{2} \cdot \left(\bar{x}\left[\text{m}\right]\right)^{2} - \left(\delta \cdot \left(\bar{x}\left[\text{m}\right]\right) \cdot \left(\bar{p}_{x}\left[\beta\gamma\right]\right)\right)^{2}}

\epsilon_{x}

[m \beta\gamma]

=

\sqrt{\left( \sigma_{{p}_{x}}\left[ \left(\beta\gamma\right)^{2} \right] \right)\cdot \left(\sigma_{x}\left[\text{m}^{2}\right]\right) - \left(\delta \cdot \sqrt{\left(\sigma_{x}\left[\text{m}^{2}\right]\right)\cdot\left(\sigma_{p_{x}} \left[\left(\beta\gamma\right)^{2}\right]\right)}\right)^{2}}

=

\sqrt{\left( \sigma_{{p}_{x}}\left[ \left(\beta\gamma\right)^{2} \right] \right)\cdot \left(\sigma_{x}\left[\text{m}^{2}\right]\right) - \left(\sigma_{x p_{x}}\left[\text{m} ~\beta\gamma\right]\right)^{2}}

Twiss Parameter \alpha

\alpha

[1]

\alpha\left[1\right]

=

-\delta\cdot\left(\bar{x}\left[\text{m}\right]\right)\cdot\left(\bar{p}_{x}\left[\beta\gamma\right]\right)/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right]\right)

\alpha_{T}

[1]

=

-\delta\cdot\sqrt{\left(\sigma_{x}\left[\text{m}^{2}\right]\right)\cdot\left(\sigma_{ p_{x}}\left[\left(\beta\gamma\right)^{2}\right]\right)}/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right]\right)

Twiss Parameter \beta_{T}

\beta_{T}

[m/rad]

\beta_{T}\left[\text{m}/\beta\gamma\right]

=

\left(\bar{x}\left[\text{m}\right]\right)^{2}/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right] \right)

\beta_{T}

[m/\beta\gamma]

=

\left(\sigma_{x}\left[\text{m}^{2}\right]\right)/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right] \right)

Twiss Parameter \gamma_{T}

\gamma_{T}

[rad/m]

\gamma_{T}\left[\beta\gamma/\text{m}\right]

=

\left(\bar{p}_{x}\left[\beta\gamma\right]\right)^{2}/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right]\right)

\gamma_{T}

[\beta\gamma/m]

=

\left(\sigma_{p_{x}}\left[\left(\beta\gamma\right)^{2}\right]\right)/\left(\epsilon_{x}\left[\text{m}~\beta\gamma\right]\right)

Focusing strength

k_{1}

\left[\text{m}^{-2}\right]

k_{1}\left[\text{T}/\text{m}\right]

=

\left(k_{1}\left[\text{m}^{-2}\right]\right)\cdot\left(\text{B}\rho\left[\text{T m}\right]\right)

k_{1}

\left[\text{T}/\text{m}\right]

Quantity

MADX

Conversion

OPAL-Input

Element Position

at :=

\left[\text{m}\right]

ELEMEDGE

=

(Center of the element) - (Length of the element)/2

ELEMEDGE =

\left[\text{m}\right]

Center of the element

Begin of the element

Quantity

OPAL-Output

Conversion

OPAL-Input

Momenta

\bar{p}_{x}

\left[\beta\gamma\right]

p_{x}\left[\text{eV}\right]

=

m_{p}\cdot10^{9}\cdot\left(\sqrt{\left(\bar{p}_{x}\left[\beta\gamma\right]\right)^{2} +1}-1\right)

\bar{p}_{x}

[eV]

Clone repository
  • autophase
  • beam command
  • benchmarks
  • control
  • conventions
  • distribution
  • elements
  • fieldmaps
  • fieldsolvers
  • format
  • geometry
  • Home
  • introduction
  • lines
  • opal madx
View All Pages