Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
O OPALManualWiki
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
    • Locked Files
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
    • Iterations
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Analytics
    • Analytics
    • CI/CD
    • Code Review
    • Issue
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • snuverink_j
  • OPALManualWiki
  • Wiki
  • opalt

opalt · Changes

Page history
fixes for gitlab wiki authored Sep 11, 2017 by snuverink_j's avatar snuverink_j
Hide whitespace changes
Inline Side-by-side
Showing with 17 additions and 11 deletions
+17 -11
  • opalt.asciidoc opalt.asciidoc +17 -11
  • No files found.
opalt.asciidoc
View page @ 9ed5ef7a
......@@ -791,7 +791,7 @@ we obtain the recurrence relation
[latexmath]
++++
C_{n,k}(z) = - \frac{1}{4k(n+k)} \frac{d^2 C_{n,k-1}} {dz^2}, k = 1,2, \dots
C_{n,k}(z) = - \frac{1}{4k(n+k)} \frac{d^2 C_{n,k-1}} {dz^2}, k = 1,2, \ldots
++++
The solution of the recursion relation becomes
......@@ -859,7 +859,7 @@ profile on the central axis is the k-parameter Enge function
++++
\begin{aligned}
C_{n,0}(z) & = \frac{G_0}{1+exp[P(d(z))]}, \quad G_0 = \frac{B_0}{r_0^{n-1}} \\
P(d) & = C_0 + C_1 \left( \frac{d}{\lambda} \right) + C_2 \left( \frac{d}{\lambda} \right)^2 + \dots + C_{k-1} \left( \frac{d}{\lambda} \right)^{k-1}
P(d) & = C_0 + C_1 \left( \frac{d}{\lambda} \right) + C_2 \left( \frac{d}{\lambda} \right)^2 + \ldots + C_{k-1} \left( \frac{d}{\lambda} \right)^{k-1}
\end{aligned}
++++
......@@ -913,17 +913,19 @@ latexmath:[ \nabla \cdot \mathbf{B} = 0 ] and
latexmath:[ \nabla \times \mathbf{B} = 0 ] in the above coordinates
yield
[#eq-21]
[latexmath]
++++
\frac{\partial}{\partial x} \left( (1+x/ \rho) B_x \right) + \frac{\partial B_s}{\partial s} + (1+x/ \rho) \frac{\partial B_z}{\partial z} = 0 \label{eq:21}
\frac{\partial}{\partial x} \left( (1+x/ \rho) B_x \right) + \frac{\partial B_s}{\partial s} + (1+x/ \rho) \frac{\partial B_z}{\partial z} = 0
++++
[#eq-22-23-24]
[latexmath]
++++
\begin{aligned}
\frac{\partial B_z}{\partial s} & = (1+x/ \rho) \frac{\partial B_s}{\partial z} \label{eq:22} \\
\frac{\partial B_x}{\partial z} & = \frac{\partial B_z}{\partial s} \label{eq:23} \\
\frac{\partial B_x}{\partial s} & = \frac{\partial}{\partial x} \left( (1+x/ \rho) B_s \right) \label{eq:24}
\frac{\partial B_z}{\partial s} & = (1+x/ \rho) \frac{\partial B_s}{\partial z} \\
\frac{\partial B_x}{\partial z} & = \frac{\partial B_z}{\partial s} \\
\frac{\partial B_x}{\partial s} & = \frac{\partial}{\partial x} \left( (1+x/ \rho) B_s \right)
\end{aligned}
++++
......@@ -938,17 +940,20 @@ recursion relations. ([eq:23]) gives
Equating the powers in latexmath:[x^i z^{2k}]
[#eq-11]
[latexmath]
++++
a_{i,k} = \frac{i+1}{2k+1} b_{i+1,k} \label{eq:11}
a_{i,k} = \frac{i+1}{2k+1} b_{i+1,k}
++++
A similar result is obtained from ([eq:24])
[#eq-12]
[latexmath]
++++
\begin{aligned}
\sum_{i,k=0}^{\infty} \partial_s b_{i,k} x^i z^{2k} & = \left( 1+ \frac{x}{\rho} \right) \sum_{i,k=0}^{\infty} c_{i,k} (2k+1) x^i z^{2k} \\
\Rightarrow c_{i,k} & + \frac{1}{\rho} c_{i-1,k} = \frac{1}{2k+1} \partial_s b_{i,k} \label{eq:12}
\Rightarrow c_{i,k} & + \frac{1}{\rho} c_{i-1,k} = \frac{1}{2k+1} \partial_s b_{i,k}
\end{aligned}
++++
......@@ -993,7 +998,7 @@ field latexmath:[B_z] can be measured at the mid-plane in the form
[latexmath]
++++
B_z(z=0) = B_{0,0} + B_{1,0}x + B_{2,0} x^2 + B_{3,0} x^3 + \dots
B_z(z=0) = B_{0,0} + B_{1,0}x + B_{2,0} x^2 + B_{3,0} x^3 + \ldots
++++
where latexmath:[B_{i,0}] are functions of latexmath:[s] and they
......@@ -1045,7 +1050,7 @@ written as
[latexmath]
++++
\psi = z f_0(x,s) + \frac{z^3}{3!} f_1(x,s) + \frac{z^5}{5!} f_3(x,s) + \dots
\psi = z f_0(x,s) + \frac{z^3}{3!} f_1(x,s) + \frac{z^5}{5!} f_3(x,s) + \ldots
++++
The given transverse profile requires that
......@@ -1113,11 +1118,12 @@ latexmath:[\rho = \rho (s)]. Laplace’s equation is
The last step is again the substitution to get
[#eq-40]
[latexmath]
++++
\begin{aligned}
f_{n+1}(x,s) & = - \left[ \frac{\partial_x}{\rho h_s} + \partial_x^2 + \partial_z^2 + \frac{1}{h_s^2}\partial_s^2 + \frac{x}{\rho^2 h_s^3} (\partial_s \rho) \partial_s \right] f_n(x,s) \\
f_{n}(x,s) & = (-1)^n \left[ \frac{\partial_x}{\rho h_s} + \partial_x^2 + \partial_z^2 + \frac{\partial_s^2}{h_s^2} + \frac{x}{\rho^2 h_s^3} (\partial_s \rho) \partial_s \right]^n f_0(x,s) \label{eq:40}
f_{n}(x,s) & = (-1)^n \left[ \frac{\partial_x}{\rho h_s} + \partial_x^2 + \partial_z^2 + \frac{\partial_s^2}{h_s^2} + \frac{x}{\rho^2 h_s^3} (\partial_s \rho) \partial_s \right]^n f_0(x,s)
\end{aligned}
++++
......
Clone repository
  • autophase
  • beam command
  • benchmarks
  • control
  • conventions
  • distribution
  • elements
  • fieldmaps
  • fieldsolvers
  • format
  • geometry
  • Home
  • introduction
  • lines
  • opal madx
View All Pages